- 无标题文档
查看论文信息

论文中文题名:

 煤矿综采工作面巡检机器人研发    

姓名:

 杜永刚    

学号:

 18205018020    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械电子工程    

研究方向:

 智能检测与控制    

第一导师姓名:

 张旭辉    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-24    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Research and Development of Inspection Robot for Fully Mechanized Coal Mining Face    

论文中文关键词:

 煤矿综采工作面 ; 巡检机器人 ; 分段柔性轨道系统 ; 模块化设计 ; 运动控制 ; 物理样机    

论文外文关键词:

 Coal mine general mining face ; Inspection robot ; Segmented rigid track system ; Modular design ; Motion control ; Physical prototype    

论文中文摘要:

煤炭是我国能源安全的重要保障,煤矿智能化发展是必然趋势。综采工作面是煤炭井工开采的最前线,工作面设备数量多、体积大、空间狭小且随工作面推移,环境不断变化,为保证生产的顺利进行需要对工作面环境和设备进行实时巡检。传统人工巡检劳动强度大、危险系数高、巡检过程困难,多发生事故。现有的矿用巡检机器人多在固定的环境中运行,难以适应多变的工作面环境。因此,本文以综采工作面异常状况巡检为应用背景,设计一种适用于井下不同煤层厚度的智能巡检机器人系统,研究其不同工况下的运行状态并实现远程控制,促进煤矿综采工作面的智能化发展。

针对煤矿综采工作面环境恶劣、巡检轨迹多变等问题,通过分析研究工作面环境特点和设备运动特征,获得了刮板输送机缆线槽一侧、液压支架顶梁支架下方及液压支架第一级立柱前方等三个动态位置的运行规律,提出将以上三个位置作为巡检机器人轨道安装跨接的巡检机器人布置方案;同时结合工作面巡检需求分析,提出机器人“三测一警”的主要任务与设计要求,确定基于分段柔性轨道的工作面巡检机器人设计方案。

针对工作面巡检机器人运行环境多样、运动变形维度多范围大、较难适应等问题,采用模块化的设计方法,完成工作巡检机器人分段柔性轨道系统和机器人本体的结构设计;针对巡检机器人不同的工作面安装位置,提出只更换轨道固连机构不改变分段柔性轨道系统的解决方案,并设计相应的轨道固连机构解决巡检机器人对工作面环境的适应性问题,实现了在不改变原工作面环境的基础上对巡检机器人的安装,降低机器人对原本工作面环境的影响。

针对巡检机器人方案可行性及结构稳定性研究,论文以跨座式巡检机器人本体为分析对象,阐述在不同工况下分段柔性轨道系统被动适应环境变化及机器人通过变形连接点的运动机理和过程。通过分析机器人在不同工况下的力学特征,建立机器人导向轮的力矩动力学模型,为巡检机器人的运动控制奠定基础;通过运动学及动力学仿真,对巡检机器人的运行稳定性及结构方案可行性进行仿真验证;最后对巡检机器人轨道及机器人本体的关键部件进行静力学仿真,检验机器人关键部件在外界作用力下的应力及位移变化,优化提高巡检机器人结构的可靠性。

论文设计基于LabVIEW开发平台和NI My RIO嵌入式设备的巡检机器人远程控制系统,该系统由主控制器模块、无线通讯模块、运动控制模块、导航定位模块、电源管理模块、传感信息采集模块及上位机模块等7个子模块构成,并对其中的基础硬件进行选型和计算,实现对巡检机器人的远程控制和数据传输。

最后,研制综采工作面巡检机器人物理样机及工作面刮板输送机实验平台,通过实验平台模拟轨道平直、弯曲及倾斜三种不同工况,分析机器人本体在运行过程中X、Y、Z三个方向的振动加速度,检验工作面巡检机器人结构的合理性、可行性及运行的稳定性。研发的工作面巡检机器人系统可以满足工作面巡检运行要求。

论文外文摘要:

Coal is an important guarantee for my country's energy security, and the intelligent development of coal mines is an inevitable trend. Fully mechanized mining face is the forefront of coal mining. The equipment group of the face is large in number, large in volume, narrow in space, and the environment is constantly changing. In order to ensure the smooth progress of production, real-time inspection of the mining face environment and equipment is required. Traditional manual inspections have high labor intensity, high risk factors, difficult inspection processes, and frequent accidents. The existing mine inspection robots mostly operate in a fixed environment and are difficult to adapt to the changing work surface environment. Therefore, this paper takes the abnormal condition inspection of mining face as the application background, designs an intelligent inspection robot system scheme suitable for different coal seam thickness, studies its running state under different working conditions and realizes remote control. To promote the intelligent development of fully mechanized coal mining face.

