- 无标题文档
查看论文信息

论文中文题名:

 电动汽车锂离子电池交替式均衡控制系统研究    

姓名:

 夏占    

学号:

 18205216077    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085234    

学科名称:

 工学 - 工程 - 车辆工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 车辆工程    

研究方向:

 电池管理系统研究    

第一导师姓名:

 张传伟    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-25    

论文答辩日期:

 2021-06-02    

论文外文题名:

 Research on Alternate Balance Control System of Li-ion Battery for Electric Vehicle     

论文中文关键词:

 锂离子电池 ; SOC估算 ; 均衡拓扑结构 ; 控制策略    

论文外文关键词:

 Li-ion battery ; SOC estimation ; Balanced topology ; Control Strategies    

论文中文摘要:

随着能源需求增长和环境污染恶化,电动汽车将逐步占领汽车市场。作为电动汽车动力心脏的锂离子电池,在使用过程中剩余电量的不一致性不断扩大,直接影响电动汽车的续航里程,因此电池均衡控制系统成为电动汽车领域的研究热点。本文以18650三元锂离子电池为研究对象,开展以下研究:

首先,采用扩展卡尔曼滤波算法对电池进行SOC估算。搭建二阶RC电路模型,采用HPPC脉冲测试法进行电池参数识别,在MATLAB/Simulink中对该电路模型的精确性进行仿真验证。在1C放电倍率直流放电和1C、1/3C放电倍率间歇放电工况下,通过仿真得到的工作电压数据与实验数据进行对比,误差值在0.05V之内,验证电路模型的有效性。在MATLAB中分别进行直流放电工况和间歇放电工况下的SOC估算仿真,并与实验数据进行对比,误差值控制在3%左右,验证扩展卡尔曼滤波算法的可行性。

其次,设计短路式均衡拓扑结构及其控制策略。以SOC作为均衡变量,通过继电器通断实现不同电池之间的交替重组,形成串联电池组进行充放电,以达到整个电池组SOC均衡的目的。在Simulink中进行相对应充放电仿真,验证该系统的可行性。仿真结果表明,在正常工况下,单体电池在充放电过程中的不一致性控制在1.556%以内;故障工况下,电池组依然能够选择性放电,直至电池组不满足放电需求。

最后,搭建交替式均衡控制系统实验平台,进行电池组电压采集,SOC估算及不同工况下的充放电实验。实验结果表明,该系统采集到的电压值及SOC估算值均与真实值变化趋势相同,具有可行性;在正常工况下的放电实验中,延时时间由20s缩短为10s,电池之间的不一致性缩小至1.27%,能明显改善系统的均衡效果。实验结果与仿真结果相一致,证明该系统对电池均衡控制的有效性。

论文外文摘要:

With the energy demand increasing and environment deteriorating, electronic vehicles will become the dominate player in the vehicle market. As the key power source of electric vehicles, the inconsistency of state of charge between lithium-ion batteries is increasing while being used, which directly affects the cruising range of electric vehicles. Therefore, the battery balance control system has become a hot research topic in the field of electric vehicles. In this paper, the 18650 ternary lithium battery is taken as the research object, and the following research is carried out:

Firstly, the extended Kalman filter algorithm is used to estimate the SOC for the battery. The second-order RC circuit model has been built, and the experiment of HPPC has been conducted to identify the battery parameters. The accuracy of the circuit model had been verified by the simulation in MATLAB/Simulink. Under the condition of 1C discharge rate and 1C, 1/3C discharge rate, the working voltage data obtained by the circuit model is compared with the experimental data, and the error value is within 0.05V, verifying the validity of the circuit model. Under the condition of DC discharge and intermittent discharge, the programming simulations are carried out in MATLAB to estimate the SOC. Finally, the value of SOC is compared with experimental data, and the error value is controlled at about 3%, which verify the feasibility of the extended Kalman filter algorithm.

