- 无标题文档
查看论文信息

论文中文题名:

 远程超声机器人遥操作与柔顺控制研究    

姓名:

 贠光辉    

学号:

 20205016006    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械电子工程    

研究方向:

 机器人控制    

第一导师姓名:

 夏晶    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Research on remote ultrasound robot teleoperation and compliance control    

论文中文关键词:

 远程超声机器人 ; 遥操作 ; 冗余优化 ; 柔顺控制 ; 避关节限位    

论文外文关键词:

 ultrasound robot ; teleoperation ; redundancy optimization ; compliance control ; avoid joint limitation    

论文中文摘要:

超声扫查作为一种经济有效的体表检测方式,已在现代医学诊断中得到了广泛的应用。远程超声机器人的研究和发展使得超声医生可以从重复和高强度的体表扫查工作中解脱出来,在最短的时间内完成医生与患者的异地超声诊断或手术,使偏远或资源稀缺地区的患者也能够在最佳时间得到救治,对现代老龄化社会治疗保障条件的提升和中国的医疗发展具有重要意义。文章针对远程超声机器人遥操作系统和柔顺控制的关键问题展开深入研究,具体研究内容如下:

首先,本文搭建远程超声机器人遥操作硬件系统平台,通过主端力反馈和从端图像信息反馈分别建立了超声扫查遥操作的力觉和视觉临场感,设计增量式遥操作主从映射控制方法实现对远程超声机器人的灵活控制。建立远程超声机器人正运动学模型,引入关节限位避免和奇异位置优化准则分别基于加权最小范数和阻尼梯度投影的方法建立了远程超声机器人冗余优化逆运动学模型,并通过Matlab和Ros仿真环境对远程超声机器人冗余解优化方法进行了仿真验证。

其次,针对远程超声机器人扫查柔顺交互过程中难以在保持稳定接触力和柔性交互的同时满足避关节限位和奇异位置约束的问题,分析超声扫查接触交互过程,研究七自由度冗余机器人阻抗控制理论,提出了一种基于加权最小范数的超声机器人避关节限位混合力/阻抗控制方法。该方法通过在扫查接触面切向建立阻抗控制器,进行间接力柔顺控制,使机器人保持柔性,在扫查接触面法向建立接触力控制器,通过直接力控制维持超声探头和人体组织之间稳定接触力,并将加权最小范数和阻尼伪逆思想引入到混合力/阻抗控制中对远程超声机器人零空间运动进行优化。该方法可以在保持柔顺和稳定力控制基础上,避免机器人在扫查过程受到关节限位和奇异位置的约束。

最后,设计了远程超声机器人遥操作人体腹部肝脏超声扫查实验,对本文搭建的远程超声机器人遥操作系统和柔顺控制方法进行了实验验证。实验结果表明设计的远程超声机器人遥操作系统的主从控制精度满足超声扫查遥操作的要求,所提柔顺控制方法可以在保持柔顺特性的同时获得较好的力跟踪性能,同时扫查切向柔顺接触力相比于传统位置控制方式平均减小了32%,满足超声扫查对于人机交互柔顺性的需求。

论文外文摘要:

Ultrasound scanning, as a cost-effective way to detect body surface, has been widely used in modern medical diagnosis. The research and development of remote ultrasound robot allows ultrasonographers to be freed from the repetitive and high-intensity body surface scanning work, and to complete the off-site ultrasound diagnosis or surgery between doctors and patients in the shortest time, so that patients in remote or resource-scarce areas can also be treated in the best time, which is of great significance to the improvement of treatment security conditions in modern aging society and the medical development of China. The article conducts an in-depth study on the key issues of remote ultrasound robot teleoperating system and supple control, which are as follows:

Firstly, this paper builds a hardware system platform for remote ultrasound robot teleoperation, establishes the force and visual proximity of ultrasound scanning teleoperation through force feedback at the master end and image information feedback at the slave end, respectively, and designs an incremental teleoperation master-slave mapping control method to realize flexible control of the remote ultrasound robot. The positive kinematic model of the remote ultrasonic robot is established, and the joint limit avoidance and singular position optimization criteria are introduced to establish the inverse kinematic model of the redundancy optimization of the remote ultrasonic robot based on the weighted minimum parametric and damped gradient projection methods, respectively, and the redundancy solution optimization method of the remote ultrasound robot is simulated and verified by Matlab and Ros simulation environment.

