- 无标题文档
查看论文信息

题名:

 副边LCD串联型正激变换器的分析与设计    

作者:

 刘旭    

学号:

 19206204062    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 085207    

学科:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2022    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 开关变换器分析与设计    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2022-06-27    

答辩日期:

 2022-06-07    

外文题名:

 Analysis and Design of Secondary-side LCD Series Type Forward Converter    

关键词:

 正激变换器 ; 磁复位 ; 副边LCD串联型 ; 低电压开通    

外文关键词:

 Forward Converter ; Magnetic Reset ; Secondary-Side LCD Series ; Low-voltage Turn-on    

摘要:

针对现有正激变换器磁复位技术功能单一,电路结构复杂及转换效率低的问题,提出了一种可实现多功能复用的副边LCD串联型正激变换器,在没有增加电路复杂性的同时提升了变换器的电气性能,对正激变换器的推广应用具有重要的指导意义。

通过对所提出变换器的工作原理和性能进行分析,指出附加LCD支路既可使磁芯复位,也可将励磁能量传输至负载侧,同时该变换器还可实现开关管低电压开通与续流二极管零电流关断。该变换器励磁电感、附加电感及正激电感均可工作于连续导电模式(Continous Conduction Mode, CCM)和不连续导电模式(Disontinous Conduction Mode, CCM),据此将变换器分为8种不同的组合工作模式,通过对各种组合工作模式的电气性能特点进行分析,得出了开关损耗小,变换器效率高、输出功率大的最佳组合工作模式为励磁电感DCM/正激电感CCM/附加电感DCM。探讨了变换器工作于该模式时,附加储能元件参数对变换器电气性能的影响,并指出开关管低电压开通性能随着附加储能元件取值的减小而提高,但附加电容的减小会使电压应力增加,且不利于续流二极管实现零电流关断;而附加电感的减小却有利于续流二极管实现零电流关断。同时推导了该模式下变换器输出电压、附加电容最大电压及附加电感和正激电感峰值电流的解析表达式。提出了一种确保变换器工作于最佳组合工作模式,且能实现开关管低电压开通与续流二极管零电流关断的电容、电感元件参数设计方法。再依据不同阶段能量传输过程的等效电路,推导出功率器件电压、电流应力解析表达式,进一步指导功率器件的选型。

根据所提出的参数设计方法,研制了一台48V/10A样机并进行仿真分析和实验研究,获取了不同工况下主要的电压和电流波形,样机满足预期设计指标要求,仿真和实验结果验证了理论分析的正确性及设计方法的可行性。

外文摘要:

Aiming at the problems of single function, complex circuit structure and low conversion efficiency of the existing forward converter magnetic reset technology, a secondary-side LCD series forward converter that can realize multi-function multiplexing is proposed without increasing the circuit complexity. At the same time, it improves the electrical performance of the converter, which has important guiding significance for the promotion and application of the forward converter.

By analyzing the working principle and performance of the proposed converter, it is pointed out that the additional LCD branch can not only reset the magnetic core, but also transmit the excitation energy to the load side. The flow diode is turned off with zero current. The converter excitation inductance, additional inductance and forward inductance can all work in continuous conduction mode (CCM) and discontinuous conduction mode (CCM), according to which the converter is divided into 8 different Combined working mode, by analyzing the electrical performance characteristics of various combined working modes, it is concluded that the best combined working mode with low switching loss, high converter efficiency and high output power is excitation inductor DCM/forward inductor CCM/additional Inductance DCM. When the converter works in this mode, the influence of the parameters of the additional energy storage element on the electrical performance of the converter is discussed. A small value will increase the voltage stress, and is not conducive to the zero-current shutdown of the freewheeling diode; while the reduction of the additional inductance is beneficial to the freewheeling diode to achieve zero-current shutdown. At the same time, the analytical expressions of the output voltage of the converter, the maximum voltage of the additional capacitor and the peak current of the additional inductor and forward inductor in this mode are deduced. A parameter design method of capacitors and inductors is proposed to ensure that the converter works in the best combined working mode, and can realize the low-voltage turn-on of the switch tube and the zero-current turn-off of the freewheeling diode. Then, according to the equivalent circuit of the energy transfer process in different stages, the analytical expressions of the voltage and current stress of the power device are deduced to further guide the selection of the power device.