Then, the short-circuit balanced topology and its control strategies are proposed. Taking SOC as the balance variable, the alternate recombination between different batteries is realized through turning on and off the relays to form a battery group in series, and charging and discharging experiments of the battery group are conducted to achieve the balance of SOC of all batteries. The simulations of corresponding charge and discharge are conducted to verify the feasibility of this system. The simulation results show that under normal working conditions, the inconsistency of single cells during charging and discharging is controlled within 1.556%; under fault working conditions, the battery pack can still be selectively discharged until the battery pack does not meet the discharge requirements.

Finally, an experimental platform of alternate balance control system is built, and the experiment of voltage collection, SOC estimation and charging and discharging experiments under different working conditions are carried out. The experiment results show that the trend of change between the value of collected voltage and estimated SOC by the system are the same with the real value, which shows the methods adopted are feasible. In the discharge experiment, the delay time is shortened from 20s to 10s, the inconsistency was reduced to 1.27% under normal operating conditions, which can obviously improve the balance effect of this system. The experimental results are consistent with the simulation results, proving the effectiveness of the system proposed for battery balancing control.

参考文献:

[1] 马建,刘晓东,陈轶嵩等. 中国新能源汽车产业与技术发展现状及对策[J]. 中国公路学报,2018,31(8):1-17.

[2] M.A. Hannan, M.H. Lipu, A. Hussain, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.

[3] C.W. Zhang, Z. Xia, B. Wang, et al. A Li-Ion Battery Thermal Management System Combining a Heat Pipe and Thermoelectric Cooler [J]. Energies, 2020, 13(4): 841.

[4] 王小峰,于志民. 中国新能源汽车的发展现状及趋势[J]. 科技导报,2016,34(17):13-18.

[5] 罗文雲,周浩,于乐淘等. 国内外电动汽车发展现状及优化建议[J]. 中国集体经济,2018:15-17.

[6] 焦燕青. 新能源汽车扩散驱动因素及市场保有量预测研究[J]. 汽车实用技术,2020,45(17):33-37.

[7] G. Roman, G. Bartlomiej, D. Zlatina, et al. An energy balance evaluation in lithium-ion battery module under high temperature operation[J]. Energy Conversion and Management, 2021, 227: 113565.1-113565.12.

[8] M. Widmaier, N. Jäckel, M. Zeiger, et al. Influence of carbon distribution on the electrochemical performance and stability of lithium titanate based energy storage devices[J]. Electrochim. Acta, 2017, 247: 1006-1018.

[9] X. Wang, Y. Xie, R. Day, et al. Performance analysis of a novel thermal management system with composite phase material for a lithium-ion battery pack[J]. Energy, 2018, 156: 154-168

[10] A. Samanta, S. Chowdhuri. Active Cell Balancing of Lithium-ion Battery Pack Using Dual DC-DC Converter and Auxiliary Lead-acid Battery[J]. Journal of Energy Storage, 2021, 33: 102109.

[11] J. Xu, B. Cao, S. Li, et al. A hybrid criterion based balancing strategy for battery energy storage systems[J]. Energy Procedia, 2016, 103: 225-230.

[12] 校乾坤. 基于改进MMC锂电池主动均衡拓扑及其控制策略研究[D]. 江苏:中国矿业大学,2020.

[13] 黄炜. 基于SOC估计的锂电池主动均衡策略研究[D]. 浙江:浙江大学,2019.

[14] J. Gallardo-Lozano, E. Romero-Cadaval, M. Isabel Milanes-Montero, et al. Battery equalization active methods[J]. Journal of Power Sources, 2014, 246: 934-949.

[15] 曹志良. 车载锂离子电池组均衡充电管理系统的研究[J]. 电源技术,2014,38(3):569-571.

[16] N. Bouchhima, M. Schnierle, S. Schulte, et al. Active model-based balancing strategy for self-reconfigurable batteries[J]. Journal of Power Source, 2016, 322: 129-137.

[17] 陈涛. 电池系统均衡技术研究[J]. 通信电源技术,2020,37(9):32-34.

