- 无标题文档
查看论文信息

论文中文题名:

 永磁同步电机有限集模型预测控制研究    

姓名:

 关朋琳    

学号:

 19206029015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080801    

学科名称:

 工学 - 电气工程 - 电机与电器    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 新型电机控制    

第一导师姓名:

 黄向慧    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-05-28    

论文外文题名:

 Research on Finite Set Model Predictive Control of Permanent Magnet Synchronous Motor    

论文中文关键词:

 永磁同步电机 ; 有限集模型预测控制 ; 灰色预测 ; 模糊控制    

论文外文关键词:

 Permanent magnet synchronous motor ; Finite set control model predictive control ; Grey prediction ; Fuzzy control    

论文中文摘要:

永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)以其效率高、功率密度大、稳定性好等优势被广泛应用于各个领域。PMSM虽然优势明显,但也面临启动性能欠佳的问题。考虑到有限集模型预测控制(Finite Control Set Model Predictive Control, FCS-MPC)可根据过去信息和未来时刻的输入量预测下一时刻的输出响应,从而提高系统响应,提升启动速率。为此,本文对永磁同步电机有限集模型预测控制展开了研究,通过引入灰色预测和模糊控制理论,提出了下述两种控制方案。

首先,本文设计了双闭环FCS-MPC系统,在消除了转速超调的基础上,为进一步提高系统的动态性能,充分利用历史数据快速适应给定值的变化,引入了灰色预测,针对电流内环的不确定性部分建立灰色模型,提出了基于灰色预测的双闭环FCS-MPC方案。电流内环采用灰色预测与FCS-MPC相结合的方式,并利用MPC算法设计速度外环控制器,使控制系统中的灰色量达到一定程度的白化,从而提高电流控制的动态性能。

其次,为解决电流内环中代价函数的固定权重因子难以同时满足动态和稳态性能的问题,本文利用模糊条件语句及算法设计了模糊控制器,提出了基于模糊动态权重因子的双闭环FCS-MPC方案,将调节后的动态权重因子引入代价函数中,实现了多目标权重因子的动态最优化分配。

最后,为验证所提控制方案的有效性,利用Matlab/Simulink软件搭建仿真模型,获取仿真结果;并搭建实验平台,结合CCS5.5软件完成对永磁同步电机有限集模型预测控制研究的调试实验,结果表明本文提出的两种控制方案使系统的动态响应和抗干扰性能均得到了提高。

论文外文摘要:

Permanent Magnet Synchronous Motor (PMSM) is widely used in various fields due to its high efficiency, high power density and good stability. Although PMSM has obvious advantages, it also suffers from poor startup performance. Considering that finite control set model predictive control (FCS-MPC) can predict the output response at the next time according to the past information and the input quantity at the future time, thus improving the system response and the startup rate. In this paper, the finite set model predictive control of permanent magnet synchronous motor is studied, and the following two control schemes are proposed by introducing grey prediction and fuzzy control theory.

Firstly, this paper designed the dual closed loop FCS-MPC system, on the basis of eliminates the speed overshoot, to further improve the dynamic performance of system, make full use of historical data quickly adapt to the change of the given value, the introduction of the grey prediction, in view of the uncertainty of current inner part of the grey model is set up, and put forward the dual closed loop FCS-MPC scheme based on grey prediction. The current inner loop adopts the combination of grey prediction and FCS-MPC, and the MPC algorithm is used to design the speed outer loop controller, so that the grey quantity in the control system can reach a certain degree of whitening, so as to improve the dynamic performance of current control.

Secondly, to solve the problem of the cost function of the inner ring of current fixed weighting factor is difficult to meet the dynamic and steady-state performance problems at the same time, in this paper, using the algorithm of fuzzy conditional statement and design the fuzzy controller, the dual loop is proposed based on fuzzy dynamic weighting factor FCS-MPC scheme, will be adjusted dynamic weighting factor is introduced into the cost function, The dynamic optimal allocation of multi-objective weight factors is realized.

