论文中文题名: | 近距离煤层综采工作面区段煤柱变形时空演化规律研究 |
姓名: | |
学号: | 20203226041 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山压力与岩层控制 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-25 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Study on space-time evolution law of section coal pillar deformation in fully mechanized mining face of close distance coal seam |
论文中文关键词: | |
论文外文关键词: | The close distance coal seam ; Stress transfer ; Section coal pillar ; Distributed optical fiber ; Deformation monitoring ; Stability |
论文中文摘要: |
区段煤柱稳定性控制是近距离煤层安全开采的关键问题之一。实时监测区段煤柱应力分布特征及内部变形时空演化规律,是判断煤柱稳定性最直接有效的方法,是回采巷道围岩支护设计的实际依据。近年来,国内外学者围绕近距离煤层安全开采这一问题,对区段煤柱设计理论与稳定性判别方法进行了大量的理论研究和工程实践。本文以前人研究结果为基础,对大柳塔煤矿活鸡兔井上覆遗留煤柱影响下区段煤柱变形分区表征这一问题,应用理论计算、相似模拟实验、数值模拟和现场实测相结合的方法,研究了近距离煤层上煤层开采对下煤层的应力扰动特征,分析了遗留煤柱影响下,一次采动过程中区段煤柱应力分布规律及内部变形特征。主要研究工作及取得的成果如下: (1)通过单轴压缩、等幅循环、恒下限梯度循环加卸载实验得出,随着加卸载应力增大,极限峰值时应变值变大,煤岩损伤变形增大,更容易破坏,进一步说明在上覆遗留煤柱应力扰动下,区段煤柱变形破坏程度更加严重。 (2)建立了近距离煤层应力传递计算模型,通过理论计算分析了上覆遗留煤柱和采空区对区段煤柱传递的应力叠加情况;基于SMP准则建立了采空区侧煤柱塑性区计算模型,代入活鸡兔井相关地层参数,计算得到当2-2煤一侧采空时区段煤柱塑性区宽度;提出了煤柱变形光纤应变表征模型,研究结果表明破碎区内的应变增量、增速的大小是围岩应力环境恶化的直观响应,可直接表征松动区破碎煤体挤压的剧烈程度。 (3)通过相似模拟实验和数值计算,得到上覆遗留煤柱应力扰动范围及分布特征。并且在一次采动过程中,出煤柱阶段的侧向支承压力均大于进、过遗留煤柱阶段,是由于出煤柱阶段间隔岩层垮落,2-2煤层顶板破断贯通上煤层,上煤层载荷几乎全部传递至下煤层,造成支承压力增大。 (4)开展了大柳塔煤矿活鸡兔井区段煤柱现场实测,实现煤柱内部光纤监测变形分区表征。通过钻孔植入的方式在区段煤柱中布设光纤光栅应力计与分布式光纤传感器,对煤柱内部应力演化及变形程度进行实时监测。一次采动期间工作面超前支承压力影响范围大于等于60m;侧向支承压力峰值出现在滞后工作面117m位置处,且出煤柱位置峰值应力大于进煤柱时的峰值应力,与理论计算、数值模拟结果一致。根据分布式光纤测量结果,在一次采动期间,对区段煤柱进行分区表征,工作面进遗留煤柱前采空区侧煤柱松动区范围约5.7m,支护影响区1.5m;随着工作面的推进,出遗留煤柱后采空区侧煤柱松动区范围约5.5m,支护影响区1m。二者宽度远小于煤柱宽度(15m),煤柱整体稳定。 |
论文外文摘要: |
The stability control of section coal pillar is one of the key problems in the safe mining of close distance coal seam. The stability of the section coal pillar is related to the buried depth of the coal seam, the thickness of the coal seam, the physical and mechanical properties of the coal body, the geological structure and other factors. Real-time monitoring of the stress distribution characteristics of the section coal pillar and the temporal and spatial evolution of the internal deformation is the most direct and effective method to judge the stability of the coal pillar. It is the actual basis for the design of the surrounding rock support of the mining roadway. For many years, domestic and foreign scholars have carried out a lot of theoretical research and engineering practice on the design theory and stability discrimination method of section coal pillar around the problem of safe mining of close coal seams. Based on the previous research results, the deformation and failure zone characterization of the section coal pillar under the influence of the overlying residual coal pillar in the Huojitu well of Daliuta Coal