论文中文题名: |
基于三维点云的复杂地形区土壤侵蚀精细量化切片算法研究
|
姓名: |
杨鑫
|
学号: |
21210226052
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085700
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘工程
|
研究方向: |
地貌遥感
|
第一导师姓名: |
李朋飞
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-17
|
论文答辩日期: |
2024-06-03
|
论文外文题名: |
A slicing algorithm for detecting soil erosion of topographically complex areas based on 3D point clouds
|
论文中文关键词: |
土壤侵蚀 ; LiDAR ; 切片算法 ; 地形变化监测 ; 复杂地形区
|
论文外文关键词: |
Soil erosion ; LiDAR ; Slicing algorithm ; Terrain change monitoring ; Complex terrain
|
论文中文摘要: |
︿
黄土高原土壤侵蚀严重、地形地貌破碎复杂,精细量化土壤侵蚀过程对区域土壤侵蚀机理研究、侵蚀模型构建以及侵蚀防治意义重大。激光雷达获取的密集点云数据可准确描述三维地形信息,为土壤侵蚀精细量化提供了可能,然而基于点云数据的复杂地形区变化监测算法匮乏,阻碍了激光雷达技术在土壤侵蚀研究中的应用。鉴于此,本研究以黄土丘陵沟壑区辛店沟和桥沟(二支沟)流域为研究区,提出了适用于坡面尺度地形变化监测的Slice Contraction Change Detection(SCCD)算法,以及适用于小流域尺度地形变化监测的SCCD-Watershed(SCCD-W)算法。然后,基于辛店沟原位坡面小区(A、B两小区)冲刷试验获取的实测产沙数据和地基激光雷达获取的地形点云序列,对比分析了SCCD算法与已有地形变化监测算法(3D-Multiscale Model-to-Model Cloud Comparison(3D-M3C2)和DEM of Difference (DoD))在复杂三维地形场景下的监测性能,评估了SCCD算法监测精度。最后,利用无人机激光雷达技术获取桥沟二支沟地面点云数据,以M3C2-GRID算法监测结果为基准值,对比了SCCD和SCCD-W算法的监测结果,评估了SCCD-W的监测精度。算法原理及评估结果如下:
(1)所提出算法首先对地面点云进行切片,利用余切权重拉普拉斯矩阵对点云切片进行收缩,准确提取地面点云切片轮廓。然后依次对点云切片无序轮廓点进行降采样和排序,利用面积微分方法计算切片面积。最后将切片面积与切片厚度相乘得到地形变化体积。结合坡面/小流域尺度地面点云特点,分别给出了使用固定厚度投影切片与统一Level of Detection(LoD)的SCCD算法,以及使用自适应厚度投影切片与空间分布式LoD的SCCD-W算法。
(2)坡面小区的监测算法对比结果表明,在复杂三维地形场景下,SCCD与3D-M3C2算法监测精度相当(A、B小区的平均相对误差分别为13.32%和10.37%,10.07%和10.84%),DoD算法监测精度最低(35.30%和27.23%),相对误差的标准差分别为5.79,8.29和10.18。当点云密度发生变化时(1.0×104 points m-2降至1.0×103 points m-2),三种算法对点云密度变化的敏感性排序为:3D-M3C2 > SCCD > DoD,A、B小区的平均相对误差范围分别为10.07~18.59%和10.84~13.62%,13.32%~16.83%和10.37%~15.50%,35.30%~38.33%和26.52%~27.26%。当点云形态差异增大时,SCCD和DoD算法的监测精度升高或保持稳定,A、B小区的相对误差分别为20.04%~9.95%和5.54%~7.96%,42.49%~11.94%和3.89%~4.96%,而3D-M3C2算法对点云形态变化高度敏感,A、B小区的相对误差变化分别为10.87~93.77%和30.76~167.89%。
(3)桥沟二支沟的算法评估结果显示,SCCD算法的相对误差为318.42%,绝对误差为732.55 m3,Kappa系数为0.033,均方根误差(Root Mean Square Error, RMSE)为0.081 m,平均绝对误差(Mean Absolute Error, MAE)为0.021 m。相较于SCCD算法,使用自适应厚度投影和空间分布式LoD的SCCD-W算法监测精度进一步提高(相对误差为12.74%,绝对误差为29.31 m3,Kappa系数为0.493,RMSE为0.011 m,MAE为0.006 m),模拟产沙体积和侵蚀沉积空间分布结果与基准值差异最小。
﹀
|
论文外文摘要: |
︿
The Chinese Loess Plateau suffers from severe soil erosion and features fragmented and complex terrain. Precisely quantifying soil erosion processes is crucial for understanding erosion mechanisms, constructing erosion models, and implementing erosion control measures in this region. Light Detection and Ranging (LiDAR) technology provides accurate description of three-dimensional terrain information through dense point cloud data . However, monitoring algorithms for complex terrain changes based on point cloud data have been severely lacking, which hindered the application of LiDAR technology in soil erosion research. In this study, taking the Xindiangou and Qiaogou watershed as study areas, we developed the Slice Contraction Change Detection (SCCD) algorithm for slope-scale terrain change monitoring and the SCCD-Watershed algorithm (SCCD-W) for small watershed-scale terrain change monitoring. Using sediment yield measurements collected from runoff scouring experiments conducted on two erosion plots (plots A and B) constructed on natural slopes of the Xindiangou watershed, along with ground point cloud sequences obtained using terrestrial laser scanning, we compared the SCCD algorithm with existing algorithms for terrain change monitoring (3D-Multiscale Model-to-Model