- 无标题文档
查看论文信息

论文中文题名:

 黄土地区洞桩法地铁车站扣拱施工力学特性研究    

姓名:

 陈箐芮    

学号:

 19204209108    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 防灾减灾工程与防护工程    

第一导师姓名:

 郑选荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Research on mechanical properties of Pile-Beam-Arch subway station buckle arch construction in loess area    

论文中文关键词:

 洞桩法 ; 扣拱施工 ; 黄土地层 ; 含水率    

论文外文关键词:

 Pile-Beam-Arch method ; Construction of buckle arch ; Loess stratum ; Water content    

论文中文摘要:

在黄土地区城市地铁建设中,由于黄土本身固有的大孔隙、水敏性等工程特点,易导致施工出现地面沉降、坍塌等问题,造成较大的经济损失。洞桩法车站施工时,扣拱施工工序和受力转换复杂,对整体结构的稳定性和安全性影响较大。鉴于此,本文以西安地铁2号线何家营站项目为依托,采用室内试验、数值模拟、现场监测相结合的研究方法,对黄土地区洞桩法车站扣拱施工受力特性进行研究,主要工作及结论如下:

(1)为了更准确地掌握施工区域黄土物理力学性质,采集何家营地区原状土制样,进行相关力学试验,研究不同含水率对黄土的物理力学参数的影响规律并进行拟合分析。试验表明:黄土抗压强度、变形模量、黏聚力、内摩擦角皆会随着含水率的升高而降低,且抗压强度、变形模量的减小速度在含水率较低时最快,表明干燥状态下的土体遇水后,其抗压能力急剧降低,容易出现失稳破坏。因此建议扣拱施工过程中应加强对给排水管线和地下水的监测。

(2)利用有限元软件PLAXIS 3D对不同扣拱初支、二衬施工顺序进行模拟,研究结果表明:先施工中跨初支扣拱,错开安全步距后再施工边跨初支扣拱,是较为合理的初支施工顺序,能够有效控制地表变形、初支结构内力、顶纵梁底部水平位移;两边跨施工错距需控制在3m内,有利于地表沉降与结构受力。初支扣拱施工完成后,再按照先中后边的顺序施作二衬扣拱,且边跨错距也应控制在3m以内。

(3)分析土层在不同含水率条件下地表沉降和扣拱力学特性的影响规律,研究结果为:随着含水率的增大,地表沉降的变形逐渐变缓。当含水率从8%增加到35%,地表沉降增大了357.26%,扣拱初支弯矩增大了69%~94%,轴力增大了20%~30%,扣拱二衬应力增长了14%~15%。因此,土层含水率对洞桩法扣拱施工的影响较大,在工程建设中应对工作面的围岩含水率进行实时监控,避免因含水率增加而导致的围岩强度降低或变形增大。

(4)为验证数值模拟的可靠性,对何家营车站施工现场地表沉降、扣拱围岩压力和初支内力变化情况进行现场监测。监测结果表明:扣拱初支及二衬施工完成后,最大地表沉降值分别为 11.01 mm和15.37 mm,五个主要监测点的最大沉降量的实测值与数值模拟相差约11.57%~17.29%,表明数值模拟的研究方法可靠。围岩压力快速上升主要发生在扣拱上台阶开挖期间,最大值达到53.2kPa;当边跨上台阶开挖时,中跨扣拱围岩受到扰动而受力重分布,围岩压力增大了50%。随着扣拱二衬施工,围岩压力趋于稳定,但由于拆除导洞初支使得本该由其承担的部分荷载全部由扣拱初支承担,扣拱初支内力急剧增长。通过对数据进行深度分析发现:在黄土地区洞桩法施工中,全土柱法计算的理论土压力值与现场监测值存在较大差异,表明使用全土柱法计算得到的土压力值进行支护结构设计偏于安全。

论文外文摘要:

In the construction of urban subways in loess areas, due to the inherent large pores and water sensitivity of loess, it is easy to cause problems such as land subsidence and collapse during construction, resulting in large economic losses. In the construction of the Pile-Beam-Arch method station, the construction procedure and force conversion of the buckle arch are complex, which has a great impact on the stability and safety of the overall structure construction. In view of this, based on the Hejiaying Station project of Xi'an Metro Line 2, this paper adopts the research method combining indoor test, numerical simulation and field monitoring to study the force characteristics during the construction of the PBA method station in the loess area. The main work and conclusions are as follows:

(1) Undisturbed soil samples were collected in Hejiaying area for uniaxial and triaxial soil compression tests. The influence of different water contents on the mechanical properties of the samples was studied, and the law of the influence of water contents on the physical and mechanical parameters of loess was obtained and fitting analysis was carried out. The test shows that the compressive strength, deformation modulus, cohesion and internal friction angle of loess all decrease with the increase of the moisture content of loess. It shows that the compressive capacity of soil in dry state decreases sharply when it encounters water, and it is prone to instability failure. Therefore, it is suggested that the monitoring of water supply and drainage pipelines and groundwater should be strengthened during the construction of the buckle arch.

(2) The finite element software PLAXIS 3D is used to carry out numerical simulation of different buckle arch construction sequences. The research results show that it is a more reasonable construction sequence to construct the initial support of the middle span first, and then to stagger the safety step distance and then construct the initial support of the side span, which can effectively control the surface deformation, the internal force of the primary support structure, and the horizontal displacement of the top longitudinal beam. In addition, the staggered distance between the two sides of the span construction should be controlled within 3 meters, which is beneficial to the formation deformation and the stress of the structure. After the construction of the primary buckle arch is completed, the second lining buckle arch is applied in the order of "first middle and back side", and the side-span stagger distance should also be controlled within 3m.

 (3) The influence law of stratum deformation and buckled arch mechanical properties of soil layer under different moisture content conditions is analyzed, and the research results are as follows: with the increase of water content, the deformation of surface subsidence gradually slowed down. When the water content increases from 8% to 35%, the surface settlement increases by 357.26%, the bending moment of the primary support of the buckle arch increases by 69% to 94%, and the axial force increases by 20% to 30%. The stress of the secondary lining structure increases by 14% to 15%. Therefore, the moisture content of the soil layer has a great influence on the construction of the PBA method. In the construction of the project, the moisture content of the surrounding rock of the working face should be monitored in real time to avoid the decrease in the strength of the surrounding rock or the increase in the deformation caused by the increase of the moisture content.

(4) In order to verify the reliability of the numerical simulation, on-site monitoring was carried out on the changes of the surface settlement, the surrounding rock pressure of the buckle arch and the internal force of the initial support at the construction site of Hejiaying Station. The monitoring results show that: after the completion of the primary support of the buckle arch and the construction of the secondary lining, the maximum surface settlement values are 11.01 mm and 15.37 mm, respectively. The measured value of the maximum settlement of the five main monitoring points differs from the numerical simulation by about 11.57%~17.29%. It shows that the research method of numerical simulation is reliable. The rapid rise of the surrounding rock pressure mainly occurs during the excavation of the upper bench of the buckle arch, and the maximum value reaches 53.2kPa; when the side span is excavated on the upper bench, the surrounding rock of the middle-span buckle arch is disturbed and the force is redistributed, and the surrounding rock pressure increases 50%. After the construction of the second lining of the buckle arch, the surrounding rock pressure tends to be stable. The internal force of the main reinforcement of the primary support of the buckle arch surged during the construction of the secondary lining, because the removal of the primary support of the pilot hole caused a part of the external load have been borne by it to be transferred to the buckle arch. Through the in-depth analysis of the data, it is found that in the construction of the hole pile method in the loess area, there is a big difference between the theoretical earth pressure value calculated by the whole soil column method and the field monitoring value, indicating that the earth pressure value calculated by the whole soil column method is used for supporting structures. The design is biased towards safety.

参考文献:

[1]王文涛.PBA工法地铁车站导洞施工方案优化研究[D].北京交通大学,2015.

[2]陈武.黄土地层洞桩法暗挖地铁车站设计施工关键技术研究[D].长安大学,2018.

[3]任建喜,刘田田,云梦晨,等.边桩对PBA法黄土车站地表变形的影响分析[J].铁道工程学报,2020,37(01):109-114.

[4]孙玉辉,张子真,陈昌彦,等.单层洞桩法暗挖车站边桩结构受力及变形特征研究[J].城市轨道交通研究,2021,24(09):30-34+38.

[5]杜荣波.北京地铁某车站洞桩法施工沉降规律研究[D].中国地质大学(北京),2019.

[6]刘罡.蒲黄榆地铁车站施工力学行为研究[D].西南交通大学,2014.

