- 无标题文档
查看论文信息

论文中文题名:

 基于BP-GA的陕西省防汛应急物资储备预测研究    

姓名:

 李浩    

学号:

 22220089062    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 安全与应急管理    

第一导师姓名:

 李磊    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-16    

论文答辩日期:

 2024-06-02    

论文外文题名:

 Study on Forecast of Flood Control Emergency Material Reserve in Shaanxi Province Based on BP-GA    

论文中文关键词:

 洪涝灾害 ; 风险评估 ; 应急物资储备 ; 数值仿真 ; 安全库存    

论文外文关键词:

 Flood disaster ; Risk assessment ; Emergency material reserve ; Numerical simulation ; Safety stock    

论文中文摘要:

随着我国城市发展水平加速,洪涝灾害对城市发展的破坏性持续增加。洪涝灾害风险等级划分是对区域内综合指标评定,以判断区域内发生洪涝灾害的可能性,而防汛应急物资是保障救灾的必备之品,合理配置与区域洪涝灾害风险等级相适应的防汛应急救灾物资种类及储备,则能大幅提升救援效率。当前对区域内洪涝灾害风险等级划分,防汛应急物资配置种类及储备的集成研究的理论与经验相对匮乏。为有效降低洪涝灾害造成的人员伤亡、财产损失,提升救灾效率,则需对区域内洪涝灾害风险等级合理划分,配置齐全防汛应急物资种类,设置合理防汛应急物资安全库存储备量,实现对洪涝灾害的高效救援。

本文在分析洪涝灾害形成机理以及影响因素的基础上,对洪涝灾害的致灾因子、孕灾环境、承载体以及防灾减灾能力综合讨论,构建包含4个一级指标、7个二级指标的洪涝灾害风险评价指标体系;采用层次分析法确定各指标权重,运用GIS技术实现区域内洪涝灾害风险等级可视化;在对应急物资发展及分类研究基础上,讨论中央防汛物资储备清单,考虑陕西省陕北地区、关中地区、陕南地区防汛特点,提出更适合陕北地区、关中地区、陕北地区的防汛应急物资配置清单;以历史灾情防汛应急物资使用量数据为样本,基于BP-GA算法预测防汛应急物资,讨论安全库存作用,将政府部门与受灾群众引入安全库存理论,依据防汛应急物资补偿系数,设置安全库存量,计算得出防汛应急物资的安全库存储备数量。

研究结果表明:在年降雨量、高程、河流密度、人口密度、经济密度、人均可支配收入、城镇化率影响因子的作用下,陕西省洪涝灾害风险等级呈现“南高北低”的分布特点,全省共有23个低风险区、47个中风险区、23个较高风险区、14个高风险区,其中,低风险区域占比为21.50%,中风险区域占比为43.92%,较高风险区域占比为20.50%,高风险区域占比为13.08%;以中央防汛物资配置清单为基础,提出了更适合陕北地区、关中地区、陕南地区防汛应急物资配置清单;BP-GA预测算法的精度高于BP神经网络预测算法、随机森林预测算法,预测出陕西省某地区未来6次防汛应急物资使用预测值,结合防汛应急物资调节系数,设置防汛应急物资安全库存系数,计算得出陕西省某地区最低救生衣、救生舟防汛应急物资储备量,对丰富和完善区域内洪涝灾害、应急物资储备管理理论有重要意义,为陕西省区县储备应急物资提供建议参考,为政府部门抵御洪涝灾害以及防汛应急物资储备提供新方法。

论文外文摘要:

With the acceleration of urban development in our country, the destructive effects of floods on urban development continue to increase. The classification of flood disaster risk levels is a comprehensive evaluation of indicators within a region to determine the likelihood of flood disasters occurring. Flood control emergency supplies are essential for ensuring disaster relief. Reasonable allocation of flood control emergency supplies and reserves that are suitable for the regional flood disaster risk level can significantly improve rescue efficiency. Currently, there is a relative lack of theoretical and empirical research on the classification of flood disaster risk levels, the allocation of types and reserves of flood control emergency supplies in the region. In order to effectively reduce casualties and property losses caused by flood disasters, and improve disaster relief efficiency, it is necessary to reasonably classify the risk level of flood disasters in the region, allocate complete types of flood control emergency materials, set a reasonable safety stock reserve of flood control emergency materials, and achieve efficient rescue of flood disasters.