In view of the bad environment and changeable inspection track of coal mining face, three dynamic positions, such as one side of cable slot of scraper conveyor, the bottom of top beam support of hydraulic support and the front of first stage column of hydraulic support, are obtained by analyzing and studying the environmental characteristics and moving characteristics of equipment. The above three positions are put forward as the layout scheme of the patrol robot track installation and cross connection. At the same time, combined with the analysis of the inspection requirements of the mining face, the main tasks and design requirements of the robot "four measurements and one alarm" are put forward.

In view of the problems such as diverse running environment, large range of motion deformation dimension and difficult to adapt, the modular design method is adopted to complete the structural design of the segmented flexible track system and the robot body. Aiming at the different mining face installation positions of the inspection robot, this paper puts forward a solution that only replacing the track fixed connection mechanism does not change the segmented flexible track system, and designs the corresponding track fixed connection mechanism to solve the adaptability of the inspection robot to the mining face environment.

In view of the feasibility and structural stability of the inspection robot scheme, this paper takes the cross-seat inspection robot body as the analysis object. This paper expounds the motion mechanism and process of the segmented flexible track system passively adapting to the environment change and the robot passing through the deformation connection point under different working conditions. By analyzing the mechanical characteristics of the robot under different working conditions, the torque dynamics model of the robot guide wheel is established, which lays a foundation for the motion control of the patrol robot. Through kinematics and dynamics simulation, the operation stability of the inspection robot and the feasibility of the structure scheme are simulated and verified. Finally, the static simulation of the key components of the inspection robot track and the robot body is carried out to test the stress and displacement changes of the key components of the robot under the external force, and to optimize and improve the reliability of the inspection robot structure.

This paper designs the remote control system of inspection robot based on LabVIEW development platform and NI MyRIO embedded equipment. The system is composed of seven sub-modules, including main controller module, wireless communication module, motion control module, navigation and positioning module, power management module, sensor information acquisition module and upper computer module. The basic hardware is selected and calculated to realize the remote control and data transmission of the inspection robot.

Finally, the experimental platform of machine figure machine and scraper conveyor in fully mechanized mining face is developed. By simulating three different working conditions of straight track, bending and tilting, the vibration acceleration of robot body in three directions is analyzed X、Y、Z the course of operation, and the rationality, feasibility and stability of the robot structure are tested. The developed mining face inspection robot system can meet the requirements of mining face inspection and operation.

参考文献:

[1]本刊记者.改革发展取得新进展 煤炭供需实现基本平衡—2018煤炭行业发展年度报告发布会在京召开[J].中国煤炭工业,2019(03):8-9.

[2]边文越,陈挺,陈晓怡,等.世界主要发达国家能源政策研究与启示[J].中国科学院院刊,2019,34(04):488-496.

[3]张士海.矿用巡检机器人在煤矿中的应用[J].煤矿机电,2016(05):76-79.

[4]周静龙.巡检机器人在煤矿的应用分析[J].煤,2020,29(05):53+85.

[5]葛世荣.煤矿机器人现状及发展方向[J].中国煤炭,2019,45(07):18-27.

[6]张旭辉,王妙云,张雨萌,等.数据驱动下的工业设备虚拟仿真与远程操控技术研究[J].重型机械,2018(05):14-17.

[7]刘永伟.矿用悬臂式掘进机器人控制系统研制[D].西安科技大学,2018.

[8]张旭辉,董润霖,马宏伟,等.基于虚拟现实的煤矿救援机器人远程控制技术[J].煤炭科学技术,2017,45(05):52-57.

[9]马宏伟,张璞,毛清华,等.基于捷联惯导和里程计的井下机器人定位方法研究[J].工矿自动化,2019,45(04):35-42.

[10]张旭辉,张超,杨文娟,等.悬臂式掘进机可视化辅助截割系统研制[J].煤炭科学技术,2018,46(12):21-26.

[11]高沛林,周颖.基于Matlab的轨迹发生器与惯导解算[J].信息与电脑(理论版), 2016(18):31- 35.

[12]李学民.矿用巡检机器人关键技术分析[J].煤矿机械,2018,39(05):71-73.

[13]阙建立.智能矿山平台建设与实现[J].工矿自动化,2018,44(04):90-94.

[14]P.Rudakevych, M.Ciholas. PackBot EDO Firing System[C].Proc. of SPIE,2005,58(04): 758-771.

[15]T S Kumar Reddy, G Bala Siva Krishna.Hazardous Gas Detecting Rescue Robot In Coal Mines[C],Proceedings of IRF International Conference,13th April-2014,Chennai,India,ISBN:978-93-84209-05-6.

[16]Hemanth Reddy A, B.Kalyan. Mine Rescue Robot System-A Review[J],Procedia Earth and Planetary Science 11(2015)457-46.