Second, to address the problem that it is difficult to satisfy joint avoidance limits and singular position constraints while maintaining stable contact force and flexible interaction during the scanning supple interaction of a remote ultrasound robot, the ultrasound scanning contact interaction process is analyzed, the impedance control theory of a seven-degree-of-freedom redundant robot is studied, and a hybrid force/impedance control method based on weighted minimum parametric number for joint avoidance limits of an ultrasound robot is proposed. The method establishes an impedance controller in the tangential direction of the swept contact surface for indirect force suppleness control to keep the robot flexible, a contact force controller in the normal direction of the swept contact surface to maintain a stable contact force between the ultrasound probe and human tissue through direct force control, and introduces the weighted least parametric and damping pseudo-inverse ideas into the hybrid force/impedance control to optimize the zero-space motion of the remote ultrasound robot. This method can avoid the constraints of joint limits and singular positions of the robot during the scanning process while maintaining the supple and stable force control.

Finally, a remote ultrasound robot teleoperation experiment of human abdominal liver ultrasound scanning was designed to experimentally verify the remote ultrasound robot teleoperation system and the suppleness control method built in this paper.The experimental results show that the master-slave control accuracy of the designed remote ultrasound robot teleoperation system meets the requirements of ultrasound sweeping teleoperation, and the proposed soft control method can obtain better force tracking performance while maintaining the soft characteristics, while the sweeping tangential soft contact force is reduced by 32% on average compared with the traditional position control method, which meets the demand of human-robot interaction softness for ultrasound scanning.

参考文献:

[1]Sai H, Wang L, Zhang J, et al. Portable Device to Assist with Force Control in Ultrasound Acquisition[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022,11-13.

[2]Pierrot F, Dombre E, Dégoulange E, et al. Hippocrate: A safe robot arm for medical applications with force feedback[J]. Medical Image Analysis, 1999, 3(3): 285-300.

[3]Koizumi N, Warisawa S, Nagoshi M, et al. Construction methodology for a remote ultrasound diagnostic system[J]. IEEE Transactions on robotics, 2009, 25(3): 522-538.

[4]Nakadate R, Matsunaga Y, Solis J, et al. Development of a robot assisted carotid blood flow measurement system[J]. Mechanism and machine theory, 2011, 46(8): 1066-1083.

[5]Mathiassen K, Fjellin J E, Glette K, et al. An ultrasound robotic system using the commercial robot UR5[J]. Frontiers in Robotics and AI, 2016, 3: 1.

[6]Masuda K, Kimura E, Tateishi N, et al. Three dimensional motion mechanism of ultrasound probe and its application for tele-echography system[C]//Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180). IEEE, 2001, 2: 1112-1116.

[7]Janvier M A, Durand L G, Cardinal M H R, et al. Performance evaluation of a medical robotic 3D-ultrasound imaging system[J]. Medical image analysis, 2008, 12(3): 275-290.

[8]Koizumi N, Warisawa S, Nagoshi M, et al. Construction methodology for a remote ultrasound diagnostic system[J]. IEEE Transactions on robotics, 2009, 25(3): 522-538.

[9]Karaman M, Wygant I O, Oralkan Ö, et al. Minimally redundant 2-D array designs for 3-D medical ultrasound imaging[J]. IEEE transactions on medical imaging, 2009, 28(7): 1051-1061.

[10]Huang Q, Wu B, Lan J, et al. Fully automatic three-dimensional ultrasound imaging based on conventional B-scan[J]. IEEE transactions on biomedical circuits and systems, 2018, 12(2): 426-436.

[11]Xiao X, Ning B, Huang Z, et al. Focused ultrasound ablation using real time ultrasound image guidance[C]//2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2011, 4: 2335-2338.

[12]孟勃,曹蕾.基于Kinect的机器人辅助超声扫描系统研究[J].计算机工程与科学,2016,38(03):494-500.

[13]Guan X, Wu H, Hou X, et al. Study of a 6DOF robot assisted ultrasound scanning system and its simulated control handle[C]//2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). IEEE, 2017: 469-474.

[14]Shimizu M, Kakuya H, Yoon W K, et al. Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution[J]. IEEE Transactions on robotics, 2008, 24(5): 1131-1142.

[15]王美玲. 面向救援任务的双臂机器人协作运动规划与控制方法研究[D]. 中国科学技术大学, 2015.

[16]王英石. 冗余机器人的运动学及轨迹规划的研究[D]. 南开大学, 2014.

[17]Liu W, Chen D, Steil J. Analytical inverse kinematics solver for anthropomorphic 7-DOF redundant manipulators with human-like configuration constraints[J]. Journal of Intelligent & Robotic Systems, 2017, 86: 63-79.

[18]Luo R C, Lin T W, Tsai Y H. Analytical inverse kinematic solution for modularized 7-DoF redundant manipulators with offsets at shoulder and wrist[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014: 516-521.

[19]Ananthanarayanan H, Ordóñez R. Real-time Inverse Kinematics of (2n+ 1) DOF hyper-redundant manipulator arm via a combined numerical and analytical approach[J]. Mechanism and Machine Theory, 2015, 91: 209-226.

