论文中文题名: | 改性羧甲基纤维素类固化剂加固黄土 力学特性及微观机理 |
姓名: | |
学号: | 20209226087 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩土体稳定及地质灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-19 |
论文答辩日期: | 2023-06-02 |
论文外文题名: | Mechanical Properties and Micro Mechanism of Modified Carboxymethyl Cellulose Curing Agent for Strengthening Loess |
论文中文关键词: | |
论文外文关键词: | curing agent ; Q3 reshaped loess ; shear strength ; disintegration characteristics ; microscopic characteristics |
论文中文摘要: |
黄土具有大孔隙、遇水湿陷、易崩解等特性,使得在黄土地区工程建设过程中,由于水分入渗,易导致黄土强度降低、黄土湿陷,进而引发地基不均匀沉降及黄土边坡失稳等问题。传统土体改良方法已广泛应用于黄土地区土体加固,但仍存在许多不足。已有研究表明,纤维素类固化剂如羧甲基纤维素钠(CMC)、聚丙烯酰胺(PAM)等固化剂在提升土体强度、防治土体侵蚀等方面具有较好的优点,但当前该类固化剂在黄土改良中的应用研究还相对较少。 将不同养护龄期、不同掺量CMC、PAM、CMC混合PAM(简称CMC+PAM)、CMC混合PAM在催化剂作用下(简称CMC+PAM+催化剂)加固洛川Q3黄土作为试验材料,通过直剪试验,系统研究了养护龄期、固化剂类型及掺量变化等因素组合对于加固黄土抗剪强度的影响规律;借助湿化崩解试验,进一步明确了养护龄期和固化剂种类对加固黄土崩解时间和崩解速率的影响;利用激光粒度分布仪、扫描电镜(SEM)、X射线衍射仪(XRD)对加固黄土粒度分布、矿物成分及微观结构特征进行了分析,从微观角度阐释了宏观力学特性变化的内在机理。主要研究成果如下: (1)CMC加固黄土、PAM加固黄土与未固化重塑黄土相比,抗剪强度得到明显提升,最优掺量分别为0.075%CMC(CMC与黄土质量比为0.075%)和0.15%PAM(PAM与黄土质量比0.15%);CMC+PAM加固黄土较单一CMC或PAM加固黄土,抗剪强度得到进一步提升,最优掺量为0.225%CMC+PAM(CMC+PAM与黄土质量比为0.225%);CMC+PAM+催化剂加固黄土和未加催化剂的CMC+PAM加固黄土相比,抗剪强度得到极大提升,最优掺量为0.225%CMC+PAM+催化剂(CMC+PAM+催化剂与黄土质量比为0.225%);随养护龄期的增加,未添加固化剂的重塑黄土和添加CMC、PAM、CMC+PAM、CMC+PAM+催化剂的加固黄土的抗剪强度也随之增大。 (2)固化剂种类、固化剂掺量和养护龄期对加固黄土黏聚力有较强的影响,CMC、PAM、CMC+PAM、CMC+PAM+催化剂4种加固黄土方案均使得土体黏聚力增大,其中CMC+PAM+催化剂的效应最为显著,整体增幅约为32% ~ 58%。相同条件下CMC、PAM加固黄土内摩擦角产生变化较小,CMC+PAM、CMC+PAM+催化剂两种加固黄土方案下土体的内摩擦角增幅约为6%~8%;固化剂对黄土粒组含量有影响,对矿物成分无明显影响,各种类固化剂各掺量中粘粒减小最大和粉粒增加最多的为0.225%CMC+PAM+催化剂,各粒组含量排序均为:粉粒>粘粒>细砂;固化剂的添加使土体中颗粒边界模糊,颗粒之间的接触方式从分散转变为线接触、面接触,出现大量团聚体、絮凝结构、聚集的土颗粒,团聚体之间也以胶结连结、架桥连结的形式填充孔隙,其中CMC+PAM+催化剂加固黄土的排列结构更为紧密。 (3)CMC、PAM、CMC+PAM、CMC+PAM+催化剂的加入能有效改善黄土试样的崩解性能,减缓黄土试样的崩解速率,延长黄土试样的崩解时间;随养护龄期增加,以上种类固化剂对黄土的崩解速率的减缓作用和对黄土崩解时间的延长作用提高;CMC+PAM+催化剂掺量为0.225%对黄土试样崩解性能的改善最为明显,CMC+PAM次之,CMC、PAM对黄土崩解性能的改善不及前两者。 |
论文外文摘要: |
The loess has the characteristics of large pores, water collapsibility and easy disintegration. In the process of engineering construction in the loess area, due to water infiltration, it is easy to lead to the decrease of loess strength and loess collapsibility, which leads to the uneven settlement of foundation and the instability of loess slope. Traditional soil improvement methods have been widely used in soil reinforcement in loess areas, but there are still many deficiencies. Previous studies have shown that cellulose curing agents such as sodium carboxymethyl cellulose (CMC), polyacrylamide (PAM) and other curing agents have good advantages in improving soil strength and preventing soil erosion. However, there are relatively few studies on the application of such curing agents in loess improvement. The Luochuan Q3 loess reinforced by different curing ages, different dosages of CMC, PAM, CMC mixed PAM (CMC+PAM) and CMC mixed PAM under the action of catalyst (CMC+PAM+catalyst) was used as the test material. Through direct shear test, the influence of curing age, curing agent type and dosage change on the shear strength of reinforced loess was systematically studied. The effects of curing age and curing agent type on the disintegration time and disintegration rate of reinforced loess were further clarified by means of wetting disintegration test. The particle size distribution, mineral composition and microstructure characteristics of the reinforced loess were analyzed by laser particle size distribution instrument, scanning electron microscope (SEM) and X-ray diffractometer (XRD), and the internal mechanism of the change of macroscopic mechanical properties was explained from the microscopic point of view. The main research results are as follows : (1) Compared with uncured and reshaped loess, the shear strength of CMC reinforced loess and PAM reinforced loess has been significantly improved, with the optimal dosage of 0.075% CMC (CMC to loess mass ratio of 0.075%) and 0.15% PAM (PAM to loess mass ratio of 0.15%), respectively; CMC+PAM reinforced loess has further improved its shear strength compared to single CMC or PAM reinforced loess, with an optimal dosage of 0.225% CMC+PAM (CMC+PAM to loess mass ratio of 0.225%); Compared with CMC+PAM+catalyst reinforced loess without catalyst, the shear strength of loess reinforced with CMC+PAM+catalyst has been greatly improved, with an optimal dosage of 0.225% CMC+PAM+catalyst (CMC+PAM+catalyst to loess mass ratio of 0.225%); As the curing age increases, the shear strength of remolded loess without curing agent and reinforced loess with CMC, PAM, CMC+PAM, CMC+PAM+catalyst also increases. (2) The type, dosage, and curing period of curing agent have a strong impact on the cohesion of reinforced loess. CMC, PAM, CMC+PAM, and CMC+PAM+catalyst all increase the cohesion of soil. Among them, CMC+PAM+catalyst has the most significant effect, with an overall increase of about 32% to 58%. Under the same conditions, there is little change in the internal