- 无标题文档
查看论文信息

题名:

 不同围压下富水煤体冲击破坏前兆指标特征试验研究    

作者:

 韩进鹏    

学号:

 22203226049    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 能源与矿业工程学院    

专业:

 资源与环境    

研究方向:

 冲击地压防治    

导师姓名:

 朱广安    

导师单位:

 西安科技大学    

提交日期:

 2025-06-17    

答辩日期:

 2025-05-31    

外文题名:

 Experimental Study on the Characteristics of Precursor Indicators of Rock Burst in Water-Rich Coal under Different Confining Pressures    

关键词:

 冲击地压 ; 富水煤体 ; 声发射 ; 前兆指标 ; 监测预警    

外文关键词:

 rock burst ; water-rich coal ; acoustic emission ; precursor Indicator ; monitoring and early warning    

摘要:

蒙陕地区的冲击地压矿井受顶板砂岩含水层的影响,工作面煤体通常处于较高的含水状态。此外,在工作面回采前,为降低顶板富水区的影响,需进行疏放水处理,这一过程导致煤体围压发生变化,进而增加了富水煤体开采过程中冲击地压风险判别的难度。基于此,本文以自然煤体和饱水煤体为研究对象,采用理论分析、试验研究、对比分析及现场验证相结合的方法,系统研究了不同围压条件下两种煤体冲击破坏过程中声发射信号的时空强特征,并计算其冲击破坏前的前兆指标数值。通过对比分析不同煤体的前兆指标特征,筛选出适用于富水条件下冲击地压监测预警的前兆指标,并结合不同围压条件下饱水煤体冲击破坏的前兆指标特征,进一步验证其适用性。主要研究成果如下:

(1)基于实验室试验,模拟工作面煤层开采过程中煤体周围应力的演化过程,研究自然煤体与饱水煤体在冲击破坏过程中的声发射事件时空强特征。结果表明:自然煤体与饱水煤体在破坏阶段均呈现出能量集中释放的特征,所有煤体的能量累计曲线均呈现出明显的“台阶状”或“缓台阶状”特征,该阶段可视为煤体冲击破坏的前兆。

(2)利用试验数据中声发射事件的时间、空间坐标、能量等参数,计算10个矿震前兆指标,分析自然煤体与饱水煤体冲击破坏前兆指标特征。研究发现,b值、A(b)值、Z-map值、矿震活动度、等效能级参数及断层总面积等6个指标在饱水煤体破坏前具有显著的前兆特征,可作为冲击破坏的预警指标。进一步研究表明,在不同围压条件下,这些指标仍然保持较高的适用性。

(3)基于建庄矿业4-2302工作面微震数据,开展微震事件的时空强特征分析,揭示了微震空间分布特征及高能微震事件的周期性规律。数值计算结果显示,b值、A(b)值、Z-map值、矿震活动度、等效能级参数及断层总面积等6个指标呈现显著的前兆特征。通过对实验室与现场条件下前兆指标特征的对比分析,发现两种尺度下前兆指标的变化趋势一致,进一步验证了所选前兆指标在冲击地压监测预警中的可行性。

本文的研究成果可为富水工作面冲击地压的监测预警提供科学依据,并为煤矿冲击地压防治措施的优化提供理论支持。

外文摘要:

Coal seams in rock burst mines of the Meng-Shaan region are typically characterized by high moisture content due to the presence of water-bearing sandstone aquifers in the roof strata. Before working face mining, drainage measures are usually implemented to mitigate the influence of roof aquifers, which subsequently alters the confining stress conditions of the coal mass. This change complicates the assessment of rock burst risk during the mining of water-rich coal seams.To address this issue, this study investigates both natural and water-rich coal under various confining stress conditions using an integrated approach combining theoretical analysis, laboratory testing, comparative analysis, and field validation. The spatial-temporal characteristics and energy evolution of acoustic emission (AE) signals during the rock burst failure process of both types of coal were systematically examined. Meanwhile, precursor indicators were computed to evaluate their variation patterns prior to failure.By comparing the precursor indicators of natural and water-rich coal, this study identifies those most suitable for rock burst monitoring and early warning in water-rich conditions. Further, the applicability of these indicators was verified under varying confining stresses during the failure of water-rich coal. The main findings are as follows:

(1) Laboratory experiments were conducted to simulate the stress evolution around the coal body during working face mining. The spatial-temporal and energy characteristics of acoustic emission (AE) events during the rock burst failure process of both natural and water-rich coal samples were analyzed. The results show that both types of coal exhibit concentrated energy release in the failure stage. All cumulative energy curves display a distinct "stepwise" or "gentle stepwise" pattern, which can be considered a precursor to rock burst failure.

