- 无标题文档
查看论文信息

论文中文题名:

 热处理工艺对半固态注射成形镁合金组织及性能研究    

姓名:

 胡宇阳    

学号:

 20211225034    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料与化工    

研究方向:

 金属基复合材料    

第一导师姓名:

 牛立斌    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-18    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Effect of heat treatment process on microstructure and performance of semi-solid injection molded magnesium alloy    

论文中文关键词:

 AZ91D镁合金 ; 半固态注射成形 ; 热处理 ; 腐蚀 ; 拉伸断裂试验    

论文外文关键词:

 AZ91D magnesium alloy ; Semi-solid injection molding ; Heat treatment ; Tensile test    

论文中文摘要:

由于国家对“轻量化”发展的需求,产品和商品的轻薄化已经渗透到诸多行业和领域中,镁及镁合金由于其低密度、高比强度和比刚度、易回收等优点,在航空航天、汽车和电子领域被广泛应用,但目前仍存在诸多限制因素,如材料强度不足、加工性差,而半固态注射成形制得的镁合金件具有孔隙率低、机械性能优良等优点,可以获得近终态成形的镁合金零件。近年来,半固态注射成形已被积极引入商业应用。

本文采用半固态注射成形法制备镁合金,研究固溶、时效处理对合金显微组织、硬度、力学性能及耐腐蚀性能的影响规律,从而确定较佳的热处理工艺参数。针对铸造合金存在的组织缺陷,通过对合金进行低温二次热挤压,分析其对合金显微组织及力学性能的影响;并基于Johnson-Cook硬化模型对最佳热处理工艺的半固态注射成形镁合金多应变率下的力学性能进行试验及模拟,通过实验,得出以下结论。

本实验制得的半固态注射成形镁合金,由α-Mg基体与晶界处的α-Mg和β-Mg17Al12相的共晶组织组成。与压铸镁合金相比,合金出现晶粒细化,平均晶粒尺寸为20-30μm,可获得质量良好的显微组织,并出现类似球状固体组织;通过热处理得到,镁合金第二相的析出量与时效温度和时间呈正相关,第二相在晶粒内部和晶界处均匀析出。当时效处理温度过高时,第二相的析出不均匀;且当时效时间过长时,合金中析出的相也趋于粗化和聚集经过固溶、时效处理后,耐腐蚀性能先提高后降低。由此得到镁合金中β–Mg17Al12的存在、数量和均匀性对其耐腐蚀性能有较大的影响。

为减少合金的铸造缺陷,对合金进行二次低温热挤压处理,由于热挤压变形时动态再结晶的作用,晶粒大小较热挤压处理前并未出现明显的粗化现象;同时经过热处理后挤压态镁合金仍表现出较为优异的抗拉强度及硬度;基于镁合金应变率拉伸试验及拟合结果发现,随着应变率的增加,合金表现出较强的应变速率强化效应,使镁合金发生拉伸硬化,影响镁合金拉伸性能;同时镁合金在0.01-0.5s-1有较好的动态拉伸性能。

经试验研究,发现半固态注射成形镁合金的力学性能优于压铸成形镁合金;半固态注射成形镁合金较佳的固溶处理工艺为390°C保温8h;较佳的时效处理工艺为170°C保温12h;同时经过热处理后,合金的力学性能和动态拉伸性能得到提高。并且经过二次热挤压后可进一步提升其性能。

论文外文摘要:

Magnesium alloys have many advantages, such as low density, high specific strength and stiffness, good casting properties, and easy recycling. However, the current commercial magnesium alloys are limited by the lack of material strength and processing difficulties. Compared with cast magnesium alloys, semi-solid injection molded magnesium alloys have the advantages of low porosity and excellent mechanical properties. Also, they can obtain near-net shape machined magnesium alloy parts, which have been actively introduced for commercial use in recent years.

In this paper, magnesium alloys were prepared by semi-solid injection molding. Different heat treatment processes investigated the alloys' microstructure, hardness, mechanical properties, and corrosion resistance in different states. The optimal heat treatment process for the semi-solid injection molding of magnesium alloy was discussed. The effects of low-temperature secondary hot extrusion on the microstructure and mechanical properties of the alloy were analyzed for the structural defects existing in the cast alloy; based on Johnson-Cook hardening model, the mechanical properties of the semi-solid injection molded magnesium alloy with the optimal heat treatment process at various strain rates were tested and simulated. Through the experiments, the following conclusions were drawn.

