- 无标题文档
查看论文信息

题名:

 大功率本安防爆电源的设计及本安性能测评方法研究    

作者:

 张泽宇    

学号:

 20206029002    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 080804    

学科:

 工学 - 电气工程 - 电力电子与电力传动    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 本质安全电源    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2023-06-25    

答辩日期:

 2023-06-01    

外文题名:

 Design of high power intrinsically safe explosion-proof power supply and research of intrinsically safe performance measurement method    

关键词:

 本质安全 ; Power-i ; 大功率 ; 电流变化率 ; 测评方法    

外文关键词:

 Intrinsically safe ; Power-i ; High power ; Rate of change of current ; Measurement method    

摘要:

随着信息化矿山、数字化矿山的建设和发展,矿井下用电设备的数量和种类日益繁多,本安防爆电源的输出功率亟待提高。针对传统本安防爆电源输出功率较小、保护响应速度慢等问题,选题对基于Power-i技术的大功率本安防爆电源设计理论及本安性能测评方法进行研究,显著提升了本安防爆电源的保护动作速率与输出功率,对本安防爆电源的推广应用具有重要指导意义。

本文从本质安全电路展开研究,介绍了本质安全电路的放电类型和引燃理论,在此基础上,通过对Power-i技术进行深入分析,指出通过检测电流变化率,可快速检测和判断故障状况并及时切断火花能量来源,从而减少放电时间以抑制火花能量,采用Power-i技术可以进一步提高本安性能及电源的本安输出功率和动态响应速度。基于Power-i标准研究了大功率本安防爆电源的本安性能测评方法,采用电气参数、响应时间、评定系数和瞬态保护特性四项指标对大功率本安防爆电源的本安性能进行评判。根据本安性能指标的测评步骤,推导出测评各项指标对应的电流变化率表达式,据此提出了一种确保大功率本安防爆电源满足本安性能要求的设计方法。根据提出的设计方法,对大功率本安防爆电源的主电路和保护电路进行设计,阐述了主电路反激变换器在两种工作模式下的工作过程和基本关系式,据此分析得出反激变换器主功率回路中各器件的选型方法。为提高反激变换器工作稳定性,建立起反激变换器峰值电流控制下的小信号模型,并选择Ⅱ型反馈补偿电路进行环路补偿设计,得出环路补偿设计方法。设计了基于Power-i技术的保护电路,包括故障检测比较电路、单稳态触发器电路、软启动与快速关断驱动电路,同时给出保护电路中主要器件的参数设计方法。

根据Power-i标准研制了一款24V/2A的大功率本安防爆电源实验样机,对其关键电气性能进行测试验证,并采用大功率本安防爆电源本安性能评价装置完成对样机本安性能的测评,仿真和实验结果验证了理论分析的正确性和电路设计的可行性。

外文摘要:

With the construction and development of information-based mines and digital mines, the number and types of electrical equipment under mines are becoming increasingly diverse, and the output power of intrinsically safe and explosion-proof power supplies needs to be improved. In view of the problems of traditional intrinsically safe and explosion-proof power supplies with small output power and slow protection response, the selected topic investigates the design theory and intrinsically safe performance measurement method of high-power intrinsically safe and explosion-proof power supplies based on Power-i technology, which significantly improves the protection action rate and output power of intrinsically safe and explosion-proof power supplies, and has important guiding significance for the promotion and application of intrinsically safe and explosion-proof power supplies.