Cloud Comparison (3D-M3C2) and DEM of Difference (DoD)). We comprehensively evaluated the monitoring performance of these algorithms in complex three-dimensional terrain circumstance and validated the monitoring accuracy of the SCCD algorithm. Finally, using ground point cloud data acquired from unmanned aerial vehicle LiDAR, we compared the monitoring results of the SCCD and SCCD-W algorithms and also evaluated the monitoring accuracy of the SCCD-W algorithm, through taking the result of M3C2-GRID algorithm as a benchmark. The main results are as follows:
(1) The proposed algorithm firstly sliced the ground point cloud and employed a cotangent weight Laplacian matrix to contract the point cloud slices, accurately extracting the contour of the ground point cloud slices. Secondly, the unordered contour points of the point cloud slices were downsampled and sorted, and the area differential method was used to calculate the slice area, which was then multiplied by the slice thickness to obtain the terrain change volume. Considering the characteristics of slope-scale and small watershed-scale ground point clouds, two algorithms were finally developed, including the SCCD and SCCD-W algorithms. The former was based on fixed thickness projection slices and a unified Level of Detection (LoD), while the latter employed adaptive thickness projection slices and spatially distributed LoD.
(2) The comparison of three algorithms on the plots indicated that in complex three-dimensional terrain, the monitoring accuracy of SCCD was comparable to that of the 3D-M3C2 algorithm (average relative errors of plots A and B were 13.32% and 10.37%, 10.07% and 10.84%), while the DoD algorithm showed the lowest monitoring accuracy (35.30% and 27.23%). The standard deviations of relative errors for the SCCD, 3D-M3C2, and DoD algorithms were 5.79, 8.29, and 10.18, respectively. When the point cloud density changed from 1.0×104 points m-2 to 1.0×103 points m-2, the sensitivity of the three algorithms to changes in point cloud density were ranked as follows: 3D-M3C2 > SCCD > DoD. The average relative error ranges for plots A and B were 10.07%-18.59% and 10.84%-13.62%, 13.32%-16.83% and 10.37%-15.50%, 35.30%-38.33% and 26.52%-27.26%, respectively. As the differences in ground point cloud morphology increased, the monitoring accuracy of the SCCD and DoD algorithms either increased or remained stable. The relative error changes for plots A and B were 20.04%-9.95% and 5.54%-7.96%, 42.49%-11.94% and 3.89%-4.96%, respectively. However, the 3D-M3C2 algorithm was highly sensitive to differences in point cloud morphology. The relative error changes for plots A and B were 10.87%-93.77% and 30.76%-167.89%, respectively.
(3) The evaluation of the algorithmfor the Qiaogou watershed (Second Branch) indicated that the relative error of the SCCD algorithm reached 318.42%, with an absolute error of 732.55 m3, a Kappa coefficient of 0.033, a Root Mean Square Error (RMSE) of 0.081 m, and a Mean Absolute Error (MAE) of 0.021 m. Compared to the SCCD algorithm, the SCCD-W algorithm, which utilized the adaptive thickness projection and spatial distributed LoD, further improved monitoring accuracy (relative error of 12.74%, absolute error of 29.31 m3, Kappa coefficient of 0.493, RMSE of 0.011 m, MAE of 0.006 m), with the derived sediment yield and spatial pattern of erosion / deposition showing the smallest differences from the reference values.