Finally, in order to verify the effectiveness of the proposed control scheme, Matlab/Simulink software was used to build a simulation model and obtain the simulation results. The experimental platform was built, and the debugging experiment of PMSM finite set model predictive control was completed with CCS5.5 software. The results show that the dynamic response and anti-interference performance of the system are improved by the two control schemes proposed in this paper.

参考文献:

[1] 唐任远. 现代永磁电机理论与设计 [M]. 机械工业出版社, 2016.

[2] 王成元, 夏加宽, 孙宜标. 现代电机控制技术 [M]. 现代电机控制技术, 2014.

[3] 闫卫国, 蒋菱, 崔玉璐, 等. 用于电励磁同步电机的软开关直流变换器 [J]. 电力系统

及其自动化学报, 2020, 32(4):98–103.

[4] 刘珅, 高琳. 永磁同步电机的改进模型预测直接转矩控制 [J]. 电机与控制学报, 2020,

24(1):10–17.

[5] Tu W, Luo G, Chen Z, et al. Predictive Cascaded Speed and Current Control for PMSM

Drives with Multi-time Scale Optimization[J]. IEEE Transactions on Power Electronics,

2019, 34(11):11046–11061.

[6] Hang J, Zhang J, Xia M. Interturn Fault Diagnosis for Model-Predictive-Controlled-

PMSM Based on Cost Function and Wavelet Transform[J]. IEEE Transactions on Power

Electronics, 2020, 35(6):6405–6418.

[7] 滕青芳, 崔宏伟, 朱建国, 等. 基于无电流传感器的永磁同步电机系统模型预测控制

[J]. 电机与控制学报, 2019, 23(5):119–128.

[8] 袁雷, 胡冰新, 魏克银, 等. 现代永磁同步电机控制原理及 MATLAB 仿真 [M]. 北京

航空航天大学出版社, 2016.

[9] 崔弘, 李艳东. 永磁同步电机控制策略综述 [J]. 防爆电机, 2021, 56(3):3–7.

[10] 曹亚丽, 曹竣奥, 宋昕, 等. 一种改进滑模观测器的 PMSM 矢量控制研究 [J]. 电力系

统保护与控制, 2021, 49(16):104–111.

[11] 刘国海, 曹彦琳, 周华伟, 等. 基于新型开关表的五相永磁同步电机容错直接转矩控

制 [J]. 中国电机工程学报, 2021, 41(18):6399–6408.

[12] 洪锋, 冒国均, 陈国真. 基于 DSP28335 的永磁同步电机 PI 矢量控制系统设计 [J]. 数

字技术与应用, 2021, 39(11):202–204.

[13] Zhang R, Yin Z, Du N, et al. Robust Adaptive Current Control of a 1.2-MW Direct-Drive

PMSM for Traction Drives Based on Internal Model Control With Disturbance Observ-

er[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3):1466–1481.

[14] 白雪宁, 杨向宇, 赵世伟. 基于负载观测器的 PMSM 分数阶滑模位置控制 [J]. 机械

制造与自动化, 2020, 49(2):170–173.

[15] Shneen SW, Kareem HH, Abdulmajeed HA. Fuzzy-PI Control for Speed of PMSM Drive

System[J]. Journal of Entific & Engineering Research, 2019, 6(4):31–35.

[16] 张锦, 李洋洋, 唐友亮, 等. 参数不确定永磁同步电机有限时间自适应控制 [J]. 微电

机, 2021, 54(3):51–55.

[17] 杨成顺, 华涛, 戴宇辰, 等. 电动汽车用永磁同步电机宽速域抗干扰滑模控制 [J]. 电

机与控制应用, 2021, 48(12):21–29.

[18] 李首滨, 李森, 张守祥, 等. 综采工作面智能感知与智能控制关键技术与应用 [J]. 煤炭科学技术, 2021, 49(4):28–39.