The semi-solid injection molded magnesium alloy produced in this experiment consists of eutectic organization of α-Mg and α-Mg and β-Mg17Al12. Compared with the die-cast magnesium alloy, the alloy appeared grain refinement with an average grain size of 20-30 μm, which could obtain a good quality microstructure and a spherical solid-like organization; obtained by heat treatment, the precipitation of the second phase of the magnesium alloy was positively correlated with the aging temperature and time, and the second phase was uniformly precipitated inside the grains and at the grain boundaries. When the aging treatment temperature is too high, the precipitation of the second phase is not uniform; and when the aging time is too long, the precipitated phase also tends to coarsen and gather in the alloy after solid solution and aging treatment, the corrosion resistance first improves and then decreases. Thus, the presence, quantity and uniformity of β-Mg17Al12 in magnesium alloy have a great influence on its corrosion resistance.

In order to reduce the casting defects of the alloy, the alloy for the second low temperature hot extrusion treatment, due to the role of dynamic recrystallization during hot extrusion deformation, the grain size than before the hot extrusion treatment did not appear obvious coarsening phenomenon; at the same time after heat treatment extrusion state magnesium alloy still shows more excellent tensile strength and hardness; based on magnesium alloy strain rate tensile test and fitting results found that, with the increase of strain rate, the alloy shows With the increase of strain rate, the alloy showed a strong strain rate strengthening effect, so that the magnesium alloy tensile hardening, affecting the magnesium alloy tensile properties; at the same time, the magnesium alloy in 0.01-0.5s-1 has a good dynamic tensile properties.

After the experimental study, it was found that the mechanical properties of semi-solid injection molding magnesium alloy were better than those of die-casting magnesium alloy; the better solution treatment process for semi-solid injection molding magnesium alloy was 390°C for 8h; the better aging treatment process was 170°C for 12h; meanwhile, the mechanical properties and dynamic tensile properties of the alloy were improved after heat treatment. And after the second hot extrusion can further improve its performance.

参考文献:

[1] 崔晓鹏. AZ91D镁合金半固态触变注射组织与工艺研究 [D]. 吉林大学, 2006.

[2] Vijayan S, Raju R, Subbaiah K, et al. Friction stir welding of Al–Mg alloy optimization of process parameters using taguchi method [J]. Experimental Techniques, 2010, 34(5): 37-44.

[3] 张颂阳. 半固态镁合金铸轧板带制备及其组织性能研究 [D]. 南昌大学, 2007.

[4] Yusuf K, Didem Balun K. Effect of heat treatment on the mechanical properties and corrosion behaviour of Al–Si–Mg alloy systems [J]. Physics of Metals and Metallography, 2022, 123(14): 1499-1508.

[5] 朱光磊. AZ91D镁合金高剪切流变成形理论与工艺研究 [D]. 北京有色金属研究总院, 2010.

[6] 张晓华. 镁合金等通道角挤压不均匀变形及对半固态球晶化的影响 [D]. 哈尔滨工业大学, 2009.

[7] Schaper J G, Wolff M, Wiese B, et al. Powder metal injection moulding and heat treatment of AZ81 Mg alloy [J]. Journal of Materials Processing Technology, 2019, 267: 241-246.

[8] Murugesan M, Jung D W. Johnson-cook material and failure model parameters estimation of AiSi-1045 medium carbon steel for metal forming applications [J] 2019, 12(4): 204-209.

[9] Zhang L, Li X, Nie Z, et al. Improved post-weld heat treatment for argon tig welded joint of a new Al – Zn–Mg–Cu alloy [J]. Metal Science and Heat Treatment, 2018, 60(5): 399-402.

[10] Shieddieque A, Virdhian S, Muttahar M, et al. Effects of sintering variables on the physical and mechanical properties of metal injection molding molded 17-4 PH stainless steel [J]. Materials Science Forum, 2021, 1028: 403-408.

[11] Caminero M A. Experimental study of the evolution of plastic anisotropy in Al-Mg cold rolled sheets [J]. Experimental Techniques, 2015, 39(6): 35-42.