This paper starts the research from intrinsically safe circuit, introduces the discharge type and ignition theory of intrinsically safe circuit, based on which, through in-depth analysis of Power-i technology, it is pointed out that by detecting the rate of change of current, the fault condition can be quickly detected and judged and the source of spark energy can be cut off in time, thus reducing the discharge time to suppress the spark energy, and the use of Power-i technology can further improve Intrinsically safe performance and the intrinsically safe output power and dynamic response speed of the power supply. Based on the Power-i standard, the intrinsically safe performance measurement method for high-power intrinsically safe explosion-proof power supplies is studied, and the intrinsically safe performance of high power intrinsically safe explosion-proof power supplies is evaluated using four indicators: electrical parameters, response time, rating factor, and transient protection characteristics. Based on the evaluation steps of the intrinsic safety performance indicators, an expression for the current rate of change of each indicator is derived, and a design method is proposed to ensure that the high-power intrinsically safe explosion-proof power supply meets the intrinsic safety performance requirements. According to the proposed design method, the main circuit and protection circuit of the high-power intrinsically safe explosion-proof power supply are designed, and the working process and basic relationship of the flyback converter in the main circuit under two operating modes are explained, according to which the selection method of each device in the main power circuit of the flyback converter is analyzed. In order to improve the operating stability of flyback converter, the small signal model of flyback converter under peak current control is established, and the type II feedback compensation circuit is selected for loop compensation design, and the loop compensation design method is derived. The protection circuit based on Power-i technology is designed, including fault detection and comparison circuit, monostable flip-flop circuit, soft-start and fast shutdown driving circuit, and the parameter design method of the main devices in the protection circuit is also given.

A 24V/2A high power intrinsically safe explosion-proof power supply experimental prototype was developed according to the Power-i standard, its key electrical performance was tested and verified, and the intrinsically safe performance evaluation device of the high power intrinsically safe explosion-proof power supply was used to complete the evaluation of the intrinsically safe performance of the prototype, the simulation and experimental results verified the correctness of the theoretical analysis and the feasibility of the circuit design.

参考文献:

[1]钟久明. Buck-Boost变换器的本质安全特性分析及优化设计[D]. 西安: 西安科技大学, 2006.

[2]S E Reynolds, M B antic. FMECA for intrinsically safe devices[C]//IEEE 2016 Annual Reliability and Maintainability Symposium. 2016: 1-5.

[3]詹碧华. 全球近期灾害录[J]. 防灾博览, 2019, 109(06): 90-95.

[4]詹碧华. 全球近期灾害录[J]. 防灾博览, 2020, 114(05): 70-75.

[5]GB 3836-2010. 防爆电气国家标准汇编(一)[S]. 北京: 中国标准出版社, 2012.

[6]GB 3836.4-2000. 中国强制性国家标准汇编(电工卷)[S]. 北京: 中国标准出版社, 2000.

[7]左官芳. 矿用本质安全型电气产品隔离电路设计方法研究[J]. 科技资讯, 2014, 12(29): 100-101.

[8]何敏. 智慧矿山重要特征与实现途径[J]. 工矿自动化, 2018, 44(3): 31-34.

[9]康骞. 矿用大功率本安电源的开发[D]. 太原: 太原理工大学, 2021.

[10]李帅. 矿用本质安全型开关电源的研究[D]. 北京: 北方工业大学, 2019.

[11]Uehlken G TH. New Challenge with Supply Systems Providing High Power in Type of Protection Intrinsic Safety[J]. PTB-BAM-Kolloquium, 2007(01): 221-225.

[12]Gerlach U, Uehlken T, Junker M, et al. DART-The New Dimension in Intrinsic Safety[C]//2008 5th Petroleum and Chemical Industry Conference Europe-Electrical and Instrumentation Applications. 2008: 1-6.

[13]Liebers L. DART-Dynamic Arc Recognition and Termination Intrinsic Safety without the Power Limits[C]//SICE Annual Conference. 2011: 1566-1573.

[14]商立群. 本质安全电路及其研究[J]. 仪器仪表学报, 2002(S2): 817-818.

[15]张燕美, 李维艰. 本质安全电路设计[M]. 北京: 煤炭工业出版社, 1992: 23-35.

[16]崔保春, 王聪, 程红. 本质安全电源电路理论综述[J]. 电源世界, 2006(12): 1-6.