[19] 孙星, 杨学军, 董祥, 等. 基于专家控制的喷杆高度智能调节系统研究 [J]. 农业机械

学报, 2020, 51(02):275–282.

[20] 李耀华, 杨启东, 秦玉贵, 等. 基于模糊控制的永磁同步电机动态有限状态集模型预

测转矩控制 [J]. 电机与控制学报, 2021, 25(9):94–103.

[21] 田雨, 康尔良. 永磁同步电机神经网络速度控制器设计 [J]. 微特电机, 2020,

48(6):49–52.

[22] Zhang X, Zhao Z. Multi-Stage Series Model Predictive Control for PMSM Drives[J].

IEEE Transactions on Vehicular Technology, 2021, 70(7):6591–6600.

[23] 徐质闲, 王政, 王学庆, 等. T 型三电平双三相永磁同步电机驱动零共模电压模型预

测控制 [J]. 中国电机工程学报, 2020, 40(13):4301–4310.

[24] 邹涛, 丁宝苍, 张端. 模型预测控制工程应用导论 [M]. 化学工业出版社, 2010.

[25] 齐昕, 苏涛, 周珂, 等. 交流电机模型预测控制策略发展概述 [J]. 中国电机工程学报,

2021, 41(18):6408–6419.

[26] Dai L, Cannon M, Yang F, et al. Fast Self-Triggered MPC for Constrained Linear Sys-

tems With Additive Disturbances[J]. IEEE Transactions on Automatic Control, 2021,

66(8):3624–3637.

[27] 刘莹. 永磁同步电机模型预测控制策略研究 [D]. 武汉: 华中科技大学, 2018.

[28] 朱芮, 吴迪, 陈继峰, 等. 电机系统模型预测控制研究综述 [J]. 电机与控制应用, 2019,

46(8):1–10.

[29] Seong, Hwan, Park, etal. TheFiniteControlSetModelPredictiveTorqueControlMethod

forSurfaceMountedPermanentMagneticSynchronousMotorofElectricVehicle[J]. Jour-

nal of Institute of Control, Robotics and Systems, 2016, 22(6):453–462.

[30] Wu X, Song W, Xue C. Low-Complexity Model Predictive Torque Control Method With-

out Weighting Factor for Five-Phase PMSM Based on Hysteresis Comparators[J]. IEEE

Journal of Emerging & Selected Topics in Power Electronics, 2018, 6(4):1650–1661.

[31] Hu W, Nian H, Zheng T. Torque Ripple Suppression Method With Reduced Switching

Frequency for Open-Winding PMSM Drives With Common DC Bus[J]. IEEE Transac-

tions on Industrial Electronics, 2019, 66(1):674–684.

[32] 吕帅帅, 林辉, 李兵强, 等. 一种改进的 PMSM 模型预测直接转矩控制方法 [J]. 电机

与控制学报, 2020, 24(7):102–111.

[33] Xiong C, Xu H, Guan T, et al.

A Constant Switching Frequency Multiple Vector

BasedModelPredictiveCurrentControlofFive-phasePMSMWithNon-sinusoidalBack-

EMF[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3):1695–1707.

[34] 杨锋, 胡明茂, 陈鑫. 永磁同步电机改进型双矢量模型预测电流控制 [J]. 电机与控制

应用, 2021, 48(9):21–26.

[35] 葛兴来, 胡晓, 孙伟鑫, 等. 永磁同步电机三矢量优化预测磁链控制 [J]. 电机与控制

学报, 2021, 25(8):9–17.

[36] Liu S, Liu C. Virtual-Vector-Based Robust Predictive Current Control for Dual Three-

Phase PMSM[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3):2048–2058.

[37] Li X, Tian W, Gao X, et al. A Generalized Observer-Based Robust Predictive Current

ControlStrategyforPMSMDriveSystem[J]. IEEETransactionsonIndustrialElectronics,

2022, 69(2):1322–1332.