Mine is studied. The method of theoretical calculation, similar simulation test, numerical simulation and field measurement is used to study the stress disturbance characteristics of the lower coal seam under the influence of the upper coal seam mining in the close distance coal seam. The stress distribution law and deformation and failure characteristics of the section coal pillar during the mining process are analyzed. The main research work and achievements are as follows : 1) Through the constant amplitude loading and unloading experiments under different stress cycle amplitudes, with the increase of loading and unloading stress, the strain value at the ultimate peak becomes larger, the damage deformation of coal rock increases, and it is easier to be destroyed, which further shows that under the stress disturbance of the overlying remaining coal pillar, the deformation and failure degree of the section coal pillar is more serious. 2) The stress transfer calculation model of close distance coal seam is established, and the stress value of 1.8γH transmitted by overlying residual coal pillar and goaf to section coal pillar is obtained by theoretical calculation. Based on the SMP criterion, the calculation model of the plastic zone of the coal pillar on the side of the goaf is established, and the relevant formation parameters of the Huojitu well are substituted. The width of the plastic zone of the coal pillar is 5.7 m when the No.2-2 coal side is mined out. The fiber-optic strain characterization model of coal pillar deformation is proposed. The results show that the strain increment and growth rate in the broken zone are the intuitive response to the deterioration of surrounding rock stress environment, which can directly characterize the intensity of crushing coal in the loose zone. 3) Through similar simulation experiments and numerical calculations, the stress disturbance range and distribution characteristics of the overlying remaining coal pillars are obtained. In addition, in the process of one mining, the lateral abutment pressure in the coal pillar stage is greater than that in the coal pillar stage, which is due to the collapse of the interval strata in the coal pillar stage, the roof of No.2-2 coal seam breaks through the upper coal seam, and the load of the upper coal seam is almost all transmitted to the lower coal seam, resulting in the increase of abutment pressure. 