[12] Rogachev S O, Naumova E A, Karelin R D, et al. Effect of warm equal-channel angular pressing on the structure and mechanical properties of Al–Mg–Ca–Mn–Fe–Zr alloy [J]. Physics of Metals and Metallography, 2021, 122(1): 67-73.

[13] 邢博. 镁合金自孕育凝固过程及其半固态流变成形的研究 [D]. 兰州理工大学, 2013.

[14] Flemings M C. Behavior of metal alloys in the semisolid state [J]. Metallurgical Transactions B, 1991, 22(3): 269-293.

[15] Jiang Q C, Wang H Y, Wang J G, et al. Effect of TiB2 particulate on partial remelting behavior of Mg–11Al–0.5Zn matrix composite [J]. Materials Science and Engineering: A, 2004, 381(1): 223-229.

[16] 冯靖凯. 镁合金半固态/快速挤压剪切工艺的形变规律与组织演变机制研究 [D]. 重庆大学, 2021.

[17] Hirt G, Cremer R, Witulski T, et al. Lightweight near net shape components produced by thixoforming [J]. Materials & Design, 1997, 18(4): 315-321.

[18] 蒋益民, 蒋宗宇, 陈刚. 半固态金属成形技术现状与展望 [J]. 铸造设备研究, 2001, (01): 5-7+15.

[19] 张亮. 镁铝合金成分、半固态组织和等温处理工艺 [D]. 吉林大学, 2011.

[20] 李响, 付云鹏. 半固态铸造的现状及发展前景 [J]. 科技传播, 2012, 4(24): 28+43.

[21] 沈健, 谢水生, 石力开. 半固态金属加工工艺过程的模拟进展 [J]. 稀有金属, 1999, (06): 431-435.

[22] 赵奇强, 高义民, 杨莎莎, 等. 半固态等温热处理对原位Mg2Si/AZ91复合材料组织及性能的影响 [J]. 西安交通大学学报, 2022, 56(10): 190-200.

[23] 张奎, 刘国钧, 张永忠, 等. 半固态金属制备原理与应用 [J]. 稀有金属, 1998, (06): 48-50.

[24] 张莹, 黎和昌, 杨湘杰, 等. 半固态金属成形技术的发展现状 [J]. 江西科学, 2004, (02): 138-142.

[25] 朱鸣芳,苏华饮. 半固态铸造技术的研究现状 [J]. 特种铸造及有色合金, 1996, (02): 29-32.

[26] 朱鸣芳,苏华钦. Za12颗粒组织的形成及枝晶形态的演变 [J]. 东南大学学报, 1996, (02): 1-6.

[27] Kumar S D, Ghose J, Mandal A. Chapter 2 - thixoforming of light-weight alloys and composites: An approach toward sustainable manufacturing [J]. Sustainable engineering products and manufacturing technologies. Academic Press. 2019: 25-43.

[28] Young R M K, Clyne T W. A powder mixing and preheating route to slurry production for semisolid diecasting [J]. Powder Metallurgy, 1986, 29(3): 195-199.

[29] Young R M K, Clyne T W. A powder-based approach to semisolid processing of metals for fabrication of die-castings and composites [J]. Journal of Materials Science, 1986, 21(3): 1057-1069.

[30] Zhang X-l, Li T-j, Teng H-t, et al. Semisolid processing AZ91 magnesium alloy by electromagnetic stirring after near-liquidus isothermal heat treatment [J]. Materials Science and Engineering: A, 2008, 475(1): 194-201.

[31] Nakata T, Kanitani S, Matsumoto Y, et al. Role of dynamic recrystallization and grain growth on the formation of abnormal basal texture in a high-alloyed Mg-Al-Zn extruded alloy [J]. Materialia, 2023, 27: 101-152.

[32] 陈国香, 徐晨, 敖伟生. 搅拌工艺参数对半固态AZ91D镁合金流变性能的影响 [J]. 热加工工艺, 2005, (05): 43-44+7.

[33] 翟秋亚, 袁森, 蒋百灵. AZ91镁合金的SIMA法半固态组织特征 [J]. 中国有色金属学报, 2005, (01): 123-128.

[34] 翟秋亚, 袁森, 王智民, 等. 形变AZ91合金微结构对半固态组织形成的影响 [J]. 特种铸造及有色合金. 2005: 354-357+19.