[18] 吴悦铭. 一种基于STM32的锂电池均衡管理系统设计[D],吉林:吉林大学,2019.

[19] 闵杰,缪小明,闵斌. 特斯拉纯电动汽车核心和非核心技术演化研究[J]. 世界科技研究与发展,2017,39(3):291-302.

[20] 严利民,黄璐益. 一种并行填谷式锂电池均衡电路[J]. 电动工具,2016,6:1-3、7.

[21] 严利民,张婷婷. 一种削峰填谷式锂电池均衡电路[J]. 电动工具,2018,4:1-3、20.

[22] F. Baronti, G. Fantechi, R. Roncella, et al. High-Efficiency Digitally Controlled Charge Equalizer for Series-Connected Cells Based on Switching Converter and Super-Capacitor[J]. IEEE Transactions on industrial informatics, 2013, 9(2): 1139-1147.

[23] M. Daowd, M. Antoine, N. Omar, et al. Single Switched Capacitor Battery Balancing System Enhancements[J]. Energies, 2013, 6: 2149-2174.

[24] 赵汉滨,马锋,叶晓东等. 基于改进型飞度电容的电池组动态均衡控制方法研究[J]. 电子学报,2018,4:819-826.

[25] 万民,罗成,王衡. 基于SOC快速均衡的两级超级电容充电均衡器的研究[J]. 舰船电子工程,2019,3:54-58、106.

[26] N.H. Kutkut, D.M. Divan. Dynamic Equalization Techniques for Series Battery Stacks[C]// IEEE Proceedings of Intelec’96 – International Telecommunications Energy Conference, 1996.

[27] 戴海峰,魏学哲,孙泽昌等. 电动汽车用锂离子动力电池电感主动均衡系统[J]. 同济大学学报,2013, 41(10):1547-1553.

[28] 叶双圣, 钱祥忠. 电动汽车电池均衡控制设计[J]. 电子设计工程,2017,22:154-157、161.

[29] 郑博文. 双向反激式电池均衡器及均衡策略研究[D]. 哈尔滨:哈尔滨工业大学,2017.

[30] X.B. Liu, H.X. Wang, Y.W. Bian. The quantitative control strategy research for battery equalization circuits[C]// International Conference on Electrical Machines and Systems. IEEE,2017.

[31] C. Karnjanapiboon, K. Jirasereeamornkul, V. Monyakul. High efficiency battery management system for serially connected battery string[C]// IEEE International Symposium on Industrial Electronics, 2009.

[32] C.S. Lim, K.J. Lee, N.J. Ku, et al, Rae-Yong Kim. A Modularized Equalization Method Based on Magnetizing Energy for a Series-Connected Lithium-Ion Battery String[J]. IEEE Transactions on Power Electronics, 2014, 4: 1791-1799.

[33] 刘政,张向文,黄斌. 基于LTC3300-1的电动汽车锂电池组主动均衡系统研究[J]. 电源技术,2018,42(7):993-996.

[34] 晋山立,赵怀林,和阳等. 一种主被动复合均衡的充放电路的设计与应用[J]. 现代电子技术,2017, 40(8):148-152.

[35] 范辉,周晶晶,姚刚等. 动力锂电池的混合均衡控制与能量管理[J]. 上海理工大学学报,2018, 40(2):191-200.

[36] 刘红锐, 杜春峰, 陈仕龙等. 一种基Cuk斩波电路的双向双层桥臂的蓄电池组均衡器的研究[J]. 电源学报, 2017, 15(2) :142-147.

[37] X.F. Ding, D.H. Zhang, J.W. Cheng, et al. A Novel Active Equalization Topology for Series-Connected Lithium-ion Battery Packs [J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6892 - 6903.

[38] S.K. Moon, J.O. Kim. Balanced charging stratagies for electric vehicles on power system[J]. Applied Energy, 2017, 189: 44-54.