On the basis of analyzing the formation mechanism and influencing factors of flood disasters, this article comprehensively discusses the disaster causing factors, disaster prone environment, bearing bodies, and disaster prevention and reduction capabilities of flood disasters, and constructs a flood disaster risk evaluation index system consisting of four primary indicators and seven secondary indicators; Using the Analytic Hierarchy Process to determine the weights of each indicator, and using GIS technology to achieve visualization of flood disaster risk levels within the region; On the basis of research on the development and classification of emergency supplies, this paper discusses the central flood control material reserve list, takes into account the flood control characteristics of the northern, central, and southern regions of Shaanxi Province, and proposes a flood control emergency material allocation list that is more suitable for the northern, central, and southern regions of Shaanxi Province; Using historical data on the usage of flood control emergency supplies as a sample, the BP-GA algorithm is used to predict flood control emergency supplies, and the role of safety stock is discussed. The government departments and disaster affected individuals are introduced into the theory of safety stock, and based on the compensation coefficient of flood control emergency supplies, the safety stock quantity is set to calculate the safety stock reserve quantity of flood control emergency supplies.

The research results show that under the influence of factors such as annual rainfall, elevation, river density, population density, economic density, per capita disposable income, and urbanization rate, the risk level of flood disasters in Shaanxi Province shows a distribution characteristic of "high in the south and low in the north". There are a total of 23 low risk areas, 47 medium risk areas, 23 high risk areas, and 14 high risk areas in the province. Among them, low-risk areas account for 21.50%, medium risk areas account for 43.92%, high risk areas account for 20.50%, and high risk areas account for 13.08%; Based on the central flood control material allocation list, a more suitable flood control emergency material allocation list has been proposed for the northern, central, and southern regions of Shaanxi; The accuracy of the BP-GA prediction algorithm is higher than that of the BP neural network prediction algorithm and the random forest prediction algorithm. It predicts the predicted values of the use of emergency flood control materials in a certain area of Shaanxi Province for the next six times. Combined with the adjustment coefficient of emergency flood control materials, the safety inventory coefficient of emergency flood control materials is set, and the minimum reserve of emergency flood jackets and lifeboats in a certain area of Shaanxi Province is calculated. This is of great significance for enriching and improving the theory of flood disasters and emergency material reserve management in the region. It provides suggestions and references for the reserve of emergency materials in counties and districts of Shaanxi Province, and for government departments to resist flood disasters and flood control emergency material reserves.

参考文献:

[1]陈彬,高峰.情报视角下的城市洪涝灾害应急防控研究[J].竞争情报,2023,19(6):19-28.

[2]“十四五”应急物资保障规划[J].中小企业管理与科技,2023,13(3):8-15.

[3]习近平主持召开中央全面深化改革委员会第二十一次会议强调加强反垄断反不正当竞争监管力度完善物资储备体制机制深入打好污染防治攻坚战[N].人民日报,2021-08-31(1).

[4]张宇.基于“平战结合”的应急物资生产企业储备策略研究[D].黑龙江大学,2022.

[5]AGHAKOUCHAK A. How do natural hazard scascade to cause disasters?[J] .Nature,2018,561:458-460.

[6]巫丽芸,何东进,洪伟,等.自然灾害风险评估与灾害易损性研究进展[J].灾害学,2014,29(4):129-135.

[7]黄崇福,刘新立,周国贤,等.以历史灾情资料为依据的农业自然灾害风险评估方法[J].自然灾害学报,1998(2):4-12.

[8]郭跃.自然灾害的风险特征及风险管理模型的探讨[J].水土保持研究,2006,14(4):15-18.

[9]陈报章,仲崇庆.自然灾害风险损失等级评估的初步研究[J].灾害学,2010,25(3):1-5.

[10]叶金玉,林广发,张明锋.自然灾害风险评估研究进展[J].防灾科技学院学报,2010,12(3):20-25.

[11]莫建飞,陆甲,李艳兰,等.基于GIS的广西农业暴雨洪涝灾害风险评估[J].灾害学,2012,27(1):38-43.

[12]Ahmad S S, Simonov ic S P.Spatial and temporal analysis of urban flood risk assessment[J]. Urban Water Journal,2013,10(1):26-49.

[13]Sun R, Gong Z, Guo W, etal.Flood disaster risk assessment of and countermeasures toward Yangtze River Delta by considering index interaction[J]. Natural Hazards,2022,112(1):475-500.

[14]颜峻,左哲.自然灾害风险评估指标体系及方法研究[J].中国安全科学学报,2010,20(11):61-65.

[15]张冬有,张丽娟,万鲁河.基于信息扩散理论的自然灾害风险评估系统设计与实现[J].自然灾害学报,2013,22(4):234-238.

[16]尚志海,刘希林.自然灾害风险管理关键问题探讨[J].灾害学,2014,29(2):158-164.

