论文中文题名: | 城市黄土路基动载渗透效应 及变形破坏机理研究 |
姓名: | |
学号: | 19104053006 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0814 |
学科名称: | 工学 - 土木工程 |
学生类型: | 博士 |
学位级别: | 工学博士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩土工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-13 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Research on dynamic infiltration effect and deformation failure mechanism of loess subgrade in urban areas |
论文中文关键词: | |
论文外文关键词: | Loess area ; urban roads ; loess subgrade ; dynamic infiltration ; failure mechanism |
论文中文摘要: |
<p> “海绵城市”将是城市功能发展的必然方向,相应的渗水路面和给排水管网建设规模不断扩大;与此同时城市化进程的推进、城市交通量的日益增长,使得黄土地区城市路基面临着动载渗透及力学性能劣化的灾变风险。针对黄土工程性质及力学效应研究已取得了长足发展,但随着城市道路功能的改变,动载渗透效应下黄土路基工程病害问题趋于严重。本文以城市黄土路基为研究对象,从路基动载渗透、渗透促劣角度入手,通过现场调研、室内试验、理论分析和数值模拟等手段,研究城市黄土路基动载渗透效应和渗透作用下黄土动力特性劣化效应,建立黄土动载渗透控制方程组和考虑渗透作用的土体动力本构方程,提出基于动载渗透效应的黄土多场耦合模型,实现车辆动载与管道渗漏作用下城市黄土路基变形破坏数值模拟,揭示考虑动载渗透效应的城市黄土路基变形破坏机理。主要研究内容和成果如下:</p>
<p> (1)基于自主研制的动载渗透试验装置和微细观试验手段,研究了车辆动载对路基黄土渗透特性的影响规律,揭示了城市路基黄土动载促渗效应:①车辆动载引起的振动作用具有加快水分渗透,推进湿润锋运移,加速水气驱替的促渗效应,土体饱和渗透系数为无振动下的3~14倍,且在土体自振频率附近(约20~25Hz)增幅最大,土体体积含水率提升时间提前,增长进程加快,基质吸力衰减提前,气体逃逸加剧;②车辆动载具有激发渗水超静孔压和加剧渗透侵蚀的促渗效应,土体孔隙水压力增长时间提前,水分渗透速率和侵蚀速率提升显著;③动应力和振动联合作用于渗水和土体结构,产生渗透驱动力提升,土粒黏结键错断,封闭气泡打开,孔隙迂曲度降低,孔隙(微裂隙)贯通,结合水弱结合化等土水-固液气三相多重效应,造成土中水快速渗透的促渗效应。</p>
<p> (2)通过考虑渗透作用的路基黄土动力特性多尺度试验研究,揭示了渗透压力具有弱化土体动力学参数,加剧土体累积塑性变形的动力特性劣化效应:①骨干曲线硬化幅度降低,渗透压力增至30kPa时,曲线由应变强硬化型转化为弱硬化型,动剪切模量显著降低、阻尼比增加、动强度衰减;②累积塑性应变曲线由稳定型向发展型过渡,土体累积变形为无渗透压力下的1.5~3.5倍,且渗透压力越大、动应力幅值越高、加载频率越低,累积塑性变形越大;③动应力和渗透压力联合作用于土骨架,带来土体孔隙粗化、胶结溶解、裂隙滋生的结构损伤效应,造成土体动黏聚力骤减,动强度损失,动力特性衰减的劣化效应。</p>
<p> (3)基于孔隙率的概念,考虑动载作用产生的物理损伤,推导了黄土动载损伤孔隙率和渗透性方程,结合颗粒侵蚀运移和土体水力特性方程,提出了黄土动载渗透控制方程组;基于土的弹塑性理论、损伤理论和边界面理论,考虑渗流损伤及循环加载效应,提出了考虑渗透作用的黄土动力本构模型;通过孔隙率和渗透系数演化架起了黄土动载渗透控制方程组和土体动力本构模型之间的桥梁,建立了基于动载渗透效应的黄土多场耦合模型,通过对物理模型试验开展数值模拟,验证了多场耦合模型的合理性。</p>
<p> (4)以西安市咸宁东路路基塌陷为例,应用黄土动载渗透多场耦合模型,考虑车辆动载和管道渗漏作用,数值分析了路基多物理力学场的演化特征,结合物理模型试验结果,阐明了该路基变形破坏的“三阶段、五步骤”演化过程:动载渗透损伤累积阶段(渗水饱和软化、振动促渗致裂)、动载渗透侵蚀流失阶段(振散侵蚀贯通、振溃流失成洞)和动渗促劣剪冲致陷阶段;确定了该路基塌陷的原因:复杂的地层结构,特殊的土层岩性以及多变的多物理场环境是导致塌陷破坏的先决条件;车辆动载和管道渗漏产生的动载促渗效应是发生塌陷破坏的直接诱因;渗透作用下,土体动力特性的劣化效应是形成塌陷破坏的主要原因。</p>
<p> 研究成果将有助于揭示动载作用下黄土体渗流演化与动力响应机制,深化对城市黄土路基管道渗漏诱发塌陷等灾害发生机理的认识,对创新城市黄土路基灾变机制理论,提升城市防灾减灾能力具有重要意义。</p>
﹀
|
论文外文摘要: |
