- 无标题文档
查看论文信息

论文中文题名:

 两类偏微分方程的有限差分及神经网络解法研究    

姓名:

 吴建霖    

学号:

 19201103012    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070102    

学科名称:

 理学 - 数学 - 计算数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 数学    

研究方向:

 偏微分方程数值解    

第一导师姓名:

 梁飞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Research on Finite Difference and Neural Network Methods for Two Types of Partial Differential Equations    

论文中文关键词:

 分数阶阻尼 ; 随机波动方程 ; 保结构有限差分法 ; 延时-物理信息神经网络 ; 显式时滞偏微分方程 ; 数据驱动的科学计算    

论文外文关键词:

 Fractional damping ; Fourth-order stochastic wave equation ; Structure preserving finite difference method ; Delay-physics-informed neural networks ; Partial differential equations with explicit time delay ; Data drivien scientific computing    

论文中文摘要:

四阶分数阶阻尼随机波动方程和显式时滞偏微分方程是两类形式特殊的偏微分方程,前者起源于弹塑性微观结构模型,后者是模拟具有遗传特征现象的必要工具,被广泛应用于如种群生态学、控制论、粘弹性材料、热记忆材料等研究领域. 本文分别利用有限差分法和延时-物理信息神经网络法对这两类方程的数值解进行了研究. 主要内容如下:

第一,针对四阶分数阶阻尼随机波动方程提出了一种保持能量耗散特性的有限差分方法,采用“分数中心求导”的方法逼近阻尼项中的空间Riesz分数阶导数,并构造了一个三层隐式Crank-Nicolson差分格式逼近时间和空间导数. 此外,分别导出了连续意义下和数值解离散情形下的能量耗散定理,并证明了所提出的三层隐式差分方法在期望意义下的收敛阶为O(∆t2+h2). 最后,通过数值实验验证了该数值方法的有效性以及理论的正确性,所得结果揭示了分数阶阻尼和随机噪声在系统演化过程中对系统总体能量与解的全局行为具有不可忽视的影响.

第二,提出了延时-物理信息神经网络法(Delay-PINN )求解包含比例型延迟、减法常量延迟或时变量延迟的显式时滞偏微分方程. 首先构造一个前向深度神经网络,并通过“分离技巧”构造时滞项的延迟训练数据集,将适定的偏微分方程求解问题转化为一个最优化问题,再应用现代自动微分工具计算神经网络的偏导数,并通过优化算法逐步调整网络的可训练参数,从而使得神经网络能够逼近原方程的精确解. 最终通过求解四个不同的显式时滞方程证明了该方法的有效性和鲁棒性,并论证了此方法可以自然地推广至求解其他显式延迟问题,如延迟初边值问题、混合延迟问题等. 

第三,阐述了有限差分方法与物理信息神经网络方法的基本数学原理,分析了这两类数值方法的误差来源以及优缺点,并从两方面说明了这两类方法的互补性. 最后,针对常见特殊类型的偏微分方程列出了适合的数值解法,为研究者在不同应用场景下数值方法的选取提供了参考.

论文外文摘要:

The fourth-order stochastic fractional damped wave equation and delayed partial differential equations are two kinds of special partial differential equations, the former arise from the research of elasto-plastic-microstructures models, the later are required tools when modelling phenomena with hereditary characteristics in a wide variety of scientific and technical fields, such as in population ecology, control theory, viscoelasticity, materials with thermal memory, etc. In this work, we solve these two types of differential equation by finite difference method and Delay-physics-informed neural networks, respectively. The main research contents are as follows:

Firstly, we proposes an energy dissipative finite difference method for solving a fourth-order nonlinear wave equation driven by space fractional damping and multiplicative noise. We use a ‘fractional centered derivative’ approach to approximate the Riesz fractional derivative in damping term, and develop a three-level implicit Crank–Nicolson scheme for the temporal-spatial approximation. Subsequently, we discussed the expected value of the discrete energy and proved that the proposed method attain the convergence orders O(∆t2+h2) under the expected sense. Finally, a numerical experiment is given to verify the efficiency of the scheme and confirm the correctness of theoretical results, and it also shows that the fractional damping and noise term can influence the global behavior of this evolution system.