According to the proposed parameter design method, a 48V/10A prototype was developed and simulated and analyzed, and the main voltage and current waveforms under different working conditions were obtained. The prototype met the expected design index requirements. The simulation and experimental results verified The correctness of the theoretical analysis and the feasibility of the design method.

参考文献:

[1]Sanjaya Maniktala, 王健强等译. 精通开关电源设计[M]. 北京: 人民邮电出版社, 2015.

[2]裴云庆, 杨旭, 王兆安. 开关稳压电源的设计和应用[M]. 北京: 机械工业出版社, 2010.

[3]顾达飞. 基于有源箝位正激电路固态放大器电源设计[D]. 上海: 上海交通大学, 2020.

[4]阚志忠, 冯建兴, 孟宪慧, 等. 推挽型隔离DC-DC变换器软开关条件分析[J]. 电工技术学报, 2021, 36(23): 5027-5035.

[5]伍群芳, 王勤, 徐佳林, 等. 一种电压钳位型零电压开关推挽式高频环节DC/AC变换器[J]. 中国电机工程学报, 2017, 37(06): 1787-1797.

[6]邹静. 基于电流馈电推挽式变换拓扑的变换器电源设计[J]. 电源学报, 2021, 19(04): 203-210.

[7]P.Ashkan, F.Yousef, B.Maitane et al. Battery Voltage Equalisation Using Single-Phase Cascaded H-bridge Converters[J]. IET Power Electronics, 2021, 13(18): 4158-4167.

[8]B.R.Lin, G.Y.Wu. Hybrid DC Converter with Current Sharing and Low Freewheeling Current Loss [J]. Energies, 2020, 13(24): 6631.

[9]陈仲, 李梦南, 汪洋. ZVS全桥变换器辅助网络技术的比较研究[J]. 电工技术学报, 2015, 30(22): 89-99.

[10]刘树林, 曹晓生, 马一博. RCD钳位反激变换器的回馈能耗分析及设计考虑[J]. 中国电机工程学报, 2010, 30(33): 9-15.

[11]Y.C.Hsieh, M.R.Chen, H.L.Cheng. An Interleaved Flyback Converter Featured With Zero-Voltage Transition[J]. IEEE Transactions on Power Electronics, 2011, 26(1): 79-84.

[12]董光冬, 张方华. 基于噪声平衡原理的反激变换器CM传导噪声抵消方法研究[J]. 中国电机工程学报, 2019, 39(11): 3320-3328.

[13]夏炎冰. 自磁复位正激式变换器研究[D]. 南京: 南京航空航天大学, 2012.

[14]李龙春, 嵇保健, 洪峰, 等. 1500V三电平正激变换器[J]. 电工技术学报, 2018, 33(9): 2044-2054.

[15]刘树林, 刘健著. 开关变换器分析与设计[M]. 北京: 机械工业出版社, 2010.

[16]G.Wolf. Mains Isolating Switch-Mode Power Supply[J]. Philips Electronic Applications Bulleting, 1973, 32(1).

[17]Heinicke, Harald. Apparatus for Converting D.C. Voltage[P]. U.S. patent 392105418, 1975.

[18]王国礼, 金新民. 采用LCD箝位电路的正激DC-DC变换器[J]. 电工技术杂志, 2000, 26(12): 24-26.

[19]陈明, 肖强晖. UC3842双管正激式单级PFC变换器研究[J]. 湖南工业大学学报, 2014, 28(2): 46-51.

[20]B.Carsten. High Power Smps Require Intrinsic Reliability[J]. Power Conversion International (PCI) Proceedings, 1981, 118-133.