<p>“Sponge city” is the essential development direction of urban functions, which brings a continuous expansion of corresponding water seepage pavement, water supply pipeline network and underground utility tunnel construction scale. Meanwhile, urban pavements in loess areas are facing with dynamic infiltration and structural deterioration-induced disaster risks due to the progresses in urbanization and daily increase of urban traffic volume. Researches on loess engineering properties and mechanical effects have achieved significant progress. With functional changes of urban roads, loess pavement diseases under dynamic infiltration effect are intensifying gradually. From the perspective of dynamic load infiltration and infiltration promoting deterioration of subgrade, this paper took urban loess subgrade as the research object, field investigation, laboratory test, theoretical analysis and numerical simulation were conducted and the pro-infiltration effect of urban loess subgrade under dynamic load as well as the degradation effect of loess dynamic characteristics under infiltration were explored. Then, the dynamic infiltration control equations of loess and the dynamic constitutive equation of soil considering infiltration were established, and a multi-field coupling model of loess based on dynamic infiltration effect was proposed. While realizing the numerical simulation of deformation and failure of urban loess subgrade under vehicle dynamic load and pipeline leakage, this study revealed the deformation and failure mechanism of urban loess subgrade considering dynamic infiltration effect. The main research content and achievements were as follows:</p>
<p> (1) Based on the self-developed dynamic load permeability test device and microscopic test means, this paper studied the influence of vehicle dynamic load on loess permeability characteristics of subgrade, and demonstrated the effect of dynamic load on promoting permeability of urban loess subgrade: 1) The vibration caused by vehicle dynamic load could accelerate water infiltration, advance wet front migration and speed up water vapor displacement. The saturated permeability coefficient of soil was 3 - 14 times of that without vibration, and it was most significant near the natural vibration frequency of soil (approximately 20-25 Hz). The increase time of soil volume moisture content was advanced, the growth process was accelerated, the matrix suction attenuation was accelerated, and gas escape was intensified. 