[39] Y.J. Wang, C.B. Zhang, Z.H. Chen, et al. A novel active equalization method for lithium-ion batteries in electric vehicles[J]. Applied Energy, 2015, 145: 36-42.

[40] 张伟华. 锂离子动力电池组管理系统的研究和设计[D]. 长沙:湖南大学,2016.

[41] X.D. Cui, W.X. Shen, Y.L. Zhang, et al. Novel active LiFePO4 battery balancing method based on chargeable and dischargeable capacity[J]. Computers and Chemical Engineering, 2017, 97: 27-35.

[42] 孙延帅. 基于荷电状态估计的电动汽车动力电池组均衡控制研究[D]. 吉林:吉林大学,2017.

[43] Y.H. Han, Y. Li. A Module-Integrated Distributed Battery Energy Storage and Management System[J]. IEEE Transaction On Power Electronics, 2016, 31(12) :8260-8270.

[44] T.Z. Wu, F. Ji, L. Liao, et al. Voltage-SOC balancing control scheme for series-connected lithium-ion battery packs[J]. Journal of Energy Storage. 2019, 25: 100895.1-100895.10.

[45] 徐封杰. 基于电感的电池主动均衡研究[D]. 合肥:合肥工业大学,2018.

[46] K.E. Thomas, J. Newman. Thermal modeling of porous insertion electrodes [J]. Electrochem. Soc, 2003, 150: A176-A192.

[47] W.B. Gu, C.Y. Wang, Thermal-electrochemical modeling of battery systems [J]. Electrochem. Soc, 2000, 147: 2910-2922.

[48] I. Snihir, W. Rey, E. Verbitskiy, et al. Battery open-circuit voltage estimation by a method of statistical analysis[J]. Journal of Power Sources, 2006, 159: 1484-1487.

[49] S. Piller, M. Perrin, A. Jossen. Methods for state-of-charge determination and their application[J]. Journal of Power Sources, 2001, 96: 113-120.

[50] S. Grewal. A novel technique for modeling the state of charge of lithium ion batteries using artificial neural networks. INTELEC 200l, International telecommunications energy conference.Edinburgh[C]// London:Institution of Electrical Engineers, 200l: 174-179.

[51] Y.Q. Shen. Adaptive extended Kalman filter based state of charge determination for lithium-ion batteries[J]. Electrochimica Acta, 2018, 283: 1432-1440.

[52] 李林阳. 电动汽车锂离子电池管理系统研究[D]. 西安:西安科技大学,2018.

[53] 王吉庆. 电动汽车电池组主动均衡控制策略研究及系统实现[D]. 吉林:吉林大学,2018.

[54] 豁长青,曹铭,黄菊花,张婷芳. 一种通用的锂电池模型参数辨识方法[J]. 电源技术,2021,45(04): 455-458.

[55] Y. Wang, Z. Chen, C. Zhang. On-line remaining energy prediction: a case study in embedded battery management system[J]. Applied Energy, 2017, 185: 2026-2032.

[56] J. Lee, O. Nam, B.H. Cho. Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering[J]. Journal of Power Source, 2007, 174(1): 9-15.

[57] S. Chen, Y. Fu, C.C. Mi. State of Charge Estimation of Lithium Ion Batteries in Electric Drive Vehicle Using Extended Kalman Filtering[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1020-1030.

[58] 刘刚. 电池管理系统SOC估算及均衡技术研究[D]. 江苏:中国矿业大学,2017.

[59] 刘征宇,严鹏,许亚娟,武银行. 基于任意单体间能量转移的高效均衡策略[J]. 电工技术学报,2018,34(21):4572-4579.

[60] 王伟. 基于PROTEUS与KEIL C51软件平台的单片机仿真教学[J]. 电子制作,2015, 13:90.

[61] 曹鹏飞. Keil与Proteus软件在单片机教学中的应用[J]. 电子世界,2017,2:78、80.

中图分类号:

 U469.72    

开放日期:

 2021-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式