friction angle of the loess reinforced with CMC and PAM. The increase in the internal friction angle of the soil under the two reinforcement schemes of CMC+PAM and CMC+PAM+catalyst is about 6%~8%; Curing agents have an impact on the content of loess particle groups, but have no significant effect on mineral composition. Among various types of curing agents, the largest decrease in clay particles and the largest increase in powder particles are 0.225% CMC+PAM+catalysts. The order of content of each particle group is: powder particles>clay particles>fine sand; The addition of curing agents blurs the boundaries of particles in the soil, and the contact mode between particles changes from dispersion to line contact and surface contact, resulting in a large number of aggregates, flocculent structures, and aggregated soil particles. The pores between aggregates are also filled in the form of cementation and bridging connections, and the arrangement structure of CMC+PAM+catalyst reinforced loess is more compact. (3) The addition of CMC, PAM, CMC+PAM, CMC+PAM+catalysts can effectively improve the disintegration performance of loess samples, slow down the disintegration rate of loess samples, and extend the disintegration time of loess samples; As the curing age increases, the slowing down effect of the above types of curing agents on the disintegration rate of loess and the prolonging effect on the disintegration time of loess increase; The CMC+PAM+catalyst dosage of 0.225% has the most significant improvement on the disintegration performance of loess samples, followed by CMC+PAM, and the improvement of loess disintegration performance by CMC and PAM is not as good as the first two. |
参考文献: |
[1]刘同有. 西部大开发中的岩石力学与工程地质问题[J]. 岩石力学与工程学报, 2003, (S2): 2541-2543. [2]王念秦. 黄土滑坡发育规律及其防治措施研究[D]. 成都:成都理工大学, 2004. [3]王建强.浅谈西安市水土流失现状及存在问题[J].地下水,2021,43(06):268-269. 2021-06-087. [4]王恭先. 滑坡防治工程措施的国内外现状[J]. 中国地质灾害与防治学报, 1998, (01): 2-10. [5]王恭先. 滑坡防治方案的选择与优化[J]. 岩石力学与工程学报, 2006, (S2): 3867-3873. [6]杨惠林. 黄土地区路基边坡生态防护技术研究[D]. 西安:长安大学, 2006. [7]樊恒辉, 高建恩, 吴普特. 土壤固化剂研究现状与展望[J]. 西北农林科技大学学报(自然科学版), 2006, (02): 141-146+152. [8]沈飞, 曹净, 曹慧. 土壤固化剂的发展现状及其前景展望[J]. 岩土工程界, 2008, 11(12): 62-66. [9]吴军虎, 陶汪海, 王海洋, 等. 羧甲基纤维素钠对土壤团粒结构及水分运动特性的影响[J]. 农业工程学报, 2015, 31(02): 117-123. [10]袁进科, 裴向军, 叶长文, 等. 改性纤维素类聚合物固沙剂的吸附力学及崩解特性试验[J].农业工程学报, 2019, 35(21): 144-150. [11]郭月峰, 祁伟, 谭国栋. 施用不同剂量的PAM对土壤含水量的影响[J]. 科技信息, 2010(32): 751-752. [12]李宁, 程国栋, 谢定义. 西部大开发中的岩土力学问题[J]. 