4) The field measurement of coal pillar in Huojitu well section of Daliuta Coal Mine was carried out to realize the deformation zoning characterization of optical fiber monitoring inside coal pillar. The fiber grating stress meter and distributed optical fiber sensor are arranged in the section coal pillar by means of borehole implantation to monitor the internal stress evolution and deformation degree of the coal pillar in real time. During the first mining period, the influence range of the advance abutment pressure of the working face is greater than or equal to 60 m ; the peak value of the lateral abutment pressure appears at the position of 117 m behind the working face, and the peak stress at the position of the coal pillar is greater than the peak stress at the coal pillar, which is consistent with the theoretical calculation and numerical simulation results. According to the results of distributed optical fiber measurement, during a mining period, the section coal pillar is characterized by zoning. The loose area of the side coal pillar in the goaf before the working face enters the remaining coal pillar is about 5.7 m, and the supporting influence area is 1.5 m. With the advancement of the working face, the loose area of the coal pillar on the side of the goaf is about 5.5m, and the supporting influence area is 1m. The width of the two is much smaller than the width of the coal pillar ( 15m ), and the coal pillar is stable as a whole. |
参考文献: |
[1]李宇娟, 王聪. 煤炭企业资产质量、治理机制与高质量发展的关系研究[J]. 中国矿业, 2022, 31(02): 40-45. [2]钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(1): 1-13. [3]谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211. [4]柏建彪. 沿空掘巷围岩控制[M]. 徐州: 中国矿业大学出版社, 2006. [5]张金贵, 程志恒, 陈昊熠, 等. 区段煤柱留设宽度分析及优化——以崖窑峁煤矿为例[J].煤炭科学技术,2022,50(10):60-67. [6]王德超, 李术才, 王琦, 等. 深部厚煤层综放沿空掘巷煤柱合理宽度试验研究[J].岩石力学与工程学报,2014,33(03):539-548. [7]刘增辉, 康天合. 综放煤巷合理煤柱尺寸的物理模拟研究[J].矿山压力与顶板管理,2005(01):24-26+118. [8]杨伟利, 姜福兴, 温经林, 等.遗留煤柱诱发冲击地压机理及其防治技术研究[J].采矿与安全工程学报,2014,31(06):876-880+887. [9]徐青云, 黄庆国, 张广超. 综放剧烈采动影响煤巷窄煤柱破裂失稳机理与控制技术[J].采矿与安全工程学报,2019,36(05):941-948. [10]杨欢, 郑凯歌, 李彬刚, 等. 工作面过上覆遗留煤柱致灾机理及超前区域防治技术研究[J].煤炭科学技术:1-9[2023-01-10]. [11]刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J].煤炭学报,2021,46(01):1-15. [12]钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010. [13]陈炎光, 钱鸣高. 中国煤矿采场围岩控制[M]. 徐州: 中国矿业大学出版社, 1994. [14]侯朝炯, 郭励生. 煤巷锚杆支护[M]. 徐州: 中国矿业大学出版社, 1999. [15]张炜, 张东升, 陈建本, 等. 极近距离煤层回采巷道合理位置确定[J].中国矿业大学学报,2012,41(02):182-188. [16]孔德中, 王兆会, 任志成. 近距离煤层综放回采巷道合理位置确定[J].采矿与安全工程学报,2014,31(02):270-276. [17]许磊, 魏海霞, 肖祯雁, 等. 煤柱下底板偏应力区域特征及案例[J].岩土力学,2015,36(02):561-568. [18]李胜, 周利峰, 罗明坤, 等. 煤层群下行开采煤柱应力传递规律[J].辽宁工程技术大学学报(自然科学版),2015,34(06):661-667. [19]胡少轩, 许兴亮, 田素川, 等. 近距离煤层协同机理对下层煤巷道位置的优化[J].采矿与安全工程学报,2016,33(06):1008-1013. [20]岳喜占, 涂敏, 李迎富, 等. 近距离煤层开采遗留边界煤柱下底板巷道采动附加应力计算[J].采矿与安全工程学报,2021,38(02):246-252+259. [21]王想君, 陈登红, 华心祝, 等. 神东矿区深部多次采动巷道稳定性影响规律与协调控制研究[J].煤炭工程,2021,53(07):48-54. [22]魏辉, 宋世康, 李杰. 遗留煤柱扰动下服务巷道变形破坏机理及防冲技术[J].煤矿安全,2022,53(12):68-75. [29]胡炳南. 