Secondly, we propose a new framework of physics-informed neural networks (called Delay-PINN) to approach ordinary/partial differential equations with proportional delay, subtractive delay and time variable delay. We transform the well-posed system into an optimization problem by setting delayed dataset for the delay term. By making full use of the modern Auto-Differentiation tools, we can find the optimal parameters that enabled the neural network fits the solution well. Four numerical results illustrate the efficiency and the robustness of this method. Moreover, we explained our method can be extended to other explicit delay problems naturally, such as delayed initial/boundary conditions and mixed delay problems.

Finally, we summarize the mathematical principles, error sources, advantages and disadvantages of these two methods. We illustrated the complementarity of these two kinds of methods from two aspects, and we listed suitable numerical schemes for common special types of partial differential equations, which provides reference for researchers to choose numerical algorithms in different application scenarios.

参考文献:

[1]Sun H, Zhang Y, Baleanu D, et al. A new collection of real world applications of fractional calculus in science and engineering [J].Communications in Nonlinear Science and Numerical Simulation, 2018, 64: 213-231.

[2]Guo B, Pu X, Huang F. Fractional partial differential equations and their numerical solutions [M]. World Scientific, 2010.

[3]刘旺发,庄平辉,刘青霞. 分数阶偏微分方程数值方法及其应用 [M]. 科学出版社,2015.

[4]Prato G D, Zabczyk J. Stochastic equations in infinite dimensions [M]. Cambridge university press, 2014.

[5]龚光鲁. 随机微分方程及其应用概要 [M]. 清华大学出版社,2008.

[6]Zhang Z, Karniadakis G E. Numerical methods for stochastic partial differential equations with white noise [M]. Applied Mathematical Sciences, 2017.

[7]Du M, Wang Z, Hu H. Measuring memory with the order of fractional derivative [J]. Scientific Reports, 2013, 3.

[8]Wang J L, Li H F. Surpassing the fractional derivative: Concept of the memory-dependent derivative [J]. Computers and Mathematics with Applications, 2011, 62(3): 1562-1567.

[9]Tarasov V E. Generalized memory: Fractional calculus approach [J]. Fractal and Fractional, 2018, 2(4).

[10]Eliazar I, Klafter J. Anomalous is ubiquitous [J]. Annals of Physics, 2011, 326(9): 2517-2531.

[11]Eberle A, Grothaus M, Hoh W, et al. Stochastic partial differential equations and related fields [M]. Springer International Publishing, 2018.

[12]Qi R, Wang X. An accelerated exponential time integrator for semi-linear stochastic strongly damped wave equation with additive noise [J]. Journal of Mathematical Analysis and Applications, 2017, 447(2): 988-1008.

[13]Oh T, Okamoto M, Robert T. A remark on triviality for the two-dimensional stochastic nonlinear wave equation [J]. Stochastic Processes and their Applications, 2020, 130(9): 5838-5864.

[14]Mijena J B, Nane E. Space–time fractional stochastic partial differential equations [J]. Stochastic Processes and their Applications, 2015, 125(9):3301-3326.

[15]Meerschaert M M, Straka P, Zhou Y, et al. Stochastic solution to a time-fractional attenuated wave equation [J]. Nonlinear Dynamics, 2012, 70(2): 1273-1281.

[16]Foondun M, Liu W. Moment bounds for a class of fractional stochastic heat equations [J]. The Annals of Probability, 2017, 45(4): 2131-2153.

[17]Zhou Y, Wang Q, Zhang Z. Physical properties preserving numerical simulation of stochastic fractional nonlinear wave equation [J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99: 105832.

[18]Zhou Y, Xie J, Zhang Z. Highly efficient difference methods for stochastic space fractional wave equation driven by additive and multiplicative noise [J]. Applied Mathematics Letters, 2021, 116: 106988.

