论文中文题名: |
不同曲线类型的污染物对费氏弧菌的联合毒性研究
|
姓名: |
孙茹茹
|
学号: |
18204209082
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085213
|
学科名称: |
工学 - 工程 - 建筑与土木工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
建筑与土木工程学院
|
专业: |
建筑与土木工程
|
研究方向: |
市政工程
|
第一导师姓名: |
王娜
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-15
|
论文答辩日期: |
2021-06-05
|
论文外文题名: |
Study on the joint toxicity of pollutants with different curve types to Vibrio fischeri
|
论文中文关键词: |
特征参数k∙ECx ; CA模型 ; IA模型 ; rMDRx ; 指数函数 ; TNL模型
|
论文外文关键词: |
characteristic parameter k∙ECx ; CA model ; IA model ; rMDRx ; exponential function ; TNL model
|
论文中文摘要: |
︿
混合物的联合毒性评价是毒理学研究的一个重要课题。前期的研究发现,剂量效应曲线(CRC)的特征参数k∙ECx可以判断浓度加和模型(CA)的适用性,物质的CRCs形态与混合物的联合作用有关。本研究进一步评估了k∙ECx在联合毒性评价中的可预测性。采用微孔板毒性分析法测定了12种不同来源的环境污染物对费氏弧菌(V. fischeri)的一元、二元急性毒性。利用CA和独立作用模型(IA)进行二元混合物联合作用的评价。研究了二元混合物联合作用(借助修正的偏移百分比模型(rMDR)的计算)与各组分特性参数k∙ECx关系。由于CA与IA模型存在一定的不足之处,CA模型存在某些预测盲区,而IA模型是一个纯粹的理论构想,因此引入理论非线性联合毒性评价模型(TNL)对部分混合物进行补充评价,对三种模型进行选择优化。
首先,为判断物质的特征参数k∙ECx是否能够表征物质CRCs的形态以及两种常见加和模型对二元混合物联合毒性的评价能力,本研究采用微孔板毒性分析方法测定了环境常见污染物的一元及二元混合物对V. fischeri的急性生物毒性。通过拟合获得单一物质的CRC,并利用CA、IA模型对二元混合物进行联合作用评价。实验结果表明:十二种物质及其二元混合物的CRCs均可用Hill方程很好的拟合。CRCs的拟合参数n值在一定程度上与其形态具有相关性,12种化学物质的特征参数k∙ECx与Hill函数拟合参数n值的大小顺序基本一致。由于k∙ECx对应不同的浓度有其确切值,因此更能反应CRCs在整个浓度区间的形态趋势。依据CA和IA模型的预测结果,由于所选物质的k∙ECx差异较大,65%的等毒性比二元混合物产生了较强的拮抗或协同作用。同一组合,浓度比不同的二元混合物联合作用强度也不同。CA和IA模型对混合物的联合毒性评价结果差异较大,结合实验结果及文献分析,IA模型为最佳的联合作用评价模型。
其次,为探究各组分的k∙ECx之间与混合物联合作用的函数关系,本研究利用数学方法对实验数据进行处理。通过数学拟合发现:无论混合物比例如何变化,各组分的k∙ECx的相对差异与联合作用强度(rMDRx)都很好的服从指数函数。根据∆(k∙ECx)%与rMDRx的变化特征将指数函数分为a1、a2、b1和b2四种类型混合物,对于a1型二元混合物,所有函数均为非单调函数,虚线rMDRx=0和∆(k∙ECx)%=0与指数函数的交点不重合。虚线rMDRx=0与指数函数交点对应的混合物浓度较低,即联合作用方式的改变早于CRC形状的转变。随着∣∆(k∙ECx)%∣增加,联合作用强度先增加后减少再增加,与联合作用的方式无关。对于a2型二元混合物,当拟合的指数函数为非单调函数并且联合作用为拮抗作用时,随着∣∆(k∙ECx)%∣增加,联合作用强度先减少再增加;当联合作用是协同作用时,联合作用强度变化趋势相反。对于b1型二元混合物,当∆(k∙ECx)%>0,随着∆(k∙ECx)%的增加,联合作用强度先减小后增大。当∆(k∙ECx)%<0,联合作用强度变化趋势相反。对于b2型二元混合物拟合的指数函数均为单调函数,且无论作用方式如何,增减函数的概率都是相近的。四种类型的不同浓度比二元混合物的联合作用规律同等毒性研究结果,说明该规律具有普遍适用性。该规律的确定为多元混合物联合毒性的预测奠定基础。
最后,为了对混合物联合毒性评价模型进行选择优化,本研究引入TNL模型并利用三种模型对混合物进行评价。TNL模型源于混合物联合作用的定义,研究者也从生化水平检测验证了其正确性。本研究选择21组等毒性比二元混合物与2种化学物的5组二元混合物的联合毒性进行补充评价。结果表明:CA、IA和TNL模型的评价结果存在较大差异,有8组混合物作用方式评价出现分歧。当各组分CRC的特征参数k·ECx差异较小时,选用CA模型进行评价。若CA模型出现预测盲点时,直接选用IA模型。当k·ECx差异较大时,宜使用TNL模型进行评价。
综上所述,本研究确定了CRC的特征参数k∙ECx,探明了参数∆(k∙ECx)%与混合物联合作用的函数关系。利用参数k∙ECx预测二元混合物的联合毒性,在规划实验时可以快速获得非常重要的数据,同时也可以减少实验次数。将混合物分为四种类型,分别研究其联合作用的变化规律,能为二元混合物联合毒性的预测及“有效组合”的确定提供更为详细、具体理论支持。对混合物联合毒性评价模型进行了选择优化,将TNL模型作为补充模型,联合CA、IA模型共同应用于二元混合物联合作用评价,可得到准确的结果。
﹀
|
论文外文摘要: |
︿
The evaluation of joint toxicity of mixtures is an important topic in toxicology. Previous studies have found that the characteristic parameter k∙ECx of concentration response curves (CRCs) can be used to assess the applicability of concentration addition model (CA), and the CRCs of substances are related to the combined effect of the mixture. This study further assesses the predictability of k∙ECx on the joint toxicity evaluation. The single and binary acute toxicity of 12 kinds of environmental pollutants from different sources to Vibrio fischeri was tested by using the microplate toxicity analysis. The joint toxicity evaluation of mixtures was conducted by CA and independent action model (IA). The relationship between the joint toxicity of binary mixture (measured by the relative model deviation ratio (rMDR)) and the characteristic parameter k∙ECx of each component was studied. However, the CA and IA models have certain shortcomings. The CA model has some prediction blind spots, and the IA model is a pure theoretical conception. Therefore, the theoretical non-linear combined toxicity assessment model (TNL) is introduced to supplement the evaluation of some mixtures, and the three models are optimally selected.