条带开采中煤柱稳定性分析[J].煤炭学报,1995(02):205-210. [30]曹胜根, 曹洋, 姜海军. 块段式开采区段煤柱突变失稳机理研究[J].采矿与安全工程学报, 2014, 31(6): 907-913. [31]郭惟嘉, 王海龙, 刘增平. 深井宽条带开采煤柱稳定性及地表移动特征研究[J].采矿与安全工程学报, 2015, 32(3): 369-375. [32]李学华, 鞠明和, 贾尚昆, 等. 沿空掘巷窄煤柱稳定性影响因素及工程应用研究[J].采矿与安全工程学报, 2016, 33(5):761-769. [33]安百富, 王栋达, 庞继禄, 等. 充填回收房式煤柱围岩变形及煤柱承载特征物理模拟研究[J].岩土力学,2020,41(12):3979-3986. [34]王红胜, 张东升, 李树刚, 等. 基于基本顶关键岩块B断裂线位置的窄煤柱合理宽度的确定[J]. 采矿与安全工程学报, 2014, 31(1): 10-16. [35]徐金海, 缪协兴, 张晓春. 煤柱稳定性的时间相关性分析[J]. 煤炭学报, 2005(4):433-437. [36]赵国贞, 马占国, 孙凯, 等. 小煤柱沿空掘巷围岩变形控制机理研究[J]. 采矿与安全工程学报, 2010, 27(4): 517-521. [37]屠洪盛, 屠世浩, 白庆升, 等. 急倾斜煤层工作面区段煤柱失稳机理及合理尺寸[J]. 中国矿业大学学报, 2013, 42(1): 6-11+30. [44]方新秋, 郭敏江, 吕志强. 近距离煤层群回采巷道失稳机制及其防治[J].岩石力学与工程学报,2009,28(10):2059-2067. [45]胡敏军, 王连国, 朱双双, 等. 近距离下煤层回采巷道帮部变形与破坏研究[J].煤炭工程,2013,45(07):76-78+81. [46]毕业武, 范秀利, 蒲文龙, 等. 深井近距离煤层群回采巷道失稳致因与控制技术[J].煤炭科学技术,2015,43(10):51-55. [47]程志恒, 齐庆新, 孔维一, 等. 近距离煤层群下位煤层沿空留巷合理布置研究[J].采矿与安全工程学报,2015,32(03):453-458. [48]于洋, 神文龙, 高杰. 极近距离煤层下位巷道变形机理及控制[J].采矿与安全工程学报,2016,33(01):49-55. [49]郝登云, 吴拥政, 陈海俊, 等. 采空区下近距离特厚煤层回采巷道失稳机理及其控制[J].煤炭学报,2019,44(09):2682-2690. [53]彭府华, 李庶林, 李小强,等. 金川二矿区大体积充填体变形机制与变形监测研究[J].岩石力学与工程学报, 2015, 34(01):104-113. [54]程关文, 王悦, 马天辉,等. 煤矿顶板岩体微震分布规律研究及其在顶板分带中的应用—以董家河煤矿微震监测为例[J]. 岩石力学与工程学报, 2017(a02):4036-4046. [55]左建平, 裴建良, 刘建锋,等. 煤岩体破裂过程中声发射行为及时空演化机制[J].岩石力学与工程学报, 2011, 30(8):1564-1570. [56]杨志国, 于润沧, 郭然, 等. 微震监测技术在深井矿山中的应用[J].岩石力学与工程学报,2008(05):1066-1073. [57]杨纯东, 巩思园, 马小平, 等. 基于微震法的煤矿冲击危险性监测研究[J].采矿与安全工程学报,2014,31(06):863-868. [58]蔡武, 窦林名, 李振雷, 等. 微震多维信息识别与冲击矿压时空预测——以河南义马跃进煤矿为例[J].地球物理学报,2014,57(08):2687-2700. [59]姜鹏, 戴峰, 徐奴文, 等. 岩体破裂尺度与频率特征关系及其工程实证研究[J].岩土力学,2016,37(S2):483-492. [60]刘思杰, 王凯. 白鹤滩水电站地下厂房岩体变形机理研究[J].人民长江,2017,48(21):61-66. [61]郑星, 邓守春, 罗超文, 等. 某隧道围岩模量和松动圈厚度测试[J].科学技术与工程,2020,20(02):770-778. [62]朱海雄, 隋立春, 鲁凯翔. 三维激光扫描技术在危岩体变形监测中的应用[J].测绘通报,2017(11):68-71. [63]王庆国, 赵海, 李健平. 地面激光点云与航空影像相结合的滑坡监测[J].测绘通报,2019(04):99-102. [64]褚宏亮, 邢顾莲, 李昆仲, 等. 基于地面三维激光扫描的三峡库区危岩体监测[J].水文地质工程地质,2021,48(04):124-132. [65]王怀文, 周宏伟, 左建平, 等. 光测方法在岩层移动相似模拟实验中的应用[J].煤炭学报,2006, 31(3):278-281. [66]陈超凡. 基于数字散斑相关方法计算煤矿相似模拟实验中采场覆岩的体积应变[C]//北京力学会学术年会. 2015. [69]柴敬, 赵文华, 李毅,等. 光纤光栅检测的锚杆拉拔实验研究[J]. 中国矿业大学学报, 2012, 41(5):719-724. [70]李丽君, 张旭, 唐斌,等. 一种微型光纤光栅矿压传感器[J]. 煤炭学报, 2013, 38(11):2084-2088. [71]苏军, 王治宇, 袁子清,等. 光纤光栅(FBG)传感器在尾矿库在线监测中的应用[J].中国安全生产科学技术, 2014(7):65-70. [76]柴敬, 袁强, 李毅,等. 采场覆岩变形的分布式光纤检测试验研究[J]. 岩石力学与工程学报, 2016(a02):3589-3596. [77]柴敬, 刘永亮, 王梓旭, 等.保护层开采下伏煤岩卸压效应及其光纤监测[J].煤炭学报,2022,47(08):2896-2906. [78]柴敬, 韩志成, 雷武林, 等. 回采巷道底鼓演化过程的分布式光纤实测研究[J].煤炭科学技术,2023,51(01):146-156. [79]张丁丁, 柴敬, 李毅, 等. 松散层沉降光纤光栅监测的应变传递及其工程应用[J]. 岩石力学与工程学报, 2015(s1):3289-3297. [82]朴春德, 施斌, 魏广庆, 等. 采动覆岩变形BOTDA分布式测量及离层分析[J]. 采矿与安全工程学报, 2015, 32(3):376-381. |
中图分类号: | TD322 |
开放日期: | 2023-06-25 |