[19]Li Y, Wang Y, Deng W. Galerkin finite element approximations for stochastic space-time fractional wave equations [J]. SIAM Journal on numerical analysis, 2017, 55(6): 3173-3202.

[20]Liu X, Yang X. Mixed finite element method for the nonlinear time-fractional stochastic fourth-order reaction–diffusion equation [J]. Computers and Mathematics with Applications, 2021, 84: 39-55.

[21]Zou G, A Galerkin finite element method for time-fractional stochastic heat equation [J]. Computers and Mathematics with Applications 75 (11) (2018) 4135-4150.

[22]Macías-Díaz J E, Hendy A S, De Staelen R H. compact fourth-order in space energy-preserving method for riesz space-fractional nonlinear wave equations [J]. Applied Mathematics and Computation, 2018, 325: 1-14.

[23]Liu C, Shi W, Wu X. Numerical analysis of an energy-conservation scheme for two-dimensional hamiltonian wave equations with neumann boundary conditions [J]. International Journal of Numerical Analysis And Modeling, 2019, 16: 319-339.

[24]Macías-Díaz J E. A structure-preserving method for a class of nonlinear dissipative wave equations with riesz space-fractional derivatives [J]. Journal of Computational Physics, 2017, 351: 40-58.

[25]Mickens R E. Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations [J]. Journal of Difference Equations and Applications, 2005, 11(7): 645-653.

[26]Lin Q, Wu Y H, Lai S. On global solution of an initial boundary value problem for a class of damped nonlinear equations [J]. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(12): 4340-4351.

[27]Xu R, Yang Y. Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations [J]. Quarterly of Applied Mathematics, 2012, 71(3): 401-415.

[28]Achouri T, Kadri T, Omrani K. Analysis of finite difference schemes for a fourth-order strongly damped nonlinear wave equations [J]. Computers and Mathematics with Applications, 2021, 82: 74-96.

[29]Chen S, Triggiani R. Proof of two conjectures by G. Chen and D. L. Russell on structural damping for elastic systems [J]. Lecture Notes in Mathematics Springer Berlin Heidelberg, 1988, 1354: 234-256.

[30]Chen W, Holm S. Fractional laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency [J]. The Journal of the Acoustical Society of America, 2004, 115(4): 1424-1430.

[31]Treeby B, Cox B. Modeling power law absorption and dispersion for acoustic propagation using the fractional laplacian [J]. The Journal of the Acoustical Society of America, 2010, 127(5): 2741-2748.

[32]Alaimia M R, Tatar N -E. Blow up for the wave equation with a fractional damping [J]. Journal of Applied Analysis, 2005, 11(1): 133-144.

[33]Nasser-eddine T. A wave equation with fractional damping [J]. Zeitschrift für Analysis und ihre Anwendungen, 2003, 22: 609-617.

[34]Ikehata R, Natsume M. Energy decay estimates for wave equations with a fractional damping [J]. Differential and Integral Equations, 2012, 25: 939-956.

[35]Charão R C, da Luz C R, Ikehata R. Sharp decay rates for wave equations with a fractional damping via new method in the fourier space [J]. Journal of Mathematical Analysis and Applications, 2013, 408(1): 247-255.

[36]Yang Z, Ding P, Li L. Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity [J]. Journal of Mathematical Analysis and Applications, 2016, 442(2): 485-510.

[37]Savostianov A. Infinite energy solutions for critical wave equation with fractional damping in unbounded domains [J]. Nonlinear Analysis: Theory, Methods and Applications, 2016, 136: 136-167.

[38]Yang Z, Ding P. Longtime dynamics of boussinesq type equations with fractional damping [J]. Nonlinear Analysis, 2017, 161: 108-130.

[39]Zhang G. Two conservative and linearly-implicit compact difference schemes for the nonlinear fourth-order wave equation [J]. Applied Mathematics and Computation, 2021, 401: 126055.