2) Vehicle dynamic load could stimulate excess pore pressure of seepage and intensify infiltration erosion. The growth time of pore water pressure in soil was advanced, and the water infiltration rate and soil erosion rate were significantly improved. 3) Dynamic stress and vibration acted on seepage and soil structure, which results in multiple effects of soil-water-solid-liquid-gas, such as increase of seepage driving force, broken bond of soil particles, opening of closed bubbles, decrease of pore tortuosity, penetration of pores (micro-fissures), and weak combination of bound water, thereby leading to rapid infiltration of water in soil.</p>
<p> (2) Multi-scale test was performed to investigate the dynamic characteristics of subgrade loess considering seepage. It is revealed that osmotic pressure has the effect of weakening the dynamic parameters of soil and aggravating the dynamic characteristics deterioration of cumulative plastic deformation of soil: 1) The hardening degree of soil skeleton curve was weakened. When the seepage pressure increased to 30kPa, the curve changed from strain hardening type to weak hardening type. Dynamic shear modulus decreased significantly, damping ratio increased and dynamic strength decreased. 2) The cumulative plastic strain curve of soil changed from stable to developing state, and the cumulative deformation of soil was 1.5 - 3.5 times of that without infiltration pressure. Moreover, the greater the infiltration pressure, the higher the dynamic stress amplitude and the lower the loading frequency, the greater the cumulative plastic deformation. 3) Dynamic stress and infiltration pressure jointly acted on soil skeleton, bringing the structural damage effect of soil pore coarsening, cementation dissolution and crack breeding. This could trigger the deterioration of dynamic cohesion, loss of dynamic strength, and attenuation of dynamic property of soil.</p>