[17]Calder W, Snyder D P, Burr J F. Intrinsically Safe Systems: Equivalency of International Standards Compared to US Mining Approval Criteria[J]. IEEE Transactions on Industry Applications, 2018, 54(3): 2975-2980.

[18]Allop G, Guenault E. The Minimum Ignition Current in Relation to Circuits Constants[J]. SMRE, 1946(104): 16.

[19]Saito Y. Investigation of Intrinsically Safe Circuit for Coal Mine; Sparking of Battery and Rectified Source[J]. Mining and Safety, 1975, 21(8): 1-11.

[20]Rolth W, Guest P G. Heat Generation by Electrical Rate-loss to The Spark Electrodes[J]. Journal of Chemistry Physics, 1951, 19(13): 1530-1535.

[21]Grodon R L, Hord H, et al. Ignition of Gases by Sparks Produced by Breaking Wires at High Speed[J]. Nature, 1961, 191(16): 237-240.

[22]B.C.克拉夫钦克, B.A.邦达尔, 杨洪顺, 等. 电气放电和摩擦火花的防爆性[M]. 北京: 煤炭工业出版社, 1990: 20-35.

[23]Hyosung Kim. Arcing Characteristics on Low-Voltage DC Circuit Breakers[C]//2013 15th European Conference on Power Electronics and Application. 2013: 1-7.

[24]S.Erik Reynolds, Mihail Bantic. FMECA for Intrinsically Safe Devices[C]//2016 Annual Reliability and Maintainability Symposium. 2016: 1-5.

[25]Benjaminsen J M, Van Wiechen P H. Probability Factors as a Guide for Area Classification and Selection of Electrical Equipment[J]. IEEE Transactions on Industry and General Applications, 1969(3): 242-249.

[26]Goeldner H D, Johannsmeyer U, Schebsdat F, et al. Combination of Non-linear and Linear Intrinsically Safe Circuits[J]. Reprinted in Ex Magazine, 1990(16): 11-21.

[27]Kumar D, Chandra D, Jaiswal R J. Reliability Considerations in the use of Intrinsically Safe Barriers for Instruments in Coal Mines[J]. Mining Technology, 1993(03): 35-38..

[28]章良海, 宋雅婷, 刘小周. 安全火花原理及应用[M] 北京: 煤炭工业出版社, 1984.

[29]赵永秀, 王骑, 王瑶, 等. 爆炸性环境电感分断放电引燃能力及本安性能评价方法[J]. 煤炭学报, 2020, 45(S2): 867-874.

[30]刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 徐州: 中国矿业大学, 2008.

[31]孟庆海, 王进己. 本质安全电感电路电弧放电时间双正态分布[J]. 电工技术学报, 2017, 32(02): 119-124.

[32]商立群, 贾文胜, 施围. 提高本质安全电感电路功率的方法[J]. 工矿自动化, 2003(06): 20-21.

[33]刘树林, 崔强, 李勇. Buck变换器的输出短路火花放电能量及输出本质安全判据[J]. 物理学报, 2013, 62(16): 430-439.

[34]刘树林, 祁俐俐. Buck变换器的等效简单电感电路及内部本安判据[J]. 西安科技大学学报, 2016, 36(03): 434-439.

[35]刘树林, 刘健. 本质安全Boost变换器的非爆炸内部本质安全判据[J]. 煤炭学报, 2008, 165(06): 707-712.

[36]刘树林, 汪子为, 钟明航, 等. 基于Matlab的Boost变换器输出本安性能评价系统[J]. 煤炭学报, 2017, 42(S1): 282-287.

[37]于月森. 本质安全型开关电源基础理论与应用研究[D]. 徐州: 中国矿业大学, 2012.

[38]于月森, 柳军停, 修俊瑞, 等. 截止型EC电路火花放电模型及其特性分析[J]. 煤炭学报, 2016, 41(09): 2380-2387.