[17]Wu Y, Zhong P, Zhang Y, etal.Integrated flood risk assessment and zonation method: a case st udy in Huaihe River basin,China[J].Natural Hazards,2015,78:635-651.

[18]Saini S S, Kaushik S P, Jangra R.Flood-risk assessment in urban environment by geospatial approach: a case study of Ambala City,India[J].Applied Geomatics,2016,8:163-190.

[19]陈慧,马晨燕.基于GIS可视化的中国大陆沿海城市自然灾害风险评估[J].测绘地理信息,2018,43(3):59-61.

[20]牟笛,陈安.中国区域自然灾害综合风险评估[J].安全,2020,41(12):23-26.

[21]Lidong Z ,Ting Z ,Jun F ,et al.Risk Assessment of Urban Floods Based on a SWMM-MIKE21-Coupled Model Using GF-2 Data[J].Remote Sensing,2021,13(21):4381-4381.

[22]刘美娥,唐柏梁,刘慧.县域国土空间自然灾害风险评估——以江西省玉山县为例[J].小城镇建设,2022,40(8):35-41.

[23]李大卫,石树中,杨福平,等.自然灾害风险评估综述[J].价值工程,2014,33(26):322-325.

[24]王潇,曲芳,刘侠.自然灾害态势评估初探[J].山东工业技术,2017,14(2):252.

[25]Aerts J C J H, Botzen W J,Clarke K C,etal. Integrating human behaviour dynamics into flood disaster risk assessment[J].Nature Climate Change, 2018,8(3):193-199.

[26]周月华,彭涛,史瑞琴.我国暴雨洪涝灾害风险评估研究进展[J].暴雨灾害,2019,38(5):494-501.

[27]侯奇奇,杨柳,张秀琼,等.基于GIS的水稻气象灾害风险评估——以四川广元旺苍县为例[J].西南大学学报(自然科学版),2021,43(5):35-45.

[28]史晓亮,张艳,丁皓.自然灾害风险评估研究进展[J/OL].西安理工大学学报,2021,32(12):1-11.

[29]华中生.随机生产系统安全库存的ЛТ控制策略[J].运筹与管理,1994,13(2):8-12.

[30]Whybark,D.C.,Williams,J.G,Material Requirements Planning UnderUncertainty Decision Sciences,1976,7(4):595-606

[31]De Bodt,M.A.,Wassenhove,L.V., Lot sizes and safety stocks in MRP:a casestudy,Production and Inventory Management,First Quarter,1-16.

[32]Blackburn, Inventory Management and Production Planning and SchedulingNew York : John Wiley &Sons,1986.

[33]Sridharan,V, The Impact of Safety Stock on Schedule Instability,Cost andService,Journal of Operations Management,327-347.

[34]KarlInderfouth,Stefan Minner ,Safety stocks in mul-stage inventory systemsunder different service measures,European Journal of OperationalResearch,1998,106:57-73.

[35]马良渝,郭志雄.MRRⅡ中的安全库存和需求决策[J].现代计算机,1999,7(3):25-26.

[36]李锋.聚酯生产厂的采购及库存[J].聚酯工业,2001,8(4):7-10.

[37]王战.食品饮料行业的库存管理和决策研究[J].现代管理科学,2003,9(7):49-50.

[38]励凌峰,黄培清,杨庆定,等.火力发电厂燃煤库存决策系统研究[J].工业工程与管理,2003,14(6):67-71.

[39]周荷芳,李宗平,杜文.多级库存系统中安全库存与配送结构的关系分析[J].西南交通大学学报,2001,15(5):457-461.

[40]史倩,胡劲松.正态模糊需求下(T,S)存储策略的安全库存研究[J].物流技术,2008,23(1):54-56.66.

[41]张毅鹏,刘高坤.基于BP神经网络预测制造企业安全库存的研究[J].机电一体化,2010,16(4):33-36.

[42]李宝虹,吴隽,纪红.基于协同库存管理的补货模型研究[J].物流科技,2011,34(12):42-47.

[43]蔡雁,钟茜怡,吴敏,等.基于GA-PSO算法的烧结料场原料库存量优化[J].化工学报,2012,63(9):2824-2830.

[44]刘晶璟.基于BP神经网络的零售连锁企业安全库存预测方法[J].物流技术,2012,31(21):326-329.

[45]孙艺博,叶继红,陆愈实,等.基于风险的石化基地安全库存容量评估[J].安全与环境工程,2014,21(5):145-148.

[46]叶利,彭涛.面向大数据的电力安全库存预估模型研究[J].电力信息与通信技术,2015,13(4):35-38.