<p> (3) Based on the concept of porosity of geotechnical medium, in view of the physical damage caused by dynamic load, the porosity and permeability models of loess dynamic load damage were derived. Combining with the particle erosion migration equation and the soil hydraulic characteristic equation, this paper proposed the dynamic infiltration control equations of loess. Based on the elastic-plastic theory, damage theory and boundary surface theory of soil, a dynamic constitutive model of loess considering seepage damage and cyclic loading effect was put forward. Through the evolution of porosity and permeability coefficient, the bridge between the dynamic load permeability control equations of loess and the dynamic constitutive model of soil was established. Furthermore, a multi-field coupling model of loess based on dynamic infiltration seepage effect was set up. Numerical simulation of the physical model test was carried out to verify the rationality of the multi-field coupling model.</p>
<p> (4) Based on the subgrade collapse of Xianning East Road in Xi’an, the multi-field coupling model of loess dynamic infiltration was embedded into the numerical simulation software, and the evolution of multi-physical and mechanical fields of subgrade was numerically simulated and analyzed considering the dynamic load of vehicles and pipeline leakage. Combining with the physical model test results, this study expounded the “three-stage, five-step” evolution process of subgrade deformation and failure, namely the cumulative stage of dynamic infiltration damage (saturated softening of seepage, vibration promoting infiltration cracking), the stage of dynamic load infiltration erosion loss (vibration scattering-erosion into penetration, vibration-collapse loss into holes) and the stage of dynamic-infiltration promotes deterioration-shear-impact depression. In addition, complex stratum structure, special soil lithology and changeable multi-physical field environment were prerequisites for the collapse and failure. The dynamic pro-infiltration effect caused by vehicle dynamic load and pipeline leakage was the direct cause of collapse damage. Under the action of infiltration, the deterioration effect of soil dynamic characteristics was the main reason for the collapse failure.</p>
<p> The research result is conductive to revealing the seepage evolution and dynamic response mechanism of loess under dynamic load, and deepening the understanding of mechanism of disasters such as pipeline leakage-induced collapse of urban loess subgrade. It is also of great significance for innovating the theory of disaster mechanism of urban loess subgrade and improving the urban disaster prevention and reduction ability.</p>