[17]P.Raghuram,Veeramuthu Venkatesh,Enhancing Mine Safety With Wireless Sensor Networks Using Zigbee Technology[J],Journal of Theoretical and Applied Information Technology,31st March 2012.Vol.37 No.2,Page 261-267.

[18]商德勇,崔栓伟,周丹,等.薄煤层巡检机器人行走机构跨沟性能分析及试验研究[J].煤炭工程,2017,49(04):136-138.

[19]商德勇,杨壘,杜少庆,等.薄煤层工作面巡检机器人越障前动力学分析[J].机械设计与制造,2018(01):261-263.

[20]杨壘,商德勇,杨泽宇,等.薄煤层综采工作面巡检机器人摆臂动力学分析[J].煤矿机械,2015,36(11):120-122.

[21]商德勇.薄煤层综采工作面巡检机器人运动分析及试验研究[D].中国矿业大学(北京),2016.

[22]王川伟,马宏伟,马琨,等.带式输送机巡检机器人行驶力学及其仿真研究[J].煤炭技术,2018,37(10):258-261.

[23]裴文良,张树生,李军伟.矿用巡检机器人设计及其应用[J].制造业自动化,2017,39 (02):73- 74+94.

[24]刘建荣,伊玉祥,徐杜民,等.钢丝绳牵引式巡检机器人研究与应用[J].煤矿机械,2021, 42(01):37-39.

[25]张涛,吴高镇.带式输送机故障巡检机器人系统设计[J].工矿自动化,2018,44(10):72-76.

[26]靳子浩.矿用悬挂式巡检机器人设计[D].西安科技大学,2017.

[27]曹现刚,许罡,吴旭东,等.分段柔性轨道式环境巡检机器人设计[J/OL].煤炭科学技术:1-11[2021-03-10].http://kns.cnki.net /kcms/detail/11.2402.td.20200907.1816.002.html.

[28]姜俊英,周展,曹现刚,等.煤矿巷道悬线巡检机器人结构设计及仿真[J].工矿自动化, 2018,44(05):76-81.

[29]周展.矿用悬线巡检机器人控制系统研究[D].西安科技大学,2018.

[30]潘祥生.矿用悬线式巡检机器人的设计及动力学分析[J].煤矿机械,2019,40(11):4-7.

[31]郝勇,袁智.综采工作面自动巡检机器人系统设计[J].煤炭科学技术,2020,48(08):145 -149.

[32]崔正文.采煤工作面巡检机器人系统研究[J].自动化应用,2020(11):62-64.

[33]李森,王峰,刘帅,等.综采工作面巡检机器人关键技术研究[J].煤炭科学技术,2020, 48(07):218-225.

[34]张树生,马静雅,岑强,等.煤矿综采工作面巡检机器人系统研究[J].煤炭科学技术,2019, 47(10):136-140.

[35]汪倩倩,汤煊琳.基于ATMega16单片机的体操机器人控制系统设计[J].现代信息科技,2020,4(17):41-43.

[36]刘程.基于单片机的移动机器人控制系统设计[J].太原学院学报(自然科学版),2019, 37(04):50-55.

[37]刘彩霞,顾帅,杨正涛.校园送餐机器人控制系统的设计[J].制造业自动化,2021,43(01):93-95+108.

[38]张申毅,樊绍胜,程嘉翊,等.基于STM32的轨道式巡检机器人控制系统的设计[J].仪表技术与传感器,2020(09):93-97+116.

[39]吴晗,徐开芸,朱昊,等.基于单片机的球型机器人控制系统设计[J].机械设计与制造工程,2018,47(11):53-57.

[40]姜光,姜久超,李爱宁,等.基于PLC的农业机器人电气控制系统设计[J].农机化研究,2022,44(02):219-223.

[41]李汉超,高燕,黄昕.基于工业机器人控制系统的软PLC设计[J].机床与液压,2021,49(05):60-63.

[42]邱栋.基于DSP的矿用巡检机器人控制系统设计[J].煤矿机械,2020,41(11):12-15.

[43]王甦,薛超,李雅琳,等.仿蛇形巡检机器人控制系统设计[J].科技创新与应用,2020(36):37-38.

[44]梁庆杰.基于嵌入式Linux的煤矿救援机器人控制系统设计[J].煤矿机械,2020,41(07):187-190.

[45]杨林,马宏伟,王川伟,等.校园巡检机器人智能导航与控制[J].西安科技大学学报,2018, 38(06):1013-1020.

[46]李标俊,向权舟,谢保鸡,等.基于嵌入式Linux的电力巡检机器人自动化控制系统设计[J].自动化与仪器仪表,2020(10):149-152.

[47]司鹄,赵剑楠,胡千庭.大数据理论下的煤与瓦斯突出事故致因分析[J].西安科技大学学报,2018,38(04):515-522+537.