[47]王宪杰,黄佳伟,王淑云.基于安全库存系数的一体化冷链库存价格协调[J].工业工程与管理,2016,21(4):43-49.

[48]姜石.PSO-BP神经网络在某煤机企业安全库存预测中的应用[J].煤炭技术,2017,36(10):305-307.

[49]陈伟,陈丹.基于ARIMA预测和安全库存的物料生产计划模型[J].湖北工业职业技术学院学报,2023,36(3):75-80.

[50]江玉杰.需求非正态分布下服装产品安全库存决策算法[J].浙江纺织服装职业技术学院学报,2018,17(4):57-64.

[51]郑玛丽,李芹影.供应链需求视角下安全库存优化问题探析[J].重庆科技学院学报(社会科学版),2019(3):60-61.66.

[52]王为民,何静.基于非参数估计法的地铁物资安全库存研究[J].物流工程与管理,2020,42(7):87-90.

[53]高冰馨,苏伟.突发公共卫生事件中医用应急物资安全库存管理[J].解放军医院管理杂志,2020,27(12):1105-1109.1112.

[54]高静,刘树彩.基于大数据的煤矿生产设备备品备件安全库存管理研究[J].内蒙古煤炭经济,2023(6):83-85.

[55]高霆,王炬成,周红,等.基于安全库存管理的钢板采购订单优化[J].造船技术,2023,51(6):66-70.

[56]Cao D ,Silver A E .A dynamic allocation heuristic for centralized safety stock[J].Naval Research Logistics (NRL),2005,52(6):513-526.

[57]Man-Yi T ,Xiao-Wo T .The Further Study of Safety Stock under Uncertain Environment.[J].FO DM,2006,5(2):193-202.

[58]Janamanchi B ,Burns R J.Simulation studies of the effects of Safety Stock and related policies upon Bullwhip oscillation in supply chains[J].Int. J. of Information Systems and Change Management,2008,3(2):171-187.

[59]Amirjabbari B ,Bhuiyan N .Determining supply chain safety stock level and location[J].Journal of Industrial Engineering and Management,2014,7(1):42-71.

[60]Brunaud B ,Laínez‐Aguirre M J ,Pinto M J , et al.Inventory policies and safety stock optimization for supply chain planning[J].AIChE Journal,2019,65(1):99-112.

[61]Mohammadreza N ,Seyyed-Mahdi H ,Eduardo L C , et al.Coordinating visit interval and safety stock decisions in a two-level supply chain with shelf-life considerations[J].Computers and Operations Research,2022,139.

[62]Seyed H M ,Hiwa F ,Hasan R .Development of a simulation-based optimization approach to integrate the decisions of maintenance planning and safety stock determination in deteriorating manufacturing systems[J].Computers Industrial Engineering,2023,178.

[63]王子军.建立突发公共卫生事件应急处理物资储备机制的探讨[J].中国公共卫生管理,2004,20(6):502-503.

[64]李静,赵林度.基于时间满意的应急物资储备库双容量限制选址模型[J].东南大学学报(自然科学版),2007(S2):393-396.

[65]王建光,邓云峰,周平,等.我国应急物资储备对策分析[J].中国减灾,2009,15(11):30-32.

[66]丁斌,邹月月.基于政企联合储备模式下的应急物资的EOQ模型[J].大连理工大学学报(社会科学版),2012,33(1):90-94.

[67]Zhaosheng Y ,Huxing Z ,Xueying G ,etal.Multiobjective Model for Emergency Resources Allocation[J].Mathematical Problems in Engineering,2013,20131-6.

[68]李春茹.基于模糊聚类的应急物资储备分类决策[J].物流工程与管理,2017,39(7):76-79.

[69]Zhang M ,Wu H ,Qiu Z , et al.Demand Prediction of Emergency Supplies under Fuzzy and Missing Partial Data[J].Discrete Dynamics in Nature and Society,2019,20191-15.

[70]Wenfen Z ,Xinping Y ,Jiaqi Y .Optimized maritime emergency resource allocation under dynamic demand.[J].PloS one,2017,12(12):e0189411.

[71]魏麟苏,席月.基于SWOT-AHP模型的应急物资储备策略研究[J].物流工程与管理,2021,43(9):143-146.

[72]柴亚光,李芃萱.考虑储备周期的应急物资柔性采购模型[J].管理学报,2021,18(7):1068-1075.

[73]Jianjia H ,Gang L ,Thuong H T M , et al.Research on the Allocation of 3D Printing Emergency Supplies in Public Health Emergencies#13;[J].Frontiers in Public Health,2021,9657276-657276.