[21]M.M.Jovanovic, M.T.Zhang, F.C.Lee. Evaluation of Synchronous-Rectification Efficiency Improvement Limits in Forward Converters[J]. IEEE Transactions on Industrial Electronics. 1995, 42(4): 387-395.

[22]王国礼, 金新民. 一种正-反激组合变换器的研究[J]. 电力电子技术, 2000, 35(2): 4-6.

[23]S.W.Lee, K.S.Choi, B.H.Cho, B.C.Hyun. A Center-Tapped Forward-Flyback DC/DC Converter for Low Power Application[C] //IEEE Energy Conversion Congress and Exposition, Denver. CO, USA, 2013: 4882-4886.

[24]Y.Kusuhara, T.Ninomiya, A.Nakayama, et al. Complete Analysis of Steady-State and Efficiency Considerations in a Forward-Flyback Mixed converter [C] //IEEE International Conference on Power Electronics. The 7th International Conference on Power Electronics. Daegu, Korea (South), 2007: 620-624.

[25]L.Huber, M.M.Jovanović. Forward-Flyback Converter with Current-doubler Rectifier: Analysis, Design, and Evaluation Results[J]. IEEE Transactions on Power Electronics, 1999, 14(1): 184-192.

[26]B.R.Lin, S.C.Tsay, C.S.Yang. Analysis and Implementation of ZVS Forward Converter with Centre-Tapped Rectifier[J]. IEEE Proceedings Electric Power Applications, 2006, 153(5): 642-652.

[27]Rudy Severns. The History of the Forward Converter[J]. Switching Power Magazine, 2000, 7: 20-22.

[28]P.S.Venkatraman. Winding Eddy Current Losses in Switch Mode Power Transformers Due to Rectangular Wave Currents[J]. Proc.Powercon 11, Section A-1,1984: 1-11.

[29]D.A.Nagarajan. D.Murthy-Bellur, M.K.Kazimierczuk. Harmonic Winding Losses in the Transformer of a Forward Pulse Width Modulated DC-DC Converter for Continuous Conduction Mode[J]. Iet Power Electronics, 2012, 5(2): 221-230.

[30]李洪珠, 刘歆俣, 李洪璠, 等. 正激变换器磁集成分析与设计准则[J]. 中国电机工程学报, 2019, 39(12): 3667-3676.

[31]X.Qin, H.Hu, Wu.H, et al. A Series-input Forward Converter With Shared RCD Cell for High-reliability and Wide Input Voltage Range Applications[C]// Energy Conversion Congress and Exposition. IEEE, 2013,58(21):154-158.

[32]Santosh.S.G. Study Of RCD Clamp Forward Converter[J]. International Journal of Advanced Electronics & Communication Systems, 2014, 3(3): 246-250.

[33]陈道炼, 陈卫昀, 严仰光. RCD箝位正激变换器的分析研究[J]. 南京航空航天大学学报, 1997, 29(2): 231-235.

[34]吴红飞, 刘薇, 邢岩. 一族宽输入电压范围正激变换器拓扑[J]. 中国电机工程学报, 2012, 32(36): 29-35.

[35]Q.Li, F.C.Lee, M.M.Jovanovic. Design Considerations of Transformer DC Bias of Forward Converter With Active-Clamp Reset[C]// Fourteenth Annual Applied Power Electronics Conference and Exposition. Dallas, TX, USA, 1999: 553-559.

[36]薛伟民, 陈乾宏. 有源钳位正激变换器寄生参数对软开关和直流偏磁的影响[J]. 电工电能新技术, 2017, 36(5): 75-80.

[37]G.P.Annasaheb, A.Dasgupta. Parasitics Triggered Stress Analysis in Active Clamp Synchronous Forward converter[C] //2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), Trivandrum, India, 2022: 1-6.

[38]Q.M.Li, F.C.Lee, M.M.Jovanovic. Large-Signal-Transient Analys is of Forward Converter With Active-Clamp Reset[J]. IEEE Transactionson Power Electronics, 2002, 17(1): 15-24.