[20]Baillieul J, Hollerbach J, Brockett R. Programming and control of kinematically redundant manipulators[C]//The 23rd IEEE Conference on Decision and Control. IEEE, 1984: 768-774.

[21]李贺立, 杨冬, 杨德志,等. 双臂机器人避关节极限与避奇异位形优化研究[J]. 科学技术与工程, 2017, 17(3):7.

[22]Zhao J, Xu T, Fang Q, et al. A synthetic inverse kinematic algorithm for 7-DOF redundant manipulator[C]//2018 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2018: 112-117.

[23]Kanoun O, Lamiraux F, Wieber P B. Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task[J]. IEEE Transactions on Robotics, 2011, 27(4): 785-792.

[24]Faroni M, Beschi M, Pedrocchi N, et al. Predictive inverse kinematics for redundant manipulators with task scaling and kinematic constraints[J]. IEEE Transactions on Robotics, 2018, 35(1): 278-285.

[25]Xiang J, Zhong C, Wei W. General-weighted least-norm control for redundant manipulators[J]. IEEE Transactions on Robotics, 2010, 26(4): 660-669.

[26]Whitney D E. What is the remote centre compliance (RCC) and what can it do?[C]//Proceedings of the 9th International Symposium on Industrial Robots, 1979. 1979.

[27]黄婷, 孙立宁, 王振华,等. 基于被动柔顺的机器人抛磨力/位混合控制方法简[J]. 机器人, 2017(6):11.

[28]Tsumura R, Iwata H. Robotic fetal ultrasonography platform with a passive scan mechanism[J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15: 1323-1333.

[29]房善想. 面向航空叶片表面超声强化的机器人运动规划与柔顺控制研究[D].北京交通大学,2021.

[30]张秀丽, 谷小旭, 赵洪福,等. 一种基于串联弹性驱动器的柔顺机械臂设计[J]. 机器人, 2016, 38(4):10.

[31]Morita T, Sugano S. Design and development of a new robot joint using a mechanical impedance adjuster[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation. IEEE, 1995, 3: 2469-2475.

[32]Dong Y, Ren T, Wu D, et al. Compliance control for robot manipulation in contact with a varied environment based on a new joint torque controller[J]. Journal of Intelligent & Robotic Systems, 2020, 99: 79-90.

[33]Gilbertson M W, Anthony B W. Force and position control system for freehand ultrasound[J]. IEEE Transactions on Robotics, 2015, 31(4): 835-849.

[34]Fang T Y, Zhang H K, Finocchi R, et al. Force-assisted ultrasound imaging system through dual force sensing and admittance robot control[J]. International journal of computer assisted radiology and surgery, 2017, 12: 983-991.

[35]Carriere J, Fong J, Meyer T, et al. An admittance-controlled robotic assistant for semi-autonomous breast ultrasound scanning[C]//2019 international symposium on medical robotics (ISMR). IEEE, 2019: 1-7.

[36]段晋军. 多机器人协作焊接中的轨迹规划和位置力协调控制研究[D].东南大学,2019.

[37]Zhu W H, Salcudean S E, Bachmann S, et al. Motion/force/image control of a diagnostic ultrasound robot[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). IEEE, 2000, 2: 1580-1585.

[38]甘亚辉, 段晋军, 戴先中. 非结构环境下的机器人自适应变阻抗力跟踪控制方法[J]. 控制与决策, 2019(10):9.

[39]Kang G, Oh H S, Seo J K, et al. Variable admittance control of robot manipulators based on human intention[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1023-1032.

[40]Dimeas F, Aspragathos N. Online stability in human-robot cooperation with admittance control[J]. IEEE transactions on haptics, 2016, 9(2): 267-278.

[41]Jung S. Admittance force tracking control for position-controlled robot manipulators under unknown environment[C]//2020 20th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2020: 219-224.

[42]Wu Z, Chen Y, Xu W. A light space manipulator with high load-to-weight ratio: system development and compliance control[J]. Space: Science & Technology, 2021, 2021.

[43]Seraji H. Adaptive admittance control: An approach to explicit force control in compliant motion[C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation. IEEE, 1994: 2705-2712.

[44]Mustafa A S B, Ishii T, Matsunaga Y, et al. Development of robotic system for autonomous liver screening using ultrasound scanning device[C]//2013 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, 2013: 804-809.

[45]李强. 基于关节力矩传感器的碰撞检测与柔顺控制研究[D].哈尔滨工业大学,2019.

[46]孙新超. 开颅手术机器人阻抗控制技术研究[D].天津理工大学,2021.

[47]曹宏利. 非结构化动态环境中机器人接触交互柔顺控制策略与实验研究[D].重庆大学,2020.

[48]Raibert M H , Craig J J . Hybrid position/force control of manipulators[J]. Asme J of Dynamic Systems Measurement & Control, 1981, 102(2):126-133.

