论文中文题名: | 光学和微波遥感数据反演土壤水分方法研究与应用 |
姓名: | |
学号: | 18210063036 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 081602 |
学科名称: | 工学 - 测绘科学与技术 - 摄影测量与遥感 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 定量遥感 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-15 |
论文答辩日期: | 2021-05-31 |
论文外文题名: | Study and application of soil moisture estimation based on optical and microwave remote sensing data |
论文中文关键词: | |
论文外文关键词: | Soil moisture monitoring by remote sensing ; Double-parabolic TVDI ; Spectral feature space method ; Microwave remote sensing |
论文中文摘要: |
土壤水分作为陆地表面水资源形成、转化和消耗过程中的基本参数,也是地表能量交换的基本要素。遥感技术可以及时准确地监测区域尺度土壤水分,为社会生产管理提供有力保障。一方面,土壤水分是制约半干旱区植被生长和恢复的重要因素之一,另一方面,土壤水分也是主导农作物生长发育的重要因素之一。不同土壤水分模型反演结果受地域和时相选择等因素影响较大,精度不够稳定。因此,探讨适合不同气候类型不同地域的客观、实时和动态的土壤水分监测模型与反演方法,为社会经济发展和生产管理提供强有力的决策依据,具有重要的科学意义和现实意义。本研究主要利用四种特征空间的双抛物线型TVDI(Temperature vegetation dryness index)、四种光谱特征空间法(SMMI-Soil moisture monitoring index、PDI-Perpendicular drought index、MSMMI-Modified soil moisture monitoring index和MPDI-Modified perpendicular drought index)、一种引入组合粗糙度(Rs)的半经验SAR模型及四种机器学习回归模型(GRNN-Generalized neural network regression、RFR-Random forest regression、SVR-Support vector regression和DNNR-Deep neural network regression)监测地表土壤水分,并在两个研究区进行实验与应用,一是中国陕西省神东矿区(温带大陆性半干旱区),二是加拿大曼尼托巴省农业区(温带大陆性湿润区),主要研究内容及结果如下: |
论文外文摘要: |
~Soil moisture (SM), as a basic parameter in the process of formation, transformation and consumption of land surface water resources, is also the basic element of surface energy exchange. Remote sensing technology can timely and accurately monitor SM at regional scale, which provides strong guarantees for social production management. On the one hand, SM is one of the important factors restricting the growth and recovery of vegetation in semi-arid region. On the other hand, SM is also one of the important factors leading the growth and development of crops. Estimated results of different SM models are greatly affected by regional and temporal selection and the accuracy is not stable. Therefore, it is of great scientific and practical significance to explore objective, real-time and dynamic SM monitoring models and estimation methods suitable for different climate types and different regions, so as to provide a strong decision-making basis for social and economic development and production management. In this study, the double-parabolic TVDI (Temperature vegetation dryness index) of four feature spaces, four spectral feature space methods (SMMI-Soil moisture monitoring index, PDI-Perpendicular drought index, MSMMI-Modified soil moisture monitoring index, MPDI-Modified perpendicular drought index), a semi-empirical SAR model with combined roughness (Rs), and four machine learning regression models (GRNN-Generalized neural network regression, RFR-Random forest regression, SVR-Support vector regression, DNNR-Deep neural network regression) were employed to monitor surface SM in two study areas. One is Shendong mining area in Shaanxi province, China (Temperate continental semi-arid zone). The other is Manitoba agricultural area in Canada (Temperate continental humid zone). The main research contents and results are as follows: |
中图分类号: | P237 |
开放日期: | 2023-06-16 |