[39]Greenwood, Alan Norman. Intrinsically Safe Power Supply Apparatus[P]. United States Patent: 3955132. 1976-05-04.

[40]Richard Alexander, Dennis Kindschuh. Intrinsically Safe Battery Circuit[P]. United States Patent: 4749934, 1988-01-07.

[41]Bockhorst, Rhea W, Zimmnermman, et al. Intrinsically Safe Regulated Power Supply[P]. United States Patent: 4264950, 1981-04-28.

[42]Rohl, Wolfgang. Intrinsically Safe Power Supply with a Current Regulator[P]. United States Patent: 4646219, 1987-02-24.

[43]Geuns Guy. Intrinsically Safe Power Supply Unit[P]. United States Patent: 5050060, 1991-09-17.

[44]Cadman, Gary R. High Efficiency Intrinsically Safe Power Supply[P]. United States Patent: 5365420, 1994-11-15.

[45]Mercier, Claude. Intrinsically Safe Universal Switching Power Supply[P]. United States Patent: 6590788, 2003-07-08.

[46]孟庆海, 胡天禄. 应用放电电流线性衰减模型评价电感性本质安全电路[J]. 煤炭学报, 1999, 24(4): 416-419.

[47]狄利明. 基金会现场总线的本质安全技术[J]. 化工自动化及仪表, 2001, 28(6): 64-66.

[48]陈向东. 矿用本质安全电源[J]. 煤炭科学技术, 1997, 25(6): 35-38.

[49]夏筱, 冒益海, 聂林, 等. 本质安全型电源[P]. 中国专利: 200320131239. 2004-12-22.

[50]刘树林, 焦水林, 刘健, 等. 输出本质安全型Boost变换器的改进电路研究[J]. 煤矿机电, 2005(05): 67-69.

[51]于月森, 戚文艳, 伍小杰. 本安型大功率LED驱动电源设计与研究[J]. 煤炭科学技术, 2013, 41(01): 89-93+124.

[52]柳军停. 输出本质安全型EC电路放电特性及非爆炸本安评价研究[D]. 徐州: 中国矿业大学, 2018.

[53]谢晓春, 汪淳, 俞喆. 增大本安电源容量方法的探讨[J]. 电气防爆, 1998, 40(02): 17-18.

[54]孟庆海, 李帅, 焦政国. 一种基于动态电弧识别及关断技术的截流型保护电路[J]. 电气技术, 2019, 20(07): 23-27.

[55]汪子为. 大功率本安正激变换器分析与设计[D]. 西安: 西安科技大学, 2018.

[56]于月森, 戚文艳, 伍小杰. 软火花电路的本安特性及优化分析[J]. 煤炭学报, 2014, 39(10): 2134-2140.

[57]张占松, 蔡宣三. 开关电源的原理与设计[M]. 北京: 电子工业出版社, 1998: 9-30.

[58]刘树林. 本质安全开关变换器基础理论及关键技术研究[D]. 西安: 西安科技大学, 2007.

[59]B.C.柯拉夫钦克. 安全火花电路[M]. 北京: 煤炭工业出版社, 1981: 29-63.

[60]Gerlach U, Johannsmeyer U, Uehiken T. "Power-i", A Significantly Improved Approach to Explosion Protection by Intrinsic Safety "i"[C]//2016 Petroleum and Chemical Industry Conference Europe, 2016: 1-10.

[61]IEC TS60079-39-2015[S]. 日内瓦: 国际电工委员会, 2015.

[62]李明. 新型矿用本质安全电源技术研究[D]. 上海: 上海应用技术大学, 2021.

[63]袁港, 庄小豫, 李家磊. 本质安全电路中的电火花[J]. 电气开关, 2023, 61(01): 4-6+16.

[64]袁港. 本质安全电路与非本质安全电路的隔离元件[J]. 电气防爆, 2022(04): 6-8.

中图分类号:

 TM46    

开放日期:

 2026-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式