[48]袁明新,王彬彬,华晓彬,等.室外巡检机器人的磁导航系统设计及实现[J].江苏科技大学学报(自然科学版),2019,33(04):24-30.

[49]钱金菊,王柯,王锐,等.变电站智能机器人巡检任务规划[J].广东电力.2017,30(2):143- 149.

[50]王川伟,马琨,杨林,等.四摆臂-六履带机器人单侧台阶障碍越障仿真与试验[J].农业工程学报,2018,34(10):46-53.

[51]MICIRE M. Analysis of the robotic-assisted search and rescue response to the World Trade Center Disaster[D].South Florida: University of South Florida, 2002.

[52]刘宇航,郑雪婷,等.仿蜘蛛机器人的研究现状及其发展方向[J].机械工程师,2017,(02):106-108.

[53]Da Xi,Feng Gao. Criteria of type complexity for legged robots[J]. Mechanism and Machine Theory,2020,144.

[54]Portilla Gerardo,Saltarén Roque,Espinosa Francisco Montero de,Barroso Alejandro R,Cely Juan,Yakrangi Oz. Dynamic Walking of a Legged Robot in Underwater Environments.[J]. Sensors (Basel, Switzerland),2019,19(16).

[55]Ling Fang,Feng Gao. Type Design and Behavior Control for Six Legged Robots[J]. Chinese Journal of Mechanical Engineering,2018,31(1).

[56]李东江,杨维,于超,等.基于深度神经网络的井下无人机视觉位姿估计[J].中国矿业大学学报,2020,49(04):798-806.

[57]Alexey A. Munishkin,Dejan Milutinović,David W. Casbeer. Min-max time efficient inspection of ground vehicles by a UAV team[J]. Robotics and Autonomous Systems,2019.

[58]González-deSantos L M,Martínez-Sánchez J,González-Jorge H,Ribeiro M,de Sousa J B,Arias P. Payload for Contact Inspection Tasks with UAV Systems.[J]. Sensors (Basel, Switzerland),2019,19(17).

[59]邵瑰玮,刘壮,付晶,等.架空输电线路无人机巡检技术研究进展[J].高电压技术,2020,46(01):14-22.

[60]张袁浩,陈杨阳,等.煤矿机器人应用场景需求分析[J].内蒙古煤炭经济,2019,(18):1-3.

[61]李学民.矿用巡检机器人关键技术分析[J].煤矿机械,2018,39(5):71-73.

[62]杨学军,王然风,等.基于运动过程还原法的液压支架巡检机器人位姿监测[J].太原理工大学学报,2020,51(2):162-170.

[63]JOHNSON J.Free Space Laser Communications Ad-vanced Technology Demonstration [C].AIAA Space Pro-grams and Technologies Conference and Exhibit,Hunts-ville,1993: 1-8.

[64]BEHZADIPOUR S,KHAJEPOUR A,DEKKER R,etal.DELTABOT: A New Cable-based Ultra High Speed Robot[C].Proceeding of IMECE’03 2003 International-Mechanical Engineering Congress,Washington,D.C,2003: 1-5.

[65]SOMES S D,DOHRING M E.Preliminary design andtesting of a novel robot designfor metal finishing applica-tions[C].Proceeding of the 2005 IEEE international con-ference on robotics and automation,Barcelona,Spain,2005:3294-3299.

[66]鲁亚飞.精密柔索传动机理与设计方法研究[D].长沙:国防科学技术大学,2013.

[67]宋煜明,刘宁宁,牛建凯.基于钢丝绳传动的小型单兵红外侦察转台结构设计[J].电视技术,2019,43(8):70-74.

[68]王龙飞.卷扬机系统主要部件的选型设计[J].现代制造技术与装备,2019(05):67-68.

[69]刘磊.单轨交通应急梁支座与超高研究以及轨道梁生产用模板误差分析[D].北京:北京交通大学,2009.

[70]吴光强.汽车理论[M].北京:人民交通出版社,2007.

[71]HANS-PETER WILLUMEIT.车辆动力学模拟及其方法[M].北京:北京理工大学出版社,1998.

[72]王云磊.基于NI My RIO的智能移动机器人设计[D].天津职业技术师范大学,2018.

[73]王云磊,祁宇明,丁大宝.移动机器人控制系统的设计[J].机械工程与自动化,2017(06).

[74]Angal Y, Gade A. Lab VIEW controlled robot for object handling using NI My RIO[C]/ IEEE International Conference on Advances in Electronics. IEEE, 2017.

[75]李立,孙龙建.基于Lab VIEW和NI My RIO的智能避障小车设计[J].电子器件,2018(02).

[76]李增局,吴谨,刘国国,等.振动影响机载合成孔径激光雷达成像初步研究[J].光学学报,2010,30(04):994-1001.

中图分类号:

 TP242.2    

开放日期:

 2021-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式