[35] 韩富银, 杨巧莲, 高义斌, 等 电磁搅拌对镁合金AZ91D初生相形貌的影响及机理 [J]. 中国铸造装备与技术. 2005: 11-13.

[36] 韩富银, 张金山, 高义斌, 等. 电磁搅拌对镁合金AZ91D半固态组织的影响 [J]. 铸造技术, 2005, (06): 497-499+507.

[37] 毛卫民, 甄子胜, 陈洪涛. 电磁搅拌参数对半固态AZ91D镁合金组织的影响 [J]. 特种铸造及有色合金, 2005, (09): 538-540+10.

[38] 毛卫民, 甄子胜, 陈洪涛. 电磁搅拌对半固态AZ91D镁合金组织的影响 [J]. 材料研究学报, 2005, (03): 303-309.

[39] 张扬, 吴国华, 刘文才, 等. 工艺参数对气泡搅拌法制备AZ91D镁合金半固态浆料显微组织的影响(英文) [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(07): 2181-7.

[40] 吉泽升, 李庆芬, 刘兆晶, 等. 应变诱发AZ91D镁合金半固态组织形态及形成机理 [J]. 中国有色金属学报, 2003, (05): 1156-1160.

[41] Wang J G, Lu P, Wang H Y, et al. Effect of predeformation on the semisolid microstructure of Mg–9Al–0.6Zn alloy [J]. Materials Letters, 2004, 58(30): 3852-3866.

[42] Wang J G, Lu P, Wang H Y, et al. Semisolid microstructure evolution of the predeformed AZ91D alloy during heat treatment [J]. Journal of Alloys and Compounds, 2005, 395(1): 108-112.

[43] Lu P, Wang J G, Liu J F, et al. Effect of Al2O3 addition on the microstructure of partially remelted Mg-9Al-1Zn alloy [J]. Journal of Materials Science, 2005, 40(24): 6429-6432.

[44] 黄乃瑜, 罗吉荣. 第九届国际铸造博览会:综述——特种铸造部分 [J]. 特种铸造及有色合金, 1999, (05): 48-52.

[45] 毛卫民, 赵爱民, 钟雪友. 半固态金属成形应用的新进展与前景展望 [J]. 特种铸造及有色合金, 2002, (S1): 245-248.

[46] 汪之清. 国外镁合金压铸技术的发展 [J]. 铸造, 1997, (08): 50-53.

[47] 吴海龙, 莫雪妍, 郑宗文, et al. 镁合金熔模铸造技术发展现状 [J]. 特种铸造及有色合金, 2021, 41(02): 236-240.

[48] Mabuchi M, Iwasaki H, Yanase K, et al. Low temperature superplasticity in an AZ91 magnesium alloy processed by ecae [J]. Scripta Materialia, 1997, 36(6): 681-686.

[49] 樊昀, 周玲烨, 陈彬, et al. 热处理对超细晶稀土镁合金组织和性能的影响 [J]. 上海航天, 2019, 36(02): 66-73.

[50] 中铝洛阳铜加工有限公司, 郑州轻研合金科技有限公司, 山西银光华盛镁业股份有限公司, 等. 镁及镁合金板、带材 [Z]. 国家市场监督管理总局;国家标准化管理委员会. 2022: 16.

[51] 吴树森, 万里, 安萍. 铝、镁合金熔炼与成形加工技术 [M]. 机械工业出版社, 2012.

[52] 刘鸣放, 刘胜新. 金属材料力学性能手册 [M]. 机械工业出版社, 2018.

[53] Fang J Y C, Liu W H, Luan J H, et al. Competition between continuous and discontinuous precipitation in 112-strengthened high-entropy alloys [J]. Intermetallics, 2022, 149: 107-155.

[54] 袁广银, 孙扬善, 曾小勤, 等. Bi对AZ91镁合金时效析出动力学过程的影响 [J]. 上海交通大学学报, 2001, (03): 451-456.

[55] 王立世, 段汉桥, 魏伯康, 等. 混合稀土对AZ91镁合金组织和性能的影响 [J]. 特种铸造及有色合金, 2002, (03): 12-14+2.

[56] Zhu Q, Cao L, Wu X, et al. Effect of ag on age-hardening response of Al-Zn-Mg-Cu alloys [J]. Materials Science & Engineering A, 2019, 754.