[40]Wang P, Huang C. An energy conservative difference scheme for the nonlinear fractional schrödinger equations [J]. Journal of Computational Physics, 2015, 293: 238-251.

[41]Xiao A, Wang J. Symplectic scheme for the schrödinger equation with fractional laplacian [J]. Applied Numerical Mathematics, 2019, 146: 469-487.

[42]Çelik C, Duman M. Crank–nicolson method for the fractional diffusion equation with the riesz fractional derivative [J]. Journal of Computational Physics, 2012, 231(4): 1743-1750.

[43]Zhao X, Sun Z, Hao Z. A fourth-order compact adi scheme for two-dimensional nonlinear space fractional schrödinger equation [J]. SIAM Journal on Scientific Computing, 2014, 36(6): A2865-A2886.

[44]Smith H. An introduction to delay differential equations with applications to the life sciences [M]. Springer: New York, NY, USA, 2011.

[45]Smith H. Delay differential equations: With applications in population dynamics [M]. Springer: New York, NY, USA, 2011.

[46]Chen D, Zhang X J, Ding H. Generalized numerical differentiation method for stability calculation of periodic delayed differential equation: Application for variable pitch cutter in milling [J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(11): 2027-2039.

[47]Kucuk I, Sadek I, Yilmaz Y. Active control of a smart beam with time delay by legendre wavelets [J]. Applied Mathematics and Computation, 2012, 218(17): 8968-8977.

[48]Arino O, Hbid M L, Dads E A. Delay differential equations and applications [M]. Springer, 2006.

[49]Rihan F A. Delay differential equations and applications to biology [M]. Springer Nature Singapore Pte Ltd, 2021.

[50]Wolfgang K. Functional differential equations. in: Navier-stokes turbulence [M]. Springer, Cham, 2019.

[51]Padhi S, Graef J R, Srinivasu P D N. Periodic solutions of first-order functional differential equations in population dynamics [M]. Springer New Delhi Heidelberg New York Dordrecht London, 2014.

[52]Yann L, Yoshua B, Geoffrey H. deep learning [J]. Nature, 2015, 521: 436-444.

[53]Goodfellow I, Bengio Y. Deep learning [M]. MIT Press, 2016.

[54]E W, Han J, Jentzen A. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations [J]. Communications in Mathematics and Statistics, 2017, 5: 349-380.

[55]Beck C, E W, Jentzen A. Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations [J]. Journal of Nonlinear Science, 2019, 29: 1563-1619.

[56]Ji S, Peng S, Peng Y, et al. Three algorithms for solving high-dimensional fully coupled fbsdes through deep learning [J]. IEEE Intelligent Systems, 2020, 35(3): 71-84.

[57]Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations [J]. Journal of Computational Physics, 2019, 378: 686-707.

[58]Karimpouli S, Tahmasebi P. Physics informed machine learning: Seismic wave equation [J]. Geoscience Frontiers, 2020, 11(6): 1993-2001.

[59]Mao Z, Jagtap A D, Karniadakis G E. Physics-informed neural networks for high-speed flows [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789.

[60]Francisco S C, Yibo Y, Paris P. Physics-informed neural networks for cardiac activation mapping [J]. Frontiers of Physics, 2020, 8(42).

[61]Shin Y, Darbon J, Karniadakis G E. On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type pdes [J]. Communications in Computational Physics, 2020, 28: 2042-2074.

[62]Jagtap A D, Kawaguchi K, Karniadakis G E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks [J]. Journal of Computational Physics, 2020, 404: 109136.

[63]Abu-Khalaf M, Lewis F L. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network hjb approach [J]. Automation and Robotics Research Institute, 2005, 41: 779-791.

[64]Zhang H, Luo Y, Liu D. Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints [J]. IEEE Transactions on Neural Networks, 2009, 20(9): 1490-1503.