﹀
|
参考文献: |
[1] 习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话[N]. 南方日报, 2019-10-16(A01). [3] 彭建兵, 林鸿州, 王启耀, 等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 2014, 22(4): 684-691. [4] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 2001, 23(1):3-13. [5] Li Y R. Loess genesis and worldwide distribution[J]. Earth-Science Reviews, 2020, 201: 102947. [6] 国务院办公厅关于加强城市地下管线建设管理的指导意见(国办发〔2014〕27号)[Z]. 北京: 中华人民共和国国务院办公厅, 2014. [7] 田甜. 给水管道爆管原因分析及防治措施[D]. 西安: 西安建筑科技大学, 2013. [8] 胡志平, 温馨, 张勋, 等. 湿陷性黄土地区海绵城市建设研究进展[J]. 地球科学与环境学报, 2021, 43(2): 376-388. [9] 全国地质灾害通报[J]. 自然资源部地质灾害技术指导中心, 2019. [14] 安芷生, 魏兰英. 离石黄土中的第五层古土壤及其古气候的意义[J]. 土壤学报, 1980, 17(1): 1-10. [17] 陈正汉, 许镇鸿, 刘祖典. 关于黄土湿陷的若干问题[J]. 土木工程学报, 1986, 19(3): 86-94. [18] 雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑), 1987(12): 1309-1318. [20] 邵生俊, 王丽琴, 邵帅, 等. 黄土的结构屈服及湿陷变形的分析[J]. 岩土工程学报, 2017, 39(8): 1357-1365. [24] 徐邦栋, 王恭先. 滑坡防治研究[J]. 中国铁道科学, 1980, 2(1): 110-122. [27] 彭建兵, 吴迪, 段钊, 等. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理[J]. 西南交通大学学报, 2016, 51(5): 971-980. [28] 邵生俊, 王丽琴, 陶虎, 等. 黄土的构度及其与粒度、密度、湿度之间的关系[J]. 岩土工程学报, 2014, 36(8): 1387-1393. [29] 雷胜友, 唐文栋. 黄土在受力和湿陷过程中微结构变化的CT扫描分析[J]. 岩石力学与工程学报, 2004, 23(24): 4166-4169. [32] 刘奉银, 张昭, 周冬, 等. 影响GCTS土水特征曲线仪试验结果的因素及曲线合理性分析[J]. 西安理工大学学报, 2010, 26(3): 320-325. [33] 李同录, 范江文, 习羽, 等. 击实黄土孔隙结构对土水特征的影响分析[J]. 工程地质学报, 2019, 27(5): 1019-1026. [34] 张登飞, 陈存礼, 张洁, 等. 等向应力条件下非饱和原状黄土增湿渗水特性试验研究[J]. 岩土工程学报, 2018, 40(3): 431-440. [35] 叶万军, 刘宽, 董西好, 等. 干湿循环下重塑黄土水分迁移试验[J]. 西安科技大学学报, 2018, 38(6): 937-944. [36] 朱才辉, 张世斌. 降雨条件下压实黄土水分入渗规律模型试验研究[J]. 岩土工程学报, 2018, 40(6): 1117-1124. [37] 倪万魁, 师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土, 2014, 36(4): 922-927. [39] 张耀, 胡再强, 陈昊, 等. 酸性溶液对黄土结构改良的试验研究[J]. 岩土工程学报, 2018, 40(4): 681-688. [40] 吴恒, 张信贵, 易念平, 等. 城市环境下的水土作用对土强度的影响[J]. 岩土力学, 1999, 20(4): 25-30. [42] 黄润秋, 徐则民, 许模. 地下水的致灾效应及异常地下水流诱发地质灾害[J]. 地球与环境, 2005, 33(3): 1-8. [43] 王家鼎, 许元珺, 张登飞, 等. 黄土振动促渗效应研究[J]. 中国科学: 地球科学, 2021, 51(5): 763-782. [48] 申艳军, 魏欣, 杨更社, 等. 岩石-混凝土界面黏结强度冻融劣化模型及试验分析[J]. 岩石力学与工程学报, 2020, 39(3): 480-490. [52] 李玉根, 张慧梅, 刘光秀, 等. 风积砂混凝土基本力学性能及影响机理[J]. 建筑材料学报, 2020, 23(5): 1212-1221. [53] 刘宽, 叶万军, 景宏君, 等. 季冻区黄土微观损伤识别与宏观力学响应研究[J]. 