[74]梁思琪,白雪洁.不确定信息下应急物资配置的可持续双层优化模型及求解[J].国防交通工程与技术,2023,21(2):10-13.27.

[75]夏立敏,吴非.政企联合储备模式下应急物资的库存成本控制[J].中国物流与采购,2013,33(21):76-77.

[76]Zhu Q D ,Liu Y ,Li G Z .Investigation of Emergency Resources Models Based on Ontology[J].Applied Mechanics and Materials,2013,2308(303-306):1416-1419.

[77]艾云飞,吕靖,王军,等.应急物资政企联合储备合作机理研究[J].运筹与管理,2015,24(5):126-131.

[78]张力.预付条件下政企联合储备应急物资库存策略[D].西安工业大学,2015.

[79]胡益传,刘浪,陈思仪.政府分摊企业应急生产成本契约模型构建[J].南昌航空大学学报(社会科学版),2020,22(4):51-59.72.

[80]扈衷权,田军,沈奥,等.生产能力储备模式下应急物资储备与采购定价模型[J].管理工程学报,2021,35(2):200-210.

[81]冯珂.考虑应急物资回购再造的政企联合储备决策研究[J].中国物流与采购,2022,42(18):97-99.

[82]李晟,丰景春,吴凯丽,等.政企联合储备应急物资的合作策略研究[J/OL].中国管理科学,2022,37(18),1-11.

[83]扈衷权,周晓阳,樊慧荣,等.企业储备模式下应急物资储备及采购定价决策研究[J].系统工程理论与实践,2023,43(2):438-454..

[84]Wei L ,Ming Z ,Boquan L , et al.Rolling Prediction of Emergency Supplies Based on Postdisaster Multisource Time-Varying Information[J].Complexity,2022,2022.

[85]Liguo F ,Yanqing W .Demand prediction of emergency materials using case-based reasoning extended by the Dempster-Shafer theory[J].Socio-Economic Planning Sciences,2022,84.

[86]扈衷权,张琳,宋妍,等.考虑损失厌恶偏好的应急物资企业储备模型研究[J].系统工程理论与实践,2023,43(5):1366-1379.

[87]李珍萍,王越,韩倩倩.考虑轮换的易逝性应急物资储备策略研究[J].安全与环境学报,2023,23(5):1505-1514.

[88]彭广,刘立成,刘敏,等.洪涝[M].气象出版社,2003.3:15-39.

[89]刘建芬,王慧敏,张行南.城市化背景下城区洪涝灾害频发的原因及对策[J].河海大学学报(哲学社会科学版),2012,14(1):73-75.

[90]顾朝林,陈田,史培军.1991年苏皖城市洪涝灾害成因分析[J].地理学报,1992,58(4):289-301.

[91]史培军.再论灾害研究的理论与实践[J].自然灾害学报,1996,4(4):6-17.

[92]Juanle W ,Kai L ,Lina H , et al.Disaster mapping and assessment of Pakistan’s 2022 mega-flood based on multi-source data-driven approach[J].Natural Hazards,2023,120(4):3447-3466.

[93]Laura G M ,Francisco Á M ,Dieu B T , et al.A novel semantic segmentation approach based on U-Net, WU-Net, and U-Net++ deep learning for predicting areas sensitive to pluvial flood at tropical area[J].International Journal of Digital Earth,2023,16(1):3661-3679.

[94]Raju R A .Validation of Bio-stimulant Seed Treatment, Soil and Foliar Application of Nano DAP, Urea, K, Zn, Cu, B Formulations in a Flood Affected Bt Hybrid Cotton[J].International Journal of Plant Soil Science,2023,35(21):286-300.

[95]Guanyu W ,Zhihao M .Internal Linkages among Depressive, Anxiety, and Acute Stress Symptoms in 2021 Henan Floods Victims during the Disaster: A Network Approach[J].Journal of Psychopathology and Behavioral Assessment,2023,45(4):1172-1188.

[96]Hao W ,Lin G .Analysis of Survivabilty of the Ship Propulsion System in a Severe Shock Environment, Based on the Fuzzy Theory and Analytic Hierarchy Process[J].Transactions of FAMENA,2023,47(4):51-70.

[97]Dan C ,Yan W ,Rui F .Forecast of Large Earthquake Emergency Supplies Demand Based on PSO-BP Neural Network[J].Tehnički vjesnik,2022,29(2):561-571.

[98]Qingping L ,Ming L ,Yao Z .Application of QGA-BP Neural Network in Debt Risk Assessment of Government Platforms[J].International Journal of Information Technology and Web Engineering (IJITWE),2023,19(1):1-18.

中图分类号:

 x921    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式