(2) Based on the temporal, spatial coordinates, and energy parameters of acoustic emission events obtained from the experimental data, ten precursor indicators of rock burst-related seismicity were calculated to analyze the characteristic differences of these indicators between natural coal and water-rich coal during the rock burst failure process. The results indicate that six indicators—namely, the b value, A(b) value, Z-map value, seismic activity rate, equivalent energy level parameter, and total fault area—exhibit significant precursory characteristics in water-rich coal and can be utilized as early warning indicators of rock bursts. Further analysis confirms the robustness and applicability of these indicators under varying confining stress conditions.

(3) Using microseismic monitoring data from the 4-2302 working face of the Jianzhuang Coal Mine, the spatial-temporal and energy characteristics of microseismic events were analyzed. The spatial distribution patterns and periodic trends of high-energy microseismic events were revealed. Quantitative results show that the same six precursor indicators exhibit pronounced anomalies prior to strong events. By comparing laboratory and field-scale precursor indicator patterns, it was found that the trends are consistent across scales, further validating the feasibility of these indicators for rock burst monitoring and early warning in water-rich conditions.

The outcomes of this study provide a scientific foundation for the monitoring and early warning of rock bursts in water-rich working faces and offer theoretical support for optimizing rock burst prevention and control strategies in coal mines.

参考文献:

[1]潘一山, 宋义敏, 刘军. 我国煤矿冲击地压防治的格局、变局和新局[J]. 岩石力学与工程学报, 2023,42(9):2081-2095.

[2]潘俊锋, 刘少虹, 马文涛, 等. 陕西煤矿冲击地压发生规律与分类防治[J]. 煤炭科学技术, 2024,52(01):95-105.

[3]王博.陕蒙深部矿区典型动力灾害发生机理及防治研究[D]. 北京科技大学,2021.

[4]舒凑先. 陕蒙接壤矿区深部富水工作面冲击地压机理与防治研究[D]. 北京: 北京科技大学, 2019.

[5]周坤友. 巨厚承压含水关键层的作用效应及疏水调压聚能诱冲机理[D]. 徐州: 中国矿业大学, 2022.

[6]齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术, 2019,47(09):1-40.

[7]Linming Dou, Zonglong Mu, Zhenlei Li, et al. Research progress of monitoring, forecasting, and prevention of rockburst in underground coal mining in China[J]. International Journal of Coal Science & Technology, 2014,1(3):278-288.

[8]Jinxin Wang, Enyuan Wang, Wenxian Yang, et al. Rock burst monitoring and early warning under uncertainty based on multi-information fusion approach[J]. Measurement, Volume 205, Issue. 2022.

[9]Dong Li, Junfei Zhang. Rockburst monitoring in deep coalmines with protective coal panels using integrated microseismic and computed tomography methods[J]. Shock and Vibration, 2020,8831351.

[10]Weihui Pan, Yunpeng Li, Chuang Zhang, et al. Coal burst prevention technology and engineering practice in Ordos deep mining area of China[J]. Sustainability, 2022,15(1):159-159.

[11]Dong Xu, Mingshi Gao, Xin Yu. Dynamic response characteristics of roadway surrounding rock and the support system and rock burst prevention technology for coal mines[J]. Energies, 2022,15(22):8662-8662.

[12]窦林名, 牟宗龙, 曹安业, 等. 冲击矿压防治简明教程[M]. 徐州: 中国矿业大学出版社, 2020.

[13]Cook N G W. The failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965,2:389-403.

[14]Cook N G W. A note on rockbursts considered as a problem of stability[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1965,65:437-446.

[15]Linkqv A M. Rockbursts and the instability of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996,33:727-732.

[16]Wawersik W K, Fairhurst C A. A study of brittle rock fracture in laboratory compression experiments[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1970,7:561-575.

[17]窦林名, 赵从国, 杨思光. 煤矿开采冲击矿压灾害防治[M]. 徐州: 中国矿业大学出版社, 2006.

[18]Cook N G W, Hoek E, Pretorius J P G, et al. Rock mechanics applied to the study of rockbursts[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1966,66:435-528.

[19]Petukhov I M, Linkov A M. The theory of rockbursts and outbursts[M]. Moscow: Nedra, 1983.

[20]Bieniawski Z T. Mechanism of brittle fracture of rocks. Part I, II and III[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1967,6:395-430.

[21]Bieniawski Z T, Denkhaus H G, Vogler U W. Failure of fracture rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1969,5:323-330.

[22]Cai W, Dou L M, Si G Y, et al. A principal component analysis/fuzzy comprehensive evaluation model for coal burst liability assessment[J]. International Journal of Rock Mechanics and Mining Sciences, 2016,81:62-69.