﹀
|
参考文献: |
︿
[1] BRADY N, WEIL R. The nature and properties of soils [M]. New Jersey: Prentice Hall, 2008:56. [2] FIELD D, MORGAN C, MCBRATNEY A. Global soil security [M]. Florida: CRC Press, 2016:126. [3] LI S, ZHU C, DENG X. Exploring the urban–rural gradient effects of construction land expansion processes on land use function trade‐off/synergy in rapidly urbanizing areas[J]. Land Degradation & Development, 2024, 35(1): 46-61. [4] CHEN J, CHEN J, TAN M, et al. Soil degradation: a global problem endangering sustainable development[J]. Journal of Geographical Sciences, 2002, 12(1): 243-252. [5] KAPUR S, AKÇA E. Soil Degradation: Global Assessment [M]//WANG Y. Landscape and Land Capacity. Florida: CRC Press. 2020: 199-210. [6] LI P. Modelling blanket peat erosion under environmental change[D]. Leeds: University of Leeds, 2014. [7] SCHULZE E, FREIBAUER A. Carbon unlocked from soils[J]. Nature, 2005, 437(7056): 205-206. [8] PIMENTEL D, BURGESS M. Soil erosion threatens food production[J]. Agriculture, 2013, 3(3): 443-463. [9] HOFFMANN T, MUDD S, VAN OOST K, et al. Humans and the missing C-sink: erosion and burial of soil carbon through time[J]. Earth Surface Dynamics, 2013, 1(1): 45-52. [10] LI Y, JIAO J, WANG Z, et al. Effects of revegetation on soil organic carbon storage and erosion-induced carbon loss under extreme rainstorms in the hill and gully region of the Loess Plateau[J]. International Journal of Environmental Research and Public Health, 2016, 13(5): 456. [11] LI L, KNAPP J, LINTERN A, et al. River water quality shaped by land–river connectivity in a changing climate[J]. Nature Climate Change, 2024,14(1): 225-237. [12] LAM K, LEUNG Y, YAO Q. Nutrient fluxes in the Shenchong Basin, Deqing County, South China[J]. Catena, 1997, 29(2): 191-210. [13] TRUSTRUM N, GOMEZ B, PAGE M, et al. Sediment production and output: The relative role of large magnitude events in steepland catchments[J]. Zeitschrift für Geomorphologie, 1999, 115(Supplement Volumes): 71-86. [14] HU T, WU J, LI W. Assessing relationships of ecosystem services on multi-scale: a case study of soil erosion control and water yield in the Pearl River Delta[J]. Ecological Indicators, 2019, 99(1): 193-202. [15] HASSAN M, CHURCH M, XU J, et al. Spatial and temporal variation of sediment yield in the landscape: Example of Huanghe (Yellow River)[J]. Geophysical Research Letters, 2008, 35(6): 1-15. [16] CHEN M, CHEN J, SUN F. Agricultural phosphorus flow and its environmental impacts in China[J]. Science of the Total Environment, 2008, 405(1-3): 140-152. [17] LIU B, ZHANG B, YIN Z, et al. Ephemeral gully development in the hilly and gully region of China's loess plateau[J]. Land Degradation & Development, 2024, 35(1): 128-141. [18] LI P, MU X, HOLDEN J, et al. Comparison of soil erosion models used to study the Chinese Loess Plateau[J]. Earth-Science Reviews, 2017, 170(1): 17-30. [19] GAO C, LI P, HU J, et al. Development of gully erosion processes: A 3D investigation based on field scouring experiments and laser scanning[J]. Remote Sensing of Environment, 2021, 265(1): 112683. [20] CONFORTI M, AUCELLI P, ROBUSTELLI G, et al. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)[J]. Natural Hazards, 2011, 56(3): 881-898. [21] BALLESTEROS CÁNOVAS J, STOFFEL M, MARTÍN-DUQUE J, et al. Gully evolution and geomorphic adjustments of badlands to reforestation[J]. Scientific Reports, 2017, 7(1): 45027. [22] CASTILLO C, GÓMEZ J. A century of gully erosion research: Urgency, complexity and study approaches[J]. Earth-Science Reviews, 2016, 160(1): 300-319. [23] POESEN J, NACHTERGAELE J, VERSTRAETEN G, et al. Gully erosion and environmental change: importance and research needs[J]. Catena, 2003, 50(2-4): 91-133. [24] IONITA I, FULLEN M, ZGŁOBICKI W, et al. Gully erosion as a natural and human-induced hazard [Z]. Natural Hazards, 2015, 79(S1): 1-5. [25] WEN Y, KASIELKE T, LI H, et al. A case‐study on history and rates of gully erosion in Northeast China[J]. Land Degradation & Development, 2021, 32(15): 4254-4266. [26] BEZAK