岩土工程学报, 2001, (03): 268-272. [13]刘驰洋, 唐皓, 王念秦, 等. 酸性环境下Q2黄土压缩特性试验研究[J]. 防灾减灾工程学报,2021,41(01):125-132. [15]钟立勋. 中国重大地质灾害实例分析[J]. 中国地质灾害与防治学报, 1999, (03): 2-7+11. [16]徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 2007, (07): 1297-1312. [17]何福道. 高速公路边坡防护与加固初探[J]. 公路, 2001, (02): 55-57. [31]于健, 雷廷武, Shainberg I, 等. PAM特性对砂壤土入渗及土壤侵蚀的影响[J]. 土壤学报, 2011, 48(1): 7. [32]王启龙. 施用聚丙烯酰胺(PAM)对盐碱土改良效果研究[J].农业科技与信息, 2018, (12): 48-51. [33]李晶晶, 白岗栓. 聚丙烯酰胺的水土保持机制及研究进展[J]. 中国水土保持科学, 2011, 9(05): 115-120. [34]白岗栓, 罗东, 苗庆丰, 等. PAM喷施量与施用方式对风沙土风蚀的影响[J]. 农业工程学报, 2020, 36(10): 90-98. [38]张丽平, 余晓琴. 羧甲基纤维素钠(CMC)在食品工业应用的情况和研究动态[J]. 中国食品添加剂, 2006, (1): 8. [39]张磊, 张根林, 鲁建江, 等 羧甲基纤维素钠-改性膨润土复合凝胶的制备及缓释性能[J]. 西北农业学报, 2012, 21(01): 161-164. [40]张雷波, 焦姣, 赵雪艳, 等. 生态友好型抑尘剂的制备及性能[J]. 农业工程学报, 2013, 29(18): 218-225. [41]哈丽代姆·居麦, 宁松瑞, 王全九, 等. 施加PAM与CMC对土壤水分入渗与蒸发特征的影响[J]. 水土保持学报, 2020, 34(01): 121-127+134. [42]陈明. HA、ATP及CMC对坡面水土养分流失及大豆生长性状的影响[D]. 西安:西安理工大学, 2018. [43]曾晓舵, 梁玉清, 林兰稳, 等. 羧甲基纤维素钠对酸性土壤改良及水稻生长效应[J]. 广东农业科学, 2009, (11): 69-70. [44]杨世琦, 邢磊, 刘宏元, 等. 羧甲基纤维素钠对黄土高原新造耕地土壤改良效果[J]. 中国农业大学学报, 2021, 26(04): 185-191. [45]王惟帅, 杨世琦. 羧甲基纤维素钠制备及改性研究[J]. 合成纤维, 2018, 47(10): 24-30. [46]袁进科, 裴向军, 叶长文, 等. 改性纤维素类聚合物固沙剂的吸附力学及崩解特性试验[J]. 农业工程学报, 2019, 35(21): 7. [47]袁进科, 陈杰. 改性纤维素类固沙材料对草本植物出苗率及幼苗生长的影响[J]. 水土保持通报, 2020, 40(3): 6. [48]裴向军, 杨晴雯, 许强, 等. 改性钠羧甲基纤维素胶结固化土质边坡机制与抗冲蚀特性研究[J]. 岩石力学与工程学报, 2016, 35(11): 12. [49]肖崇林, 范日东, 杨爱武. 苯酚溶液作用下CMC改性膨润土化学相容性试验研究[J]. 工程地质学报, 2021, 29(05): 1286-1294. [50]杨芳, 黎钢, 任凤霞, 等. 羧甲基纤维素与丙烯酰胺接枝共聚及共聚物的性能[J]. 高分子材料科学与工程, 2007 (04): 78-81+85.D [51]杨明坤, 王芳辉, 姚洋, 朱红. 一种新型环保固沙剂的制备与性能研究[J]. 材料研究学报, 2012, 26(03): 225-230. [57]陈雷, 张福海, 李治朋. 纤维加筋石灰改良膨胀土工程性质试验研究[J]. 四川大学学报(工程科学版), 2014, 46(S2): 65-69. [58] 张豫川, 姚永国, 周泓. 长龄期改良黄土抗剪强度与渗透性试验研究[J]. 岩土力学, 2017, 38(S2): 170-176. [59]唐皓, 李华华, 刘驰洋, 等. 棕榈加筋黄土剪切强度特性及细观结构[J]. 科学技术与工程, 2020, 20(19): 7832-7837. [60]张玉佩, 申向东. 聚丙烯酰胺对水泥土强度影响的试验研究[J]. 硅酸盐通报, 2012, 31(06): 1636-1640. [61]李健, 刘雅南, 刘宁, 等. 羧甲基纤维素的制备研究及应用现状[J]. 食品工业科技, 2014, 35(08): 379-382. [62]李大强. 聚丙烯酰胺在矿业领域中的应用研究[J]. 科学技术创新, 2022(27): 13-16. [63]姚海林, 刘少军, 程昌炳. 一种天然胶结土粘聚力的微观本质[J]. 岩石力学与工程学报, 2001(06): 871-874. [64]刘驰洋. 酸性环境下Q2黄土蠕变力学特性研究[D]. 西安:西安科技大学, 2021. [65]GBT 50145-2007, 土的工程分类标准 [S]. [66]YS/T 5225-2016, 土工试验规程[S]. [67]黄雨, 周子舟, 柏炯, 等. 水泥土搅拌法加固冲填土软土地基的微观试验[J].同济大学学报(自然科学版), 2010, 38(07): 997-1001. [70]雷祥义. 陕北陇东黄土孔隙分布特征[J]. 科学通报, 1985(03): 206-209. [71]李喜安, 黄润秋, 彭建兵. 黄土崩解性试验研究[J]. 岩石力学与工程学报, 2009, 28(S1): 3207-3213. |
中图分类号: | P642.131 |
开放日期: | 2023-06-19 |