[7]吴幸娟.北京地铁16号线苏州街车站PBA工法施工模拟研究[D].中国地质大学(北京),2016.

[8]黄生文.富水砂质地层洞桩法施工力学特性研究[D].中南大学,2012.

[9]孟有军.富水砂层条件下地铁车站浅埋暗挖洞桩法施工技术[J].国防交通工程与技术,2014,12(S1):139-142.

[10]李栋.地铁富水大直径卵石地层隧洞内机械成桩难点及对策[J].铁道建筑,2015(12):59-62.

[11]郑选荣.西安地铁浅埋暗挖黄土隧道围岩变形特性及控制技术研究[D].西安科技大学,2015.

[12]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[[J].岩土工程学报.1999.21(6):651-656.

[13]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形—强度的关系[[J].水利学报.1999,(10):1-6.

[14]盛海洋,陈忠.黄土高原的侵蚀历史、黄土特性与水土保持研究[J].长江职工大学学报,2003,20(1):1-5.

[15]刘伟,陈勇.山西洪洞恒富铁路专用线黄土特性及工程措施[J].工程地质学报,2014,(22):117-121.

[16]柴华友,崔玉军,卢应发.循环荷载下黄土特性模拟[J].岩石力学与工程学报,2005,24(23):4272-4281.

[17]赵占厂,谢永利,杨晓华,等.黄土公路隧道衬砌受力特性测试研究[J].中国公路学报,2004,17(1):66-69.

[18]杨晓华,谢永利.公路隧道塌方综合处理技术[J].长安大学学报(自然科学版).2004,24(1):61-64.

[19]郑颖人,杨会龙.锚喷支护参数分析与选用原则[C]//地下工程经验交流会论文选集.1982.

[20]张红,郑颖人等.黄土隧洞支护结构设计方法探讨[J].岩土力学.2009,12(30):473-478.

[21]Nego, A. (1988). Design of shallow tunnels in soft Bound. PhD Thesis, Univ. of Alberta.

[22]铁道科学院等.铁路隧道复合衬砌研究总报告.鉴定报告,1986.

[23]铁道科学院西南所等.特浅埋软弱围岩隧道的修建技术.鉴定报告,1984.

[24]Katzenbach R, and H Breth . Non-linear 3-D analysis for NATM in Frankfurt Clay [C]// Proc.10th Int.Conf. Soil Mech. Found. Eng. Stockholm. 1981 Vol.l, pp. 315-318.

[25]Oreste, P.P., Peila, D. Poma, A. Numerical study of low depth tunnel behavior. Proc. Challenges for the 21st Century, Balkema, 1999, pp. 155-162.

[26]刘平,刘池,王洪涛,张红军,杨勇,张欣,刘璐瑶.富水砂层影响下隧道围岩变形破坏机制的数值模拟研究[J].现代隧道技术,2020,57(04):74-81.

[27]陶志刚,罗森林,李梦楠,任树林,何满潮.层状板岩隧道大变形控制参数优化数值模拟分析及现场试验[J].岩石力学与工程学报,2020,39(03):491-506.

[28]Guo X P, A N Jiang, S Y Wang. Study on the Applicability of an Improved Pile-Beam-Arch Method of Metro Station Construction in the Upper-Soft and Lower-Hard Stratum. Advances in Civil Engineering, 2021.

[29]Lv J B, X L Li, Z R Li, and H L Fu. Numerical Simulations of Construction of Shield Tunnel with Small Clearance to Adjacent Tunnel without and with Isolation Pile Reinforcement. KSCE Journal of Civil Engineering, 2020, 24 (3): 295-309

[30]吴精义,叶新丰,余鹏,等.北京地铁粉细砂层PBA车站沉降规律研究[J].隧道建设(中文),2020,40(10):1408-1416.

[31]杨子璇, 姚爱军, 张东,等.隧道密贴下穿既有地铁车站沉降控制研究[J].地下空间与工程学报,2020,16(S1):442-449+464.

[32]Xg A, Zw B, Ping G A , et al. Ground surface settlement response to subway station construction activities using pile–beam–arch method[J]. Tunnelling and Underground Space Technology, 2020.

[33]Li B, Wang Z Z . Numerical study on the response of ground movements to construction activities of a metro station using the pile-beam-arch method[J]. Tunnelling and underground space technology, 2019, 88(JUN.):209-220.