N, BORRELLI P, MIKOŠ M, et al. Towards multi-model soil erosion modelling: An evaluation of the erosion potential method (EPM) for global soil erosion assessments[J]. Catena, 2024, 234(1): 107596. [27] WU Z, MA P, ZHENG Y, et al. Automatic detection and classification of land subsidence in deltaic metropolitan areas using distributed scatterer InSAR and Oriented R-CNN[J]. Remote Sensing of Environment, 2023, 290(1): 113545. [28] KIMURA T, SAKAI N, TANAKA Y, et al. Millennial-scale coseismic landslide history inferred from topographic and stratigraphic features of a post-caldera cone of Aso Volcano in southwestern Japan[J]. Geomorphology, 2023, 422(1): 108553. [29] KOU P, XU Q, JIN Z, et al. Assessment of loess terraced slope erosion using unmanned aerial vehicle photogrammetry: Topographic and hydrological effects[J]. Land Degradation & Development, 2024, 35(7): 2462-2475 [30] MIRZAEE S, GOMEZ C, PAJOUHESH M, et al. Soil erosion and sediment change detection using UAV technology [M]// Assefa Melesse, Omid Rahmati, Khabat Khsoravi. Remote Sensing of Soil and Land Surface Processes: Monitoring, Mapping, and Modeling (Earth Observation). Amsterdam: Elsevier, 2024: 271-279. [31] LI P, LI D, HU J, et al. Improving the application of UAV-LiDAR for erosion monitoring through accounting for uncertainty in DEM of difference[J]. Catena, 2024, 234(1): 107534. [32] KHAN S, BARTLEY R, KINSEY-HENDERSON A, et al. Assessing gully erosion and rehabilitation using multi temporal LiDAR DEMs: Case study from the Great Barrier Reef catchments, Australia[J]. International Soil and Water Conservation Research, 2024, 12(1): 184-199. [33] WHITE J, ALLEN P, NORAIR S, et al. Bank erosion and erosion processes from dendrogeomorphology in southern US prairie streams[J]. River Research and Applications, 2024, 1(1):1-15. [34] JIANG N, YAO F, LIU T, et al. Estimating the Soil Erosion Response to Land-Use Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Heilongjiang Province, China[J]. Sustainability, 2023, 15(10): 8004. [35] HAYAMIZU M, NAKATA Y. Accuracy assessment of post‐processing kinematic georeferencing based on uncrewed aerial vehicle‐based structures from motion multi‐view stereo photogrammetry[J]. Geographical Research, 2024, 62(1):194-203. [36] WANG L, LI Y, GAN Y, et al. Rainfall erosivity index for monitoring global soil erosion[J]. Catena, 2024, 234(1): 107593. [37] CASALÍ J, LOIZU J, CAMPO M, et al. Accuracy of methods for field assessment of rill and ephemeral gully erosion[J]. Catena, 2006, 67(2): 128-138. [38] DALEY J, BROOKS A, SPENCER J. Comment on “Assessing gully erosion and rehabilitation using multi temporal LiDAR DEMs: Case study from the Great Barrier Reef catchments, Australia” by Khan et al., 2023[J]. International Soil and Water Conservation Research, 2024, 12(2): 481-486. [39] YOUSEFI S, MIRZAEE S, GOMEZ C. Road-side slope erosion using MLS and remote sensing [M]// Assefa Melesse, Omid Rahmati, Khabat Khsoravi. Remote Sensing of Soil and Land Surface Processes: Monitoring, Mapping, and Modeling (Earth Observation). Amsterdam: Elsevier, 2024: 249-255. [40] STENBERG L, TUUKKANEN T, FINÉR L, et al. Evaluation of erosion and surface roughness in peatland forest ditches using pin meter measurements and terrestrial laser scanning[J]. Earth Surface Processes and Landforms, 2016, 41(10): 1299-1311. [41] ABELLÁN A, VILAPLANA J, CALVET J, et al. Rockfall monitoring by Terrestrial Laser Scanning–case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain)[J]. Natural Hazards and Earth System Sciences, 2011, 11(3): 829-841. [42] FEY C, WICHMANN V. Long‐range terrestrial laser scanning for geomorphological change detection in alpine terrain–handling uncertainties[J]. Earth Surface Processes and Landforms, 2017, 42(5): 789-802. [43] PERROY R, BOOKHAGEN B, ASNER G, et al. Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California[J]. Geomorphology, 2010, 118(3-4): 288-300. [44] TELLING J, LYDA A, HARTZELL P, et al. Review of Earth science research using terrestrial laser scanning[J]. Earth-Science Reviews, 2017, 169(1): 35-68. [45] JIANG Y, SHI H, GUO M, et al. A digital close range photogrammetric observation system for measuring soil surface morphology during ongoing rainfall[J]. Journal of Hydrology, 2023, 620(Part A): 129427. [46] GOODWIN N, ARMSTON J, MUIR J, et al. Monitoring gully change: A comparison of airborne and terrestrial laser scanning using a case study from Aratula, Queensland[J]. Geomorphology, 2017, 282(1): 195-208. [47] OKYAY U, TELLING J, GLENNIE C L, et al. Airborne lidar change detection: An overview of Earth sciences applications[J]. Earth-Science Reviews, 2019, 198(1): 102929. [48] BANGEN S, HENSLEIGH J, MCHUGH P, et al. Error modeling of DEMs from topographic surveys of rivers using fuzzy inference systems[J]. Water Resources Research, 2016, 52(2): 1176-1193. [49] LI P, REN F, HU J, et al. Monitoring soil erosion on field slopes by terrestrial laser scanning and structure‐from‐motion[J]. Land Degradation & Development, 2023, 34(12): 3363-3680. [50] 王玲玲, 姚文艺, 王文龙等. 黄土丘陵沟壑区多尺度地貌单元输沙能力及水沙关系[J]. 农业工程学报, 2015, 31(24): 120-126. [51] LU C, BIESOLD-MCGEE G, LIU Y, et al. Doping and ion substitution in colloidal metal halide perovskite nanocrystals[J]. Chemical Society Reviews, 2020, 49(14): 4953-5007. [52] 李占斌, 朱冰冰, 李鹏. 土壤侵蚀与水土保持研究进展[J]. 土壤学报, 2008, (05): 802-809. [53] 郑粉莉, 王占礼, 杨勤科. 土壤侵蚀学科发展战略[J]. 水土保持研究, 2004, (04): 1-10. [54] BAVER L. Ewald Wollny—a pioneer in soil and water conservation research[J]. Soil Science Society of America Journal, 1939, 3(C): 330-333. [55] MEYER L. Evolution of the universal soil loss equation[J]. Journal of Soil and Water Conservation, 1984, 39(2): 99-104. [56] GILLEY J, FLANAGAN D. Early investment in soil conservation research continues to provide dividends[J]. Transactions of the ASABE, 2007, 50(5): 1595-1601. [57] MIDDLETON H. Properties of soils which influence soil erosion [J]. Soil Science Society of America Journal, 1930, B11(2001): 119-121. [58] MUSGRAVE G. The Infiltration Capacity of Soils in Relation to the Control of Surface Runoff and Erosion 1[J]. Agronomy Journal, 1935, 27(5): 336-345. [59] ZINGG A. Degree and length of land slope as it affects soil loss in run-off[J]. Agric Engng, 1940, 21: 59-64. [60] ELLISON W. Studies of raindrop erosion[J]. Journal of Agricultural, 1944, 25(1):131-136. [61] SMITH D. Interpretation of soil conservation data for field use[J]. 1941. [62] SMITH D, WHITT D. Evaluating soil losses from field areas[J]. 1948. [63] WISCHMEIER W, SMITH D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: Guide for selection of practices for soil and water conservation [J]. Agricultural Handbook, 1965, 282(1):47-48. [64] MORGAN R, QUINTON J, SMITH R, et al. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms, 1998, 23(6): 527-544. [65] ANGIMA S, STOTT D, O’NEILL M, et al. Soil erosion prediction using RUSLE for central Kenyan highland conditions[J]. Agriculture, Ecosystems and Environment, 2003, 97(1-3): 295-308. [66] 陈同德, 焦菊英, 王颢霖等. 青藏高原土壤侵蚀研究进展[J]. 土壤学报, 2020, 57(03): 547-564. [67] 左仲国, 肖培青, 黄静. 黄河流域水土保持科研进展及展望[J]. 中国水土保持, 2016, (09): 63-67+93. [68] 郑粉莉, 王占礼, 杨勤科. 我国土壤侵蚀科学研究回顾和展望[J]. 自然杂志, 2008, 1(01): 12-16+63. [69] TIAN P, TIAN X, GENG R, et al. Response of soil erosion to vegetation restoration and terracing on the Loess Plateau[J]. Catena, 2023, 227(1): 107103. [70] 杨才敏. 21世纪山西水土保持科学研究展望[J]. 中国水土保持, 2000, 1(9): 10-11. [71] GOMEZ-GUTIERREZ A, SCHNABEL S, BERENGUER-SEMPERE F, et al. Using 3D photo-reconstruction methods to estimate gully headcut erosion[J]. Catena, 2014, 120(1): 91-101. [72] HUANG Y, CHEN Z, TAO Y, et al. Agricultural remote sensing big data: Management and applications[J]. Journal of Integrative Agriculture, 2018, 17(9): 1915-1931. [73] MA S, WANG L, WANG H, et al. Impacts of land use/land cover and soil property changes on soil erosion in the black soil region, China[J]. Journal of Environmental Management, 2023, 328(1): 117024. [74] PENG X, ZEGEN W, ZHUO H, et al. A land degradation assessment based on the combination of quantitative and qualitative change of land cover: a case study in Pakistan[J]. Environmental Earth Sciences, 2023, 82(43):1-15. [75] LI S, SHAO Y, HONG M, et al. Impact mechanisms of urbanization processes on supply-demand matches of cultivated land multifunction in rapid urbanization areas[J]. Habitat International, 2023, 131(1): 102726. [76] 赵珩钪, 曹斌挺, 焦菊英. 