[49]李正义. 机器人与环境间力/位置控制技术研究与应用[D].华中科技大学,2011.

[50]Arimoto S, Liu Y H, Naniwa T. Principle of orthogonalization for hybrid control of robot arms[J]. IFAC Proceedings Volumes, 1993, 26(2): 335-340.

[51]Mueller A. Modern robotics: Mechanics, planning, and control [J]. IEEE Control Systems Magazine, 2019, 39(6): 100-102.

[52]Bassi E, Benzi F, Capisani L M, et al. Hybrid position/force sliding mode control of a class of robotic manipulators[C]//Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. IEEE, 2009: 2966-2971.

[53]Kim Y J, Seo J H, Kim H R, et al. Development of a control algorithm for the ultrasound scanning robot (NCCUSR) using ultrasound image and force feedback[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(2): e1756.

[54]宗玉杰. 七自由度机械臂末端力控制[D].东南大学,2018.

[55]Pliego-Jiménez J, Arteaga-Pérez M A. Adaptive position/force control for robot manipulators in contact with a rigid surface with uncertain parameters[J]. European Journal of Control, 2015, 22: 1-12.

[56]Gutiérrez–Giles A, Arteaga–Pérez M. Output feedback hybrid force/motion control for robotic manipulators interacting with unknown rigid surfaces[J]. Robotica, 2020, 38(1): 136-158.

[57]Fanaei A, Farrokhi M. Adaptive neuro-fuzzy controller for hybrid position/force control of robotic manipulators[J]. IFAC Proceedings Volumes, 2005, 38(1): 127-132.

[58]Anderson R J, Spong M W. Hybrid impedance control of robotic manipulators[J]. IEEE Journal on Robotics and Automation, 1988, 4(5): 549-556.

[59]Khatib O, Burdick J. Motion and force control of robot manipulators[C]//Proceedings. 1986 IEEE international conference on robotics and automation. IEEE, 1986, 3: 1381-1386.

[60]覃海强. 机械臂力/位置混合控制方法研究[D]. 重庆大学, 2013.

[61]Kojcev R, Khakzar A, Fuerst B, et al. On the reproducibility of expert-operated and robotic ultrasound acquisitions[J]. International journal of computer assisted radiology and surgery, 2017, 12: 1003-1011.

[62]崔超然. 基于动力学参数辨识的阻抗控制研究[D].哈尔滨工业大学,2021.

[63]Suligoj F, Heunis C M, Sikorski J, et al. Robust–an autonomous robotic ultrasound system for medical imaging[J]. IEEE Access, 2021, 9: 67456-67465.

[64]Albu‐Schäffer A, Haddadin S, Ott C, et al. The DLR lightweight robot: design and control concepts for robots in human environments[J]. Industrial Robot: an international journal, 2007, 34(5): 376-385.

[65]Hirzinger G, Albu-Schaffer A, Hahnle M, et al. On a new generation of torque controlled light-weight robots[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164). IEEE, 2001, 4: 3356-3363.

[66]Hirzinger G, Fischer M, Brunner B, et al. Advances in robotics: the DLR experience[J]. The International Journal of Robotics Research, 1999, 18(11): 1064-1087.

[67]Kim H, Kwon J, Oh Y, et al. Weighted hybrid admittance-impedance control with human intention based stiffness estimation for human-robot interaction[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1-6.

[68]丁润泽. 基于阻抗控制的机器人力控制技术研究[D].哈尔滨工业大学,2018.

[69]Dong Y, Ren T, Wu D, et al. Compliance control for robot manipulation in contact with a varied environment based on a new joint torque controller[J]. Journal of Intelligent & Robotic Systems, 2020, 99: 79-90.

[70]武文. 冗余自由度机器人操作臂主动柔顺控制研究[D].哈尔滨工业大学,2019.DOI:10.27061/d.cnki.ghgdu.2019.004578.

[71]霍希建. 面向ORU更换的冗余机械臂及其柔顺控制的研究[D].哈尔滨工业大学,2016.

[72]Ficuciello F, Villani L, Siciliano B. Variable impedance control of redundant manipulators for intuitive human–robot physical interaction[J]. IEEE Transactions on Robotics, 2015, 31(4): 850-863.

[73]Parent D, Colomé A, Torras C. Variable impedance control in Cartesian latent space while avoiding obstacles in null space[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 9888-9894.

[74]Karami A, Sadeghian H, Keshmiri M, et al. Force, orientation and position control in redundant manipulators in prioritized scheme with null space compliance[J]. Control Engineering Practice, 2019, 85: 23-33.

[75]华磊, 张福海, 付宜利. 一种七自由度冗余机械臂阻抗控制研究[J]. 华中科技大学学报:自然科学版, 2013(S1):5 .

中图分类号:

 TP242    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式