岩土工程学报, 2021, 43(S1): 192-197. [55] 晏长根, 王婷, 贾海梁, 等. 冻融过程中未冻水含量对非饱和粉土抗剪强度的影响[J]. 岩石力学与工程学报, 2019, 38(6): 1252-1260. [64] 彭建兵, 李喜安, 范文, 等. 黄土高原地区黄土洞穴的分类及发育规律[J]. 地学前缘, 2007, 14(6): 234-244. [67] 李喜安, 黄润秋, 彭建兵, 等. 关于物理侵蚀作用及其概念模型的讨论[J]. 工程地质学报, 2010, 18(6): 880-886. [68] 张冬梅, 杜伟伟, 高程鹏. 间断级配砂土中管线破损引起的渗流侵蚀模型试验[J]. 岩土工程学报, 2018, 40(11): 2129-2135. [70] 单红仙, 孟祥梅, 贾永刚, 等. 振动导致黄河口海床渗透性变化研究[J]. 岩土力学, 2005, 26(S2): 73-78. [71] 武军, 廖少明, 霍晓波. 地铁列车振动荷载对穿越泥水盾构泥膜渗透系数的影响[J].岩土工程学报, 2015, 37(6): 1093-1104. [72] 廖红建, 俞茂宏, 外崎明, 等. 黄土状土和火山灰粘性土的动剪强度研究[J]. 西安交通大学学报, 1998, 32(10): 73-77. [74] 谢定义. 应用土动力学[M]. 北京: 高等教育出版社, 2013. [75] 王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003. [77] 骆亚生, 谢定义, 陈存礼. 黄土不同湿度状态下破坏动强度的试验分析[J]. 西安理工大学学报, 2001, 17(4): 403-407. [78] 田文通, 孙军杰, 王兰民, 等. 黄土动力学研究进展与前缘科学问题[J]. 岩土工程学报, 2015, 37(11): 2119-2127. [79] 孙军杰, 王兰民, 龙鹏伟, 等. 地震与降雨耦合作用下区域滑坡灾害评价方法[J]. 岩石力学与工程学报, 2011, 30(4): 752-760. [80] 骆亚生, 田堪良. 非饱和黄土的动剪模量与阻尼比[J]. 水利学报, 2005, 36(7): 830-834. [82] 王兰民, 刘红玫, 李兰, 等. 饱和黄土液化机理与特性的试验研究[J]. 岩土工程学报, 2000, 22(1): 92-97. [83] 陈存礼, 杨鹏, 何军芳. 饱和击实黄土的动力特性研究[J]. 岩土力学, 2007, 28(8): 1551-1556. [84] 吴敏哲, 张柯, 胡卫兵, 等. 地铁行车荷载作用下饱和黄土的累积塑性应变[J]. 西安建筑科技大学学报(自然科学版), 2011, 43(3): 316-322. [85] 张沛云, 马学宁, 李善珍, 等. 高速铁路水泥改良黄土路基长期动力稳定性评价[J]. 振动与冲击, 2019, 38(11): 80-87. [87] 褚峰, 罗静波, 邓国华, 等. 纤维纱加筋黄土动力变形动强度及震陷特性试验研究[J]. 岩石力学与工程学报, 2020, 39(1): 177-190. [92] 柴华友, 崔玉军, 卢应发. 循环荷载下黄土特性模拟[J]. 岩石力学与工程学报, 2005, 24(23): 4272-4281. [93] 李华明, 蒋关鲁, 吴丽君, 等. 黄土地基动力沉降特性试验研究[J]. 岩土力学, 2009, 30(8): 2220-2224. [94] 蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. [95] 刘宽, 叶万军, 高海军, 等. 干湿环境下膨胀土力学性能劣化的多尺度效应[J]. 岩石力学与工程学报, 2020, 39(10): 2148-2159. [99] 高国瑞. 中国黄土的微结构[J]. 科学通报, 1980, 20: 945-948. [103] 胡再强, 沈珠江, 谢定义. 结构性黄土的本构模型[J]. 岩石力学与工程学报, 2005, 24(4): 565-569. [104] 黄茂松, 姚仰平, 尹振宇, 等. 土的基本特性及本构关系与强度理论[J]. 土木工程学报, 2016, 49(7): 9-35. [105] 秦立科. 非饱和黄土动力本构模型及其在地铁车站地震反应分析中的应用[D]. 西安: 长安大学, 2010. [106] 冯双喜. 动应力场和渗流场耦合作用下软黏土变形特性及沉降预测研究[D]. 天津: 天津大学, 2020. [107] 胡存, 刘海笑, 黄维. 考虑循环载荷下饱和黏土软化的损伤边界面模型研究[J]. 岩土力学, 2012, 33(2): 459-466. [113] Terzaghi K. Theorectical soil mechanics[M]. New York: Wiley, 1943: 345-398. [116] 徐献芝, 李培超, 李传亮. 多孔介质有效应力原理研究[J]. 力学与实践, 2001, 23(4): 42-45. [117] 李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展(A辑), 2003, 18(4): 419-426. [119] 靳德武, 牛富俊, 陈志新, 等. 土体冻融过程中渗流场应力场温度场耦合作用机理研究[J]. 