[57] 沈庆通, 梁文林. 现代感应热处理技术 [M]. 北京: 机械工业出版社, 2008.

[58] 周伟光, 贾瑞灵, 张贵龙, 等. 稀土对AZ91镁合金干湿交替循环腐蚀行为的影响 [J]. 稀有金属材料与工程, 2017, 46(07): 1893-1899.

[59] Pil E J, Qinglin J, Gun L S, et al. The effect of Ca addition on age hardening behaviors and mechanical properties in Mg-Zn alloy [J]. Materials Science Forum, 2003, 464:419-422.

[60] 陈晶晶, 陈田力, 赵梦慧, 等. 半固态铝合金成形技术的发展与应用 [J]. 南方农机. 2021: 190-191+4.

[61] 许红雨. AZ91D镁合金切屑半固态再生技术及组织形成机理 [D]. 哈尔滨理工大学, 2014.

[62] 徐岩. 往复镦—挤变形镁合金半固态组织及触变成形性研究 [D]. 哈尔滨工业大学, 2014.

[63] Huang X-f, Zhang Y, Guo F, et al. Effects of heat treatment on microstructure and mechanical properties of Mg-6Zn-4Sm-0.4Zr alloy [J]. China Foundry, 2018, 15(2): 103-109.

[64] V S C, Dumpala R, S A K, et al. Influence of heat treatment on the machinability and corrosion behavior of AZ91 Mg alloy [J]. Journal of Magnesium and Alloys, 2018, 6(1): 52-58.

[65] 肖泽辉. 镁合金半固态流变压铸成形技术的研究 [D]. 华中科技大学, 2005.

[66] 胡宇阳, 牛立斌, 高冲, 等. 固溶处理对半固态注射成形Mg-Al-Zn合金组织及性能的影响 [J]. 材料热处理学报, 2022, 43(07): 38-45.

[67] 张勋. AZ91D镁合金半固态组织晶粒生长模型及试验研究 [D]. 哈尔滨理工大学, 2022.

[68] Modigell M, Pola A, Tocci M. Rheological characterization of semi-solid metals: A review [J] 2018, 8(4):240-245.

[69] Long T, Zhang X, Huang Q, et al. Novel Mg-based alloys by selective laser melting for biomedical applications: Microstructure evolution, microhardness and in vitro degradation behaviour [J]. Virtual and Physical Prototyping, 2018, 13(2): 71-81.

[70] Ghosh D, Kingstedt O T, Ravichandran G. Plastic work to heat conversion during high-strain rate deformation of Mg and Mg alloy [J]. Metallurgical and Materials Transactions A, 2017, 48(1): 14-19.

[71] Ma Z, Ma L, Liu G, et al. Effects of heat treatment on the microstructure and mechanical property of Mg-6Zn-1Cu-0.5Ce alloy [J]. Vacuum, 2018, 157: 1-8.

[72] Yasi J A, Hector L G, Trinkle D R. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties [J]. Acta Materialia, 2010, 58(17): 5704-5713.

[73] Zhao J, Gao L L, Gao H, et al. Biodegradable behaviour and fatigue life of zek100 magnesium alloy in simulated physiological environment [J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38.

[74] Xu G, Zhang L, Liu L, et al. Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment [J]. Journal of Magnesium and Alloys, 2016, 4(4): 249-264.

[75] Bi G, Man H, Jiang J, et al. Effects of Zn addition on microstructure and tensile properties of Mg–Y–Co alloy [J]. Journal of Materials Research and Technology, 2022, 20: 590-605.

[76] Li B, Sun J, Xu B, et al. Corrosion behavior of Mg-5.7Gd-1.9Ag Mg alloy sheet [J]. Journal of Alloys and Compounds, 2022, 915: 165-241.

[77] Deng Y, Sun W, Yang Y, et al. Effects of Mg2Sn precipitation on the age-hardening and deformation behaviour of a Mg-Sn-Al-Zn alloy [J]. Materials Science and Engineering: A, 2023, 867: 144-214.

[78] 邢波. 镁合金自孕育凝固过程及其半固态流变成形的研究 [D]. 兰州工业大学, 2013.

中图分类号:

 TG166.4    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式