[38] Huang W, Du J, Hua W, et al. Current-Based Open-Circuit Fault Diagnosis for PMSM

Drives With Model Predictive Control[J]. IEEE Transactions on Power Electronics, 2021,

36(9):10695–10704.

[39] GuM,WangZ,etal. InterleavedModelPredictiveControlforThree-LevelNeutral-Point-

Clamped Dual Three-Phase PMSM Drives With Low Switching Frequencies[J]. IEEE

Transactions on Power Electronics, 2021, 36(10):11618–11630.

[40] Wang Y, Li H, Liu R, et al. Modulated Model-Free Predictive Control With Minimum

Switching Losses for PMSM Drive System[J]. IEEE Access, 2020, 8:20942–20953.

[41] WangQ,YuH,LiC,etal. ALow-ComplexityOptimalSwitchingTime-ModulatedModel-

Predictive Control for PMSM With Three-Level NPC Converter[J]. IEEE Transactions on

Transportation Electrification, 2020, 6(3):1188–1198.

[42] Siami M, Khaburi DA, Rivera M, et al. A Computationally Efficient Lookup Table Based

FCS-MPC for PMSM Drives Fed by Matrix Converters[J]. IEEE Transactions on Indus-

trial Electronics, 2017, 64(10):7645–7654.

[43] Liu X, Zhou L, Wang J, et al. Robust Predictive Current Control of Permanent-Magnet

SynchronousMotorsWithNewlyDesignedCostFunction[J]. IEEETransactionsonPower

Electronics, 2020, 35(10):10778 – 10788.

[44] 赵凯辉, 周瑞睿, 冷傲杰, 等. 一种永磁同步电机的有限集无模型容错预测控制算法

[J]. 电工技术学报, 2021, 36(1):27–38.

[45] 陈伯时. 电力拖动自动控制系统 [M]. 机械工业出版社, 2015.

[46] 王兴. 永磁同步电机高性能控制策略研究 [D]. 西安: 西安电子科技大学, 2020.

[47] 何纯. 基于有限控制集的永磁同步电机模型预测电流控制 [D]. 哈尔滨: 哈尔滨工业

大学, 2019.

[48] Gulan M, Nguyen NA, et al. Implications of Inverse Parametric Optimization in Model

Predictive Control[M]. Springer International Publishing, 2015.

[49] Kouvaritakis B, Cannon M. Introduction to Stochastic MPC[M]. Houghton Mifflin, 2016.

[50] Xue C, Zhou D, Li Y. Finite-Control-Set Model Predictive Control for Three-Level NPC

Inverter-Fed PMSM Drives With Filter[J]. IEEE Transactions on Industrial Electronics,

2021, 68(12):11980–11991.

[51] 张旭秀, 孙婧, 李卫东, 等. 基于内模控制的 PMSM 双闭环调速系统控制器设计与仿

真 [J]. 大连交通大学学报, 2019, 40(3):108–113.

[52] Pan H, Huang X, Guan P, et al. Grey-Prediction-based Double Model Predictive Control

Strategy for the Speed and Current Control of Permanent Magnet Synchronous Motor[J].Asian Journal of Control, 2022. https://doi.org/10.1002/asjc.2752.

[53] 党耀国. 灰色预测与决策模型研究 [M]. 科学出版社, 2009.

[54] Huang X, Guan P, Pan H, et al. Research on Grey Predictive Control of PMSM Based on

Reduced-order Luenberger Observer[J]. Journal of Electrical Engineering & Technology,

2021, 16(5):2635–2646.

[55] 李耀华, 秦玉贵, 赵承辉, 等. 永磁同步电机直接转矩控制双模糊控制系统 [J]. 电机

与控制应用, 2020, 47(7):9–16.

[56] 石辛民, 郝整清. 模糊控制及其 MATLAB 仿真 [M]. 清华大学出版社, 2008.

中图分类号:

 TM351    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式