煤田地质与勘探, 2003, 31(5): 40-42. [120] 蔡国庆, 赵成刚, 刘艳. 一种预测不同温度下非饱和土相对渗透系数的间接方法[J].岩土力学, 2011, 32(5): 1405-1410. [122] 陈存礼, 曹程明, 王晋婷, 等. 湿载耦合条件下结构性黄土的压缩变形模式研究[J]. 岩土力学, 2010, 31(1): 39-45. [123] 詹良通, 邱清文, 杨益彪, 等. 黄土覆盖层水–气耦合运移土柱试验及数值模拟[J]. 岩土工程学报, 2017, 39(6): 969-977. [124] 王元战, 郝林南, 马殿光, 等. 广西右江沿岸粘土三轴渗流剪切强度试验研究[J]. 水道港口, 2011, 32(5): 351-355. [125] 雷华阳, 许英刚, 缪姜燕, 等. 动渗耦合作用下软黏土动力特性试验研究[J]. 岩土力学, 2021, 42(3): 601-610. [126] 余良贵. 沉积环境与动力特性对软黏土渗透系数影响试验研究[D]. 杭州: 浙江大学, 2018. [127] 叶万军, 李长清, 杨更社, 等. 冻融环境下黄土体结构损伤的尺度效应[J]. 岩土力学, 2018, 39(7): 2336-2343. [128] 沈珠江. 饱和砂土的动力渗流变形计算[J]. 水利学报, 1980, (2): 14-22. [131] 邢宇健. 岩溶区地下水位动态变化诱发地表塌陷的机理研究[D]. 北京: 北京交通大学, 2018. [132] 胡聿涵, 白玉川, 徐海珏. 近10年中国城市道路塌陷原因及防治对策分析[J]. 公路, 2016, 61(9): 130-135. [133] 王帅超. 城市地下管道渗漏引起的路面塌陷机理分析与研究[D]. 郑州: 郑州大学, 2017. [134] 高程鹏. 循环动荷载下下伏空洞路面塌陷的模型试验研究[J]. 水文地质工程地质, 2021, 48(1): 70-77. [135] 武天仪. 交通荷载作用下管线渗漏引起城市路面塌陷问题研究[D]. 郑州: 郑州大学, 2018. [136] 孙培翔. 季节性浸水路基变形模拟及变形协调设计[D]. 南京: 东南大学, 2018. [137] 孙必雄. 降雨入渗对非饱和土路基稳定性的影响研究[J]. 路基工程, 2015, (1): 129-132. [138] 许元珺. 黄土振动四促效应研究-机车振动促裂、促崩(解)、促渗、促滑效应[D]. 西北大学, 2021. [139] 刘晨阳. 路基浅层病害雷达正演及智能识别研究[D]. 北京: 北京交通大学, 2021. [140] 李喜安. 黄土暗穴的成因及其公路工程灾害效应研究[D]. 西安: 长安大学, 2004. [141] 中华人民共和国建设部. GB 50332-2002 给水排水工程管道结构设计规范[S]. 北京:中国建筑工业出版社, 2002. [142] 许元珺. 列车振动作用对黄土渗透性影响研究[D]. 西安: 西北大学, 2017. [143] 孟昭博. 西安钟楼的交通振动响应分析及评估[D]. 西安: 西安建筑科技大学, 2009. [145] 中华人民共和国交通部. JTGD30-2004 公路路基设计规范[S]. 北京: 人民交通出版社, 2004. [150] 刘雪梅, 邓子辰. 饱和多孔弹性Timoshenko梁动力响应的广义多辛数值实现[J]. 西北工业大学学报, 2020, 38(4): 774-783. [151] 李倩. 车辆-沥青路面结构系统相互作用动力分析及路面损伤机制研究[D]. 西安: 西安建筑科技大学, 2018. [152] 李有法. 数值计算方法[M]. 北京:高等教育出版社, 2005. [154] 卢正, 王长柏, 付建军, 等. 交通荷载作用下公路路基工作区深度研究[J]. 岩土力学, 2013, 34(2): 316-321+352. [155] 中华人民共和国建设部. GB/T 50123-2019 土工试验方法标准[S]. 北京: 中国计划出版社, 2019. [161] 吴争光, 张华. 积水入渗稳定时近饱和土中封闭气泡含量试验研究[J]. 岩土工程学报, 2012, 34(2): 274-279. [162] 高大潮. 水力管线渗漏诱发地面塌陷模型试验研究[D]. 济南: 山东建筑大学, 2020. [163] 高程鹏. 管道破损引发渗流侵蚀过程的模型试验[J]. 地下空间与工程学报, 2020, 16(6): 1646-1656. [164] 王堉众. 不同水力条件下砂土侵蚀成洞机理研究[D]. 济南: 山东建筑大学, 2020. [165] 贾辉. 城市供水管网渗漏水力特性研究[D]. 天津: 天津大学, 2008. [166] 姬建, 夏嘉诚, 张哲铭, 等. 污水管线渗漏诱发地面下陷数值分析[J]. 河海大学学报(自然科学版), 2021, 49(5): 406-412. [167] 段旭, 刘武超, 邹愈, 等. 车辆动荷载作用下黄土地区浅埋综合管廊动力响应试验研究[J]. 铁道科学与工程学报, 2022, 19(6): 1716-1725. [168] 王贺, 杨广庆, 熊保林, 等. 模块面板式加筋土挡墙结构行为试验研究[J]. 岩土力学, 2016, 37(2): 487-498. [169] 王俊茂. 黄土场地管道漏水入渗规律与地基湿陷变形研究[D]. 