[65]Fouque J P, Zhang Z. Deep learning methods for mean field control problems with delay [J]. Frontiers in Applied Mathematics and Statistics, 2020, 6.

[66]Ketkar N. Introduction to pytorch [M]. Apress, Berkeley, CA, 2017.

[67]Baydin A G, Pearlmutter B A, Radul A A, et al. Automatic differentiation in machine learning: A survey [J]. J. Mach. Learn. Res., 2017, 18: 5595-5637.

[68]Camburu O M. Explaining deep neural networks [J]. arXiv e-prints, 2020.

[69]Kingma D P, Ba J. Adam: A method for stochastic optimization [J]. arXiv e-prints, 2014.

[70]Yılmaz B, Yaman V. Numerical solutions of nonlinear boundary value pantograph type delay differential equations [J]. International Journal of Advances in Engineering and Pure Sciences, 2020, 32: 333-339.

[71]Jerri A J. Introduction to integral equations with applications [M]. Wiley–Interscience, 1999.

[72]Daftardar-Gejji V, Jafari H. An iterative method for solving nonlinear functional equations [J]. Journal of Mathematical Analysis and Applications, 2006, 316(2): 753-763.

[73]Martín J A, Rodríguez F, Company R. Analytic solution of mixed problems for the generalized diffusion equation with delay [J]. Mathematical and Computer Modelling, 2004, 40(3): 361-369.

[74]Reyes E, Rodríguez F, Martín J A. Analytic-numerical solutions of diffusion mathematical models with delays [J]. Computers & Mathematics with Applications, 2008, 56(3): 743-753.

[75]Tzou D Y. Experimental support for the lagging behavior in heat propagation [J]. Journal of Thermophysics and Heat Transfer, 1995, 9(4): 686-693.

[76]Tzou D Y. Macro- to microscale heat transfer: The lagging behavior, 2nd edition [M]. John Wiley & Sons, 2014.

[77]Elzaki T M, Alamri B A S. Projected differential transform method and elzaki transform for solving system of nonlinear partial differential equations [J]. World Applied Sciences Journal, 2014, 32(9): 1974-1979.

[78]Zhang C, Tang C. One-parameter orthogonal spline collocation methods for nonlinear two-dimensional sobolev equations with time-variable delay [J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 108: 106233.

[79]Dehghan M, Shafieeabyaneh N, Abbaszadeh M. Application of spectral element method for solving sobolev equations with error estimation [J]. Applied Numerical Mathematics, 2020, 158: 439-462.

[80]余德浩,汤华中. 偏微分方程数值解法(第二版)[M]. 科学出版社,2015.

[81]Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators [J]. Neural Networks, 1989, 2(5): 359-366.

[82]Allan P. Approximation theory of the MLP model in neural networks [J]. Acta Numerica, 1999, 8: 143-195.

[83]Zhang D, Guo L, Karniadakis G E. Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks [J]. SIAM Journal on Scientific Computing, 2020, 42(2): A639-A665.

[84]Jérôme D, Stanley O. Algorithms for overcoming the curse of dimensionality for certain hamilton–jacobi equations arising in control theory and elsewhere [J]. Research in the Mathematical Sciences, 2016, 3 (1): 19-44.

[85]Sloan I H, Woźniakowski H. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? [J]. Journal of Complexity, 1998, 14(1): 1-33.

[86]Li Y, Tang S. Approximation of backward stochastic partial differential equations by a splitting-up method [J]. Journal of Mathematical Analysis and Applications, 2021, 493(1):124518.

[87]Long Z, Lu Y, Dong B. PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network [J]. Journal of Computational Physics, 2019, 399: 108925.

[88]Pang G, Lu L, Karniadakis G E. fPINNs: Fractional Physics-Informed Neural Networks [J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626.

[89]Rodríguez F, Roales M, A. Martín J. Exact solutions and numerical approximations of mixed problems for the wave equation with delay [J]. Applied Mathematics and Computation, 2012, 219(6): 3178-3186.

中图分类号:

 O241.82    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式