[39]陈乾宏, 冯阳, 周泉. 输出纹波最小化有源箝位正激磁集成变换器[J]. 中国电机工程学报, 2009, 29(4): 7-13.

[40]卢增艺, 陈为, 章进法. 磁集成开关变换器的小信号建模方法[J]. 电工技术学报, 2015, 30(24): 103-109.

[41]胡海兵, 吴红飞, 刘薇, 等. 一族有源钳位正激变换器[J]. 电工技术学报, 2013, 28(12): 245-250.

[42]顾亦磊, 顾晓明, 吕征宇, 等. 一种新颖的宽范围双管正激型DC/DC变换器[J]. 中国电机工程学报, 2005(2): 47-51.

[43]宁平华. 基于双RCD箝位电路和饱和电抗器的多输出开关电源研究[J]. 中国电机工程学报, 2016, 32(3): 1-6.

[44]宁平华, 陈乐柱, 丁鑫龙, 等. 双RCD箝位的双管正激变换器研究[J]. 电源学报, 2016, 14(3): 124-130.

[45]H.Bahrami, H.Allahyari, E.Adib, A Self-Driven Synchronous Rectification ZCS PWM Two-Switch Forward Converter with Minimum Number of Components[C] //IEEE Transactions on Industrial Electronics, 2021: 1-9.

[46]G.Zhou, Q.Tian, H.Li, Three-Port Forward Converters with Compact structure and Extended Duty Cycle Range[C] //IEEE Transactions on Industrial Electronics, 2022: 1-15.

[47]N.Ezra, T.Long. Dual Range Forward Topology for High Efficiency at Universal Mains[C] //2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021: 2168-2175.

[48]王国礼, 金新民. 采用LCD箝位电路的正激DC-DC变换器[J]. 电工技术杂志, 2000, 26(12): 24-26

[49]谷景旭, 杜丽. LCD箝位正激变换器箝位电路优化设计[J]. 电源技术应用, 2006(04): 31-34.

[50]王英武, 王俊峰, 刘佑宝. PWM单端正激变换器谐振磁复位分析与设计[J]. 电力电子技术, 2007, 41(6): 43- 44.

[51]S.Haiharan. Design Single-Switch Forward Converter[J]. Power Electronics Technology, 2005, (10): 38-43.

[52]M.Ji, S.Zhi, J.Shi, et al, Research on High Reliable Aerospace Secondary Power Supply Based on Resonant Reset Forward Converter[C] //2021 3rd International Conference on Electrical Engineering and Control Technologies (CEECT), Macau, Macao, 2021: 8-13.

[53]Y.H.Xi, P.K.Jain. A Forward Converter Topology Employing a Resonant Auxiliary Circuit to Achieve Soft Switching and Power Transformer Resetting[J]. IEEE Transactions on Industrial Electronics, 2010, 50(1): 132-140.

[54]T.R.Zaloum. An Analysis of A Dual Mode Forward/Flyback Converter[D]. Massachusetts: Massachusetts Institute of Technology, 1982.

[55]刘树林, 王航杰, 胡传义, 等. 附加LC的正反激组合变换器辅助电感最佳工作模态及LC参数优化设计[J]. 电工技术学报, 2022, 37(2): 389-396.

[56]王国礼, 金新民. 一种正-反激组合变换器的研究[J]. 电力电子技术, 2000, 35(2): 4-6.

[57]刘树林, 曹剑, 胡传义, 等. 正-反激组合变换器的能量传输模式及输出纹波电压分析[J]. 电工技术学报, 2019, 34(8): 1647-1656.

[58]彭银乔, 刘树林, 吴浩, 等. 正-反激组合变换器变压器的优化设计[J]. 电工技术学报, 2020, 35(2): 470-476.

[59]刘树林, 张海亮, 王航杰, 等. 抑制输出能量倒灌的二次侧自复位正激变换器的能量传输过程分析[J]. 电工技术学报, 2020, 35(S2): 477-483.

中图分类号:

 TM46    

开放日期:

 2026-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式