西安: 长安大学, 2018. [170] 鄢天柱. 西宁市城区地下管线渗漏诱发地面塌陷成因机理及稳定性研究[D]. 贵阳: 贵州大学, 2022. [174] 田慧会, 韦昌富, 魏厚振, 等. 压实黏质砂土脱湿过程影响机制的核磁共振分析[J]. 岩土力学, 2014, 35(8): 2129-2136. [178] 董均贵, 吕海波, 陈国强. 基于核磁共振技术的孔隙水形态及土壤渗透性分析[J]. 农业工程学报, 2020, 36(6): 74-80. [179] 徐学选, 陈天林. 黄土土柱入渗的优先流试验研究[J]. 水土保持学报, 2010, 24(4): 82-85. [180] 陈孝君. 低渗砂岩储层孔隙结构模型构建与输运机理研究[D]. 武汉: 中国地质大学, 2019. [181] 崔新壮, 李卫民, 段祝平, 等. 爆炸应力波在各向同性损伤岩石中的衰减规律研究[J]. 爆炸与冲击, 2001, 21(1): 76-80. [182] 邵生俊, 李彦兴, 周飞飞. 湿陷性黄土结构损伤演化特性[J]. 岩石力学与工程学报, 2004, 23(24): 4161-4165. [189] 廖红建,肖正华,刘健. 动载下饱和重塑黄土的骨干曲线变化研究[J]. 岩土力学, 2011, 32(2): 375-379. [190] 万良勇. 不同类型孔隙水压力的动力效应研究[D]. 西安: 西安理工大学, 2002. [191] 郑颖人, 邱陈瑜, 张红, 等. 关于土体隧洞围岩稳定性分析方法的探索[J]. 岩石力学与工程学报, 2008, 27(10): 1968-1980. [192] 谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011. [193] 中华人民共和国国家标准. GB/T 50269-2015 地基动力特性测试规范[S]. 北京: 中国计划出版社, 2015. [194] 王铁行, 郝延周, 汪朝, 等. 干湿循环作用下压实黄土动强度性质试验研究[J]. 岩石力学与工程学报, 2020, 39(6): 1242-1251. [197] VG Studio MAX Reference Manual v2.2[M]. Heidelberg: Volume graphics GmbH, 1998-2014. [198] 毕利东, 张斌, 潘继花. 运用Image J软件分析土壤结构特征[J].土壤, 2009, 41(4): 654-658. [199] 许智隼, 胡五龙. 基于三维X-CT图像的结皮土壤孔隙结构特征与渗透率[J]. 农业工程学报, 2021, 37(14): 89-97. [200] 王登科, 张航, 魏建平, 等. 基于工业CT扫描的瓦斯压力影响下含瓦斯煤裂隙动态演化特征[J]. 煤炭学报, 2021, 46(11): 3550-3564. [202] 刘春, 许强, 施斌, 等. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报, 2018, 40(5): 925-931. [203] 唐朝生, 施斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报, 2008, 30(4): 560-565. [207] 刘宽, 叶万军, 高海军, 等. 酸碱污染黄土抗剪强度演化规律及微观机制[J]. 岩土力学, 2022, 43(增1): 1-12. [208] 谢辉辉, 许振浩, 刘清秉, 等. 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(增1): 245-252. [209] 袁志辉. 干湿循环下黄土的强度及微结构变化机理研究[D]. 西安: 长安大学, 2015. [212] 黄茂松, 刘明, 柳艳华. 循环荷载下软黏土的各向异性边界面模型[J]. 水利学报, 2009, 40(2): 188-193. [214] 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010. [215] 费康, 刘汉龙. ABAQUS的二次开发及在土石坝静、动力分析中的应用[J]. 岩土力学, 2010, 31(3): 881-890. [216] 赵阳升, 杨栋, 冯增朝, 等. 多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J]. 岩石力学与工程学报, 2008, 27(7): 1321-1328. [218] 毛昶熙. 渗流计算分析与控制 [M]. 北京: 中国水利水电出版社, 2003. [220] 《西安市咸宁东路穆将王立交段地面塌陷病害勘查报告》, 机械工业勘察设计研究院有限公司, 2022. [222] 李又云, 张玉伟, 李恒, 等. 车辆荷载下黄土参数对路堤沉降变形的影响[J]. 铁道科学与工程学报, 2018, 15(2): 361-368. [223] 黄仰贤. 路面分析与设计[M]. 北京: 人民交通出版社, 1998. [224] 刘萌成, 黄晓明, 林云龙. 交通荷载作用下近桥台处差异沉降与路面结构开裂研究[J]. 岩土力学, 2006, (12): 2203-2207+2212. |
中图分类号: | TU444 |
开放日期: | 2023-06-13 |