黄土丘陵沟壑区退耕坡地不同植物群落的土壤侵蚀特征[J]. 中国水土保持科学, 2017, 15(03): 105-113. [77] 焦菊英, 王志杰, 魏艳红等. 延河流域极端暴雨下侵蚀产沙特征野外观测分析[J]. 农业工程学报, 2017, 33(13): 159-167. [78] 陈永宗. 黄土高原国土整治中几个问题的探讨[J]. 自然资源学报, 1988, (01): 1-8. [79] 段钊, 赵法锁, 陈新建. 陕北黄土高原区滑坡发育类型与时空分布特征——以吴起县为例[J]. 灾害学, 2011, 26(04): 52-56. [80] 魏霞, 李占斌, 李勋贵. 黄土高原坡沟系统土壤侵蚀研究进展[J]. 中国水土保持科学, 2012, 10(01): 108-113. [81] 郭军权, 刘敏, 王文龙. 上方来水对浅沟侵蚀产沙的野外放水冲刷试验研究[J]. 水土保持学报, 2012, 26(03): 49-52. [82] 陆绍娟, 王占礼, 谭贞学. 黄土坡面细沟水流剪切力及其侵蚀效应研究[J]. 水土保持通报, 2013, 33(06): 46-50. [83] 赵宇, 陈晓燕, 米宏星等. 基于体积法对黄土细沟侵蚀沿程分布模拟的研究[J]. 土壤学报, 2014, 51(06): 1234-1241. [84] 汤立群. 坡面降雨溅蚀及其模拟[J]. 水科学进展, 1995, (04): 304-310. [85] 刘国彬,张光辉. 原状土冲刷法与人工模拟降雨法研究土壤抗冲性对比分析[J]. 水土保持通报, 1996, (02): 32-37. [86] LIU B, ZHANG K, XIE Y. An empirical soil loss equation[C]// 12th International Soil Conservation Organization Conference. Beijing: Organized by Ministry of Water Resources, People's Republic of China, 2002:1-15. [87] 李聪, 李鹏, 李占斌等. REE示踪坡面径流侵蚀演变过程试验研究[J]. 水土保持学报, 2014, 28(03): 19-22+28. [88] 石辉, 田均良, 刘普灵等. 利用REE示踪法研究小流域泥沙来源[J]. 中国科学E辑, 1996, (05): 474-480. [89] SERBAJI M, BOUAZIZ M, WESLATI O. Soil Water erosion modeling in Tunisia using RUSLE and GIS integrated approaches and Geospatial Data[J]. Land, 2023, 12(3): 548. [90] HU G, WU Y, LIU B, et al. The characteristics of gully erosion over rolling hilly black soil areas of Northeast China[J]. Journal of Geographical Sciences, 2009, 19: 309-320. [91] GÓMEZ-GUTIÉRREZ Á, SCHNABEL S, SANJOSÉ J, et al. Exploring the relationships between gully erosion and hydrology in rangelands of SW Spain[J]. Zeitscrift fuer Geomorphologie, Supplementary Issues, 2012, 56(1): 27-44. [92] EHIOROBO J, AUDU H. Monitoring of gully erosion in an urban area using geoinformation technology[J]. Journal of Emerging Trends in Engineering and Applied Sciences, 2012, 3(2): 270-275. [93] LI P, TARIQ A, LI Q, et al. Soil erosion assessment by RUSLE model using remote sensing and GIS in an arid zone[J]. International Journal of Digital Earth, 2023, 16(1): 3105-3124. [94] BIAN S, CHEN G, ZENG R, et al. Post-failure evolution analysis of an irrigation-induced loess landslide using multiple remote sensing approaches integrated with time-lapse ERT imaging: Lessons from Heifangtai, China[J]. Landslides, 2022, 19(5): 1179-1197. [95] SQUARZONI G, BAYER B, FRANCESCHINI S, et al. Pre-and post-failure dynamics of landslides in the Northern Apennines revealed by space-borne synthetic aperture radar interferometry (InSAR)[J]. Geomorphology, 2020, 369(1): 107353. [96] LI L, NEARING M, NICHOLS M, et al. Using terrestrial LiDAR to measure water erosion on stony plots under simulated rainfall[J]. Earth Surface Processes and Landforms, 2020, 45(2): 484-495. [97] BRETAR F, CHAUVE A, BAILLY J-S, et al. Terrain surfaces and 3-D landcover classification from small footprint full-waveform lidar data: application to badlands[J]. Hydrology and Earth System Sciences, 2009, 13(8): 1531-1544. [98] ROMANESCU G, COTIUGA V, ASANDULESEI A, et al. Use of the 3-D scanner in mapping and monitoring the dynamic degradation of soils: case study of the Cucuteni-Baiceni Gully on the Moldavian Plateau (Romania)[J]. Hydrology and Earth System Sciences, 2012, 16(3): 953-966. [99] 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509-1516. [100] YANG H, OMIDALIZARANDI M, XU X, et al. Terrestrial laser scanning technology for deformation monitoring and surface modeling of arch structures[J]. Composite Structures, 2017, 169(1): 173-179. [101] ENWRIGHT N, CHENEY W, EVANS K, et al. Elevation-based probabilistic mapping of irregularly flooded wetlands along the northern Gulf of Mexico coast[J]. Remote Sensing of Environment, 2023, 287: 113451. [102] NOURBAKHSHBEIDOKHTI S, KINOSHITA A, CHIN A, et al. A workflow to estimate topographic and volumetric changes and errors in channel sedimentation after disturbance[J]. Remote Sensing, 2019, 11(5): 586. [103] LAGUE D, BRODU N, LEROUX J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82(1): 10-26. [104] NESPECA R, MARIOTTI C, PETETTA L, et al. P Point cloud segmentation in heritage preservation advanced digital process for historical houses[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2024, 48(1): 325-332. [105] MILAN D, HERITAGE G, HETHERINGTON D. Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river[J]. Earth Surface Processes and Landforms, 2007, 32(11): 1657-1674. [106] WHEATON J, BRASINGTON J, DARBY S, et al. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets[J]. Earth Surface Processes and Landforms, 2010, 35(2): 136-156. [107] HONG H, WANG B, LU G, et al. Tracking lightning through 3D thunder source location with distributed acoustic sensing[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(4): 38882. [108] FERRANTE E, PARAGIOS N. Slice-to-volume medical image registration: A survey[J]. Medical Image Analysis, 2017, 39: 101-123. [109] QIU Y, ZHOU X, QIAN X. Direct slicing of cloud data with guaranteed topology for rapid prototyping[J]. The International Journal of Advanced Manufacturing Technology, 2011, 53(1): 255-265. [110] XU Z LIANG Y, XU Y, et al. Geometric Modeling and Surface-Quality Inspection of Prefabricated Concrete Components Using Sliced Point Clouds[J]. Journal of Construction Engineering and Management, 2022, 148(9): 04022087. [111] 刘金锦, 李浩军. 基于点云切片改进法的不规则物体体积测量[J]. 光学学报, 2021, 41(23): 133-145. [112] ZHI Y, ZHANG Y, CHEN H, et al. A Method of 3D Point Cloud Volume Calculation Based onSlice Method[J]. Advances in Computer Science Research, 2016, 1(1):155-158. [113] LI B, WEI J, WANG L, et al. A comparative analysis of two point cloud volume calculation methods[J]. International Journal of Remote Sensing, 2019, 40(8): 3227-3246. [114] 程效军, 熊鑫鑫, 杨泽鑫等. 基于地面激光雷达的洞库容量计量[J]. 激光与光电子学进展, 2019, 56(23): 165-173. [115] 张吉星, 程效军, 程小龙. 三维激光扫描技术在船舶排水量计量中的应用[J]. 中国激光, 2016, 43(12): 162-168. [116] 杨艳芬, 王兵, 王国梁等. 黄土高原生态分区及概况[J]. 生态学报, 2019, 39(20): 7389-7397. [117] DOUGLAS I. Land degradation, soil conservation and the sediment load of the Yellow River, China: review and assessment[J]. Land Degradation & Development, 1989, 1(2): 141-151. [118] ZHANG Y, LI P, LIU X, et al. Sediment and soil organic carbon loss during continuous extreme scouring events on the Loess Plateau[J]. Soil Science Society of America Journal, 2020, 84(6): 1957-1970. [119] 党维勤, 党恬敏. 辛店沟水土保持科技示范园景观资源及其美学意境分析[C]// 2015海峡两岸水土保持学术研讨会.2015海峡两岸水土保持学术研讨会论文集(上).太原:中国水土保持学会, 2015: 213-219. [120] LI Z, ZHANG Y, ZHU Q, et al. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area[J]. Catena, 2017, 148(1): 195-203. [121] ZHAO G, MU X, WEN Z, et al. Soil erosion, conservation, and eco‐environment changes in the Loess Plateau of China[J]. Land Degradation & Development, 2013, 24(5): 499-510. [122] JIA R, LU Q. Land transfer, collective action and the adoption of soil and water conservation measures in the Loess Plateau of China[J]. Natural Hazards, 2020, 102(1): 1279-1304. [123] SUN W, SHAO Q, LIU J, et al. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China[J]. Catena, 2014, 121(1): 151-163. [124] TANG J, SUI L. Geodetector-Based Livability Analysis of Potential Resettlement Locations for Villages in Coal Mining Areas on the Loess Plateau of China[J]. Sustainability, 2022, 14(14): 8365. [125] WANG X, WANG Z, XIAO J, et al. Soil erosion fluxes on the central Chinese Loess Plateau during CE 1811 to 1996 and the roles of monsoon storms and human activities[J]. Catena, 2021, 200(1): 105148. [126] 刘思君, 刘立峰, 刘姗姗等. 黄土丘陵沟壑区桥沟小流域水沙变化特征及成因分析[J]. 中国水土保持, 2022, (10): 9-15. [127] 李来仕, 王清, 孔元元等. 基于层次分析法的灰坝桥沟泥石流危险性评价[J]. 