[34]杨锋.西安某地铁车站洞桩法施工的地表变形规律数值模拟分析[J].城市轨道交通研究,2021,24(12):43-48.

[35]宗翔.洞桩法开挖引起的地面沉降规律及实用估测方法研究[J].结构工程师,2020,36(06):150-157.

[36]Yu L, Zhang D, Fang Q, et al. Surface settlement of subway station construction using pile-beam-arch approach[J]. Tunnelling and Underground Space Technology, 2019, 90:340-356.

[37]Peck R B. Deep excavations and tunneling in soft ground [A].Proceeding of 7th International Conference on Soil Mechanics and Foundation Engineering [C]. Mexico City: State of the Art Report, 1969,225-290.

[38] Lu D, Lin Q, Tian Y, et al. Formula for predicting ground settlement induced by tunnelling based on Gaussian function[J]. Tunnelling and Underground Space Technology, 2020, 103:103443.

[39]ET Ağbay, Topal T. Evaluation of twin tunnel-induced surface ground deformation by empirical and numerical analyses (NATM part of Eurasia tunnel, Turkey)[J]. Computers and Geotechnics, 2020, 119.

[40]Meng, Fei, Li-chun, et al. Ground movement analysis based on stochastic medium theory.[J]. The Scientific World Journal, 2014.

[41]Sagaseta, C. Analysis of undraind soil deformation due to ground loss[J]. Geotechnique, 1987, 37(3):301-320.

[42]Bobet, Antonio. Analytical Solutions for Shallow Tunnels in Saturated Ground[J]. Journal of Engineering Mechanics, 2001, 127(12):1258-1266.

[43]Chou, Weil, Bobet, et al. Predictions of ground deformations in shallow tunnels in clay -ScienceDirect[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2002, 17(1):3-19.

[44]房旭.地铁车站PBA洞桩法及车站交叉结构施工力学行为研究[D].西南交通大学,2013.

[45]邢慧堂,秦世朋,唐卓华,等.桩洞法施工地层响应及结构受力分析[J].现代隧道技术,2018,55(05):229-237.

[46]Liu X , Liu Y , Qu W , et al. Internal force calculation and supporting parameters sensitivity analysis of side piles in the subway station excavated by Pile-Beam-Arch method[J]. Tunnelling and Underground Space Technology, 2016, 56:186-201.

[47]李斌.地铁洞桩法施工对邻近桩基侧摩阻力作用机理及时间效应分析[D].北京交通大学,2010.

[48]宋月光,杨慧林,李涛.地铁洞桩法施工阶段地下洞室的受力分析[J].铁道标准设计,2005(7):97-99.

[49]庞宇斌.大跨高边墙地铁风道洞桩法施工力学机理分析[D].北京交通大学,2012.

[50]瞿万波,刘新荣,李燕.地铁隧道洞桩法施工边桩力学效应的参数敏感性分析[J].铁道建筑,2013(08):62-64.

[51]秦晓英.城市地铁车站PBA工法施工力学效应的数值模拟研究[D].重庆大学,2008.

[52]袁羊扣,焦有权,罗沐池,等.洞桩法边桩变形的荷载-结构模型[J].兰州理工大学学报,2020,046(001):123-128.

[53]李涛,高源,邵文,等.倾斜荷载对洞桩法边桩变形规律影响研究[J].地下空间与工程学报,2019,15(S2):666-672+686.

[54]邓祥辉,曹卫平,杨东升.降雨入渗对浅埋黄土隧道稳定性的影响[J].土木与环境工程学报(中英文),2020,42(02):45-55.

[55]刘军,吴玉勤,荀桂富,等.PBA工法中拱跨跨度对扣拱施工顺序影响的分析研究[J].市政技术,2016,34(01):85-89.

[56]夏梦然.深基坑基底注浆加固效果数值模拟分析[J].土木与环境工程学报(中英文),2020,42(01):64-69.

[57]赵永虎,罗浩洋,苗学云,等.黄土隧道围岩含水率变化及拱架受力特征研究[J].铁道标准设计,2019,63(04):128-131+147.

[58]张德文.济南地铁R1线下穿高铁盾构隧道管片结构应力监测分析[J].现代隧道技术,2020,57(S1):828-834.

中图分类号:

 U231.4    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式