[23]章梦涛, 徐曾和, 潘一山. 冲击地压和突出的统一失稳理论[J]. 煤炭学报, 1991,(4):48-53.

[24]尹光志, 李贺, 鲜学福, 等. 煤岩体失稳的突变理论模型[J]. 重庆大学学报, 1994,(1):23-28.

[25]高明仕, 窦林名, 张农, 等. 煤(矿)柱失稳冲击破坏的突变模型及其应用[J]. 中国矿业大学学报, 2005,34(4):433-437.

[26]谢和平, Pariseau W G. 岩爆的分形特征和机理[J]. 岩石力学与工程学报, 1993,12(1):28-37.

[27]李玉, 黄梅, 廖国华. 冲击地压发生前微震活动时空变化的分形特征[J]. 北京科技大学学报, 1995,(1):10-13.

[28]窦林名, 何学秋. 煤岩冲击破坏模型及声电前兆判据研究[J]. 中国矿业大学学报, 2004,33(5):504-508.

[29]李志华, 窦林名, 曹安业, 等. 采动影响下断层滑移诱发煤岩冲击机理[J]. 煤炭学报, 2011,36(S1):69-73.

[30]潘立友, 张文革, 杨慧珠. 冲击煤体扩容特性的实验研究[J]. 山东科技大学学报. 2005,24(1):18-20.

[31]黄庆享, 高召宁. 巷道冲击地压的损伤断裂力学模型[J]. 煤炭学报, 2001,(2):156-159.

[32]Vardoulakis I. Rock bursting as a surface instability phenomenon[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21: 137-144.

[33]Dyskin A V. Model of rockburst caused by crack growing near free surface[C]. Rockbursts and seismicity in mines. Rotterdam: Balkema, 1993:169-174.

[34]窦林名, 何江, 曹安业, 等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报, 2015,40(7):1469-1476.

[35]潘俊锋, 宁宇, 毛德兵, 蓝航, 等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报, 2012,31(3):586-596.

[36]舒凑先, 姜福兴, 魏全德, 等. 疏水诱发深井巷道冲击地压机理及其防治[J]. 采矿与安全工程学报, 2018,35(4):780-786.

[37]李东, 姜福兴, 陈洋, 等. 深井临近大煤柱泄水巷冲击机理及防治技术研究[J]. 采矿与安全工程学报, 2019,36(02):265-271.

[38]李东. 深井厚表土承压含水顶板工作面致灾机理及防治技术研究[D]. 北京科技大学, 2019.

[39]李东, 姜福兴, 王存文, 等. 深井突水诱发静压冲击机制研究[J]. 岩石力学与工程学报, 2018,37(S2):4038-4046.

[40]李东, 姜福兴, 陈洋, 等. 深井富水工作面“动—静”应力效应诱发冲击地压机理研究[J]. 岩土工程学报, 2018,40(09):1714-1722.

[41]王博, 姜福兴, 朱斯陶, 等. 深井工作面顶板疏水区高强度开采诱冲机制及防治[J]. 煤炭学报, 2020,45(09):3054-3064.

[42]王博, 朱斯陶, 魏全德, 等. 顶板疏水快速回采工作面冲击地压机理及防治措施[J]. 煤矿安全, 2020,51(07):205-209.

[43]王岗. 富水矿井顶板疏水条件下冲击地压研究[D]. 辽宁工程技术大学, 2021.

[44]施龙青, 翟培合, 魏久传, 等. 顶板突水对冲击地压的影响[J]. 煤炭学报, 2009,34(1):48-53.

[45]于保华. 高水压松散含水层下采煤关键层复合破断致灾机制研究[D]. 中国矿业大学, 2011.

[46]冯国财, 杨倩, 刘文生. 工作面回采期间地下承压水位变化规律分析[J]. 中国地质灾害与防治学报, 2011,22(04):52-55.

[47]张开弦, 李圣杰, 陈陆望. 基于流固耦合的单一硬岩层对承压水下采煤压架突水的影响研究[J]. 煤炭技术, 2017,36(11):170-172.

[48]王凯, 蒋一峰, 徐超. 不同含水率煤体单轴压缩力学特性及损伤统计模型研究[J]. 岩石力学与工程学报, 2018,37(05):1070-1079.

[49]牛钦环. 含水煤样剪切破坏损伤规律试验研究[D]. 中国矿业大学, 2017.

[50]辛天宇. 循环外载荷激发下含水煤体损伤演化及渗透特性研究[D]. 辽宁工程技术大学, 2022.