路基工程, 2017, (01): 184-188. [128] YAN L, LI P, HU J, et al. Monitoring small-scale mass movement using unmanned aerial vehicle remote sensing techniques[J]. Catena, 2024, 238(1): 107885. [129] GONG J, JIA Y, ZHOU Z, et al. An experimental study on dynamic processes of ephemeral gully erosion in loess landscapes[J]. Geomorphology, 2011, 125(1): 203-213. [130] ZHAO Q, LI D, ZHUO M, et al. Effects of rainfall intensity and slope gradient on erosion characteristics of the red soil slope[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(2): 609-621. [131] SU Z, XIONG D, DONG Y, et al. Simulated headward erosion of bank gullies in the Dry-hot Valley Region of southwest China[J]. Geomorphology, 2014, 204(1): 532-541. [132] CUCCHIARO S, FALLU D J, ZHANG H, et al. Multiplatform-SfM and TLS data fusion for monitoring agricultural terraces in complex topographic and landcover conditions[J]. Remote Sensing, 2020, 12(12): 1946. [133] LI P, HAO M, HU J, et al. Spatiotemporal Patterns of Hillslope Erosion Investigated Based on Field Scouring Experiments and Terrestrial Laser Scanning[J]. Remote Sensing, 2021, 13(9): 1674. [134] 李朋飞, 张晓晨, 党旭等. 基于三维激光扫描的坡沟系统侵蚀产沙过程研究[J]. 水土保持研究, 2022, 30(2): 1-8. [135] CAVALLI M, GOLDIN B, COMITI F, et al. Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models[J]. Geomorphology, 2017, 291(1): 4-16. [136] HE Y, LEI S, DAI W, et al. DEM-based topographic change detection considering the spatial distribution of errors[J]. Geo-spatial Information Science, 2024, 1(1): 1-14. [137] LEE K, WOO H. Direct integration of reverse engineering and rapid prototyping[J]. Computers & Industrial Engineering, 2000, 38(1): 21-38. [138] CAO J, TAGLIASACCHI A, OLSON M, et al. Point cloud skeletons via laplacian based contraction[C]//2010 Shape Modeling International Conference. Provence: IEEE, 2010:4-382-4-385. [139] 杨振清, 雍永磊. 基于点云切片的边界提取[J]. 计算机应用与软件, 2014, 31(01): 222-224+245. [140] AU O, TAI C, CHU H, et al. Skeleton extraction by mesh contraction[J]. ACM Transactions on Graphics, 2008, 27(3): 1-10. [141] FORTUNE S. Voronoi diagrams and Delaunay triangulations[J]. Computing in Euclidean Geometry, 1995, 1(1): 225-265. [142] MEYER M, DESBRUN M, SCHRÖDER P, et al. Discrete differential-geometry operators for triangulated 2-manifolds [M]//HEGE H, HOFFMAN D, JOHNSON C, et al. Visualization and Mathematics III. Luxembourg: Springer. 2003: 35-57. [143] DIJKSTRA E. A note on two problems in connexion with graphs [M]//Krzysztof R, Tony H. Edsger Wybe Dijkstra: His Life, Work, and Legacy. New York: Association for Computing Machinery, 2022: 287-290. [144] FARIN G. Curves and surfaces for CAGD: a practical guide [M]. Massachusetts: Morgan Kaufmann, 2002:1-10. [145] 罗德安, 廖丽琼. 地面激光扫描仪的精度影响因素分析[J]. 铁道勘察, 2007, (04): 5-8. [146] CHEN C, WU H, YANG Z, et al. Adaptive coarse-to-fine clustering and terrain feature-aware-based method for reducing LiDAR terrain point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 200(1): 89-105. [147] MA L, KONG L, PENG X, et al. PSTNet: Transformer for aggregating neighborhood features in 3D point cloud semantic segmentation of eggplant plants[J]. Scientia Horticulturae, 2024, 331(1): 113158. [148] CROKE J, TODD P, THOMPSON C, et al. The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia[J]. Geomorphology, 2013, 184(1): 111-126. [149] LE MAUFF B, JUIGNER M, BA A, et al. Coastal monitoring solutions of the geomorphological response of beach-dune systems using multi-temporal LiDAR datasets (Vendée coast, France)[J]. Geomorphology, 2018, 304(1): 121-140. [150] WINIWARTER L, ANDERS K, HÖFLE B. M3C2-EP: Pushing the limits of 3D topographic point cloud change detection by error propagation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178(1): 240-258. [151] ZAHS V, WINIWARTER L, ANDERS K, et al. Correspondence-driven plane-based M3C2 for lower uncertainty in 3D topographic change quantification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183(1): 541-559. [152] LIU X, ZHANG Z, PETERSON J, et al. The effect of LiDAR data density on DEM accuracy[C]// Proceedings of the International Congress on Modelling and Simulation (MODSIM07). Washington: IEEE Computer Society, 2007: 1-15.
﹀
|
中图分类号: |
P237
|
开放日期: |
2025-06-17
|