[51]张彦奇, 王毅, 王骏辉, 等. 冷热循环冲击饱水煤体结构损伤规律研究[J]. 矿业研究与开发, 2024,44(10):133-140.

[52]王方田, 汤天阔, 张村, 等. 循环加卸载作用水浸煤体渐进损伤机理试验[J/OL]. 工程科学与技术, 1-15[2025-03-14].

[53]王溪. 含水煤样动态拉伸力学特性及损伤演化规律研究[D]. 中国矿业大学,2024.

[54]梁冰, 田蜜, 王俊光. 不同含水状态对坚硬煤层冲击倾向性影响研究[J]. 水资源与水工程学报, 2014,25(01):100-102.

[55]肖晓春, 金晨, 吴迪, 等. 含水煤体冲击倾向及声-电荷时频特征试验[J]. 中国安全科学学报, 2017,27(11):103-108.

[56]朱广安, 刘海洋, 沈威, 等. 富水条件下冲击煤体钻屑法试验研究[J]. 岩石力学与工程学报, 2022,41(12):2417-2431.

[57]朱广安, 刘欢, 苏晓华, 等. 基于声发射特征的含水煤体钻屑法临界指标优化试验研究[J]. 煤炭学报, 2023,48(12):4433-4442.

[58]朱广安, 徐自豪, 刘欢. 基于含水率效应的冲击煤体三轴加卸载钻进试验力学行为及其响应机制[J/OL]. 煤炭科学技术, 1-12[2025-03-14].

[59]R.D.Stewart. A technique for determining the seismic risk in deep-level mining[J]. Rockbursts and Seismicity in Mines, 1993,(03):55-58.

[60]吕亚军, 窦林名, 李宁, 等. 矿井微震Z值同应力和声发射的耦合关系[J]. 金属矿山, 2012(11):125-128.

[61]谷继成, 魏富胜. 论地震活动性的定量化:地震活动度[J]. 中国地震, 1987(S1):14-24.

[62]田向辉, 李振雷, 宋大钊, 等. 某冲击地压频发工作面微震冲击前兆信息特征及预警方法研究[J]. 岩石力学与工程学报, 2020,39(12):2471-2482.

[63]蔡武. 断层型冲击矿压的动静载叠加诱发原理及其监测预警研究[D]. 徐州:中国矿业大学, 2015.

[64]陶慧. 基于监测时间序列的冲击矿压混沌特性分析及其智能预测研究[D]. 徐州:中国矿业大学, 2014.

[65]唐礼忠. 深井矿山地震活动与岩爆监测及预测研究[D]. 长沙:中南大学, 2008.

[66]吕玉凯. 煤体失稳破坏前兆规律的多参量监测研究[D]. 中国矿业大学(北京), 2012.

[67]李广宽. 基于神经网络与微震信息的岩爆预测[D]. 东北大学, 2011.

[68]李素蓉. 深部金属矿山地震活动特性及岩爆的支持向量机预测研究[D]. 中南大学, 2011.

[69]崔峰, 张随林, 来兴平, 等. 急倾斜巨厚煤层矿震诱冲机制及时-空特征[J]. 煤炭学报, 2023,48(S2):449-463.

[70]窦林名, 田鑫元, 曹安业, 等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报, 2022,47(01):152-171.

[71]朱旭明.冲击矿压演化过程的力能作用原理实验研究[D]. 中国矿业大学, 2022.

[72]何江. 煤矿采动动载对煤岩体的作用及诱冲机理研究[D]. 中国矿业大学, 2013.

[73]朱广安, 窦林名, 丁自伟. 超应力卸载作用下煤样冲击破坏试验研究[J]. 煤炭学报, 2018,43(05):1258-1271.

[74]吴佳翼, 曹学锋. 地震活动性的定量化问题[J]. 地震, 1983(06):13-16+22.

[75]宇津德治. 对地震频度—震级关系式中参数的估算[J]. 国外地震, 1980(03):112-116.

[76]罗兰格, 侯建明. 地震活动性的标度[J]. 地震, 1987(06):40-45.

[77]朱传镇, 王林瑛. 熵的原理与地震活动研究[J]. 地震研究, 1988(06):527-538.

[78]吕悦军, 陆远忠. 用算法复杂性分析时间序列[J]. 中国地震, 1993(03):39-44.

[79]Lu CP , Liu GJ. Microseismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration[J]. International Journal of Rock Mechanics and Mining Sciences. 2015.76:18-32.

[80]谷继成, 魏富胜. 地震活动性的定量描述—地震活动度[C]. 中国地震学会第三次全国地震科学学术讨论会论文摘要汇编. 中国地震学会, 1986:59-60.

中图分类号:

 TD324    

开放日期:

 2027-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式