First of all, in order to determine whether the characteristic parameter k∙ECx of the substance can characterize the form of the substance CRCs and to verify the evaluation ability of two common additive models for the joint toxicity of binary mixtures, the acute toxicities of the single and binary mixtures of common pollutants in the environment to Vibrio fischeri were determined by using the microplate toxicity analysis. The CRC of a single substance was obtained by fitting, and the combined effect of the binary mixture was evaluated using CA and IA models. The result shows that the CRCs of 12 substances and their binary mixtures can be well fitted by Hill equation. The fitting parameter n value of CRCs is correlated with their morphology to some extent. The arrangement of the characteristic parameter k∙ECx of 12 chemical substances and the n value of Hill function fitting parameter is basically the same. Because k∙ECx has its exact value in different concentrations, and the k∙ECx could reflect the shape of CRCs in the whole concentration range. According to the prediction results CA and IA models, due to the large difference in k∙ECx of the selected substances, 65% of the mixtures with equal toxicity ratio produce strong antagonism or synergism. For the same combination, the combined action intensity of binary mixture with different concentration ratio is also different. The joint toxicity evaluation results of the mixture of CA and IA models are quite different. Combined with the experimental results and literature analysis, IA model is the best evaluation model.
Secondly, in order to determine the functional relationship between the k∙ECx of each component and the joint action of the mixture, the experimental data were processed by mathematical methods in this study. Through mathematical fitting, it is found that no matter how the mixture ratio changes, the relative difference of k∙ECx of components and the rMDRx can be fitted by an exponential function. According to the change of ∆(k∙ECx)% and rMDRx, the exponential function is divided into four types of mixtures. For a1 type binary mixtures, all functions are non-monotonic functions. The intersection points of the dotted lines rMDRx=0 and ∆(k∙ECx)%=0 and the exponential function do not coincide. The concentration of the mixture corresponding to the intersection of the dotted line rMDRx=0 and the exponential function is lower. In other words, the change of the combined mode of action precedes the change of CRC shape. With the increase of∣∆(k∙ECx)%∣, the intensity of combined action first increases, then decreases and then increases, This law has nothing to do with the way of joint action. For a2 type binary mixtures, when the fitting exponential functions are non-monotonic and the joint action is antagonistic, with the increase of∣∆(k∙ECx)%∣, the intensity of the combined action first decreases and then increases. When the joint action is synergetic, the intensity of the combined effect changes in the opposite direction. For b1 type binary mixtures, when ∆(k∙ECx)% > 0, with the increase of ∆(k∙ECx)% , the joint action strength first decreases and then increases. When ∆(k∙ECx)% < 0, the intensity of the combined effect changes in the opposite direction. For b2 type binary mixtures, the fitting exponential functions are all monotone functions. Regardless of the mode of action, the probability of increasing or decreasing functions is similar. The combined action law of the four types of binary mixtures with different concentration ratios has the same toxicity study results, indicating that the law has universal applicability. This rule does provide a basis for predicting the combined toxicity of multiple mixtures.
Finally, in order to select and optimize the joint toxicity evaluation model of the mixture, this study introduces the TNL model and uses three models to evaluate the mixture. This model is derived from the definition of mixture combined action, and its correctness has also been verified by biochemical tests. In this study, 21 groups of binary mixtures with equal toxicity ratio and 5 sets of binary mixtures of 2 chemicals were selected for supplementary evaluation. The evaluation results of CA, IA and TNL models were quite different, the action mode of eight groups by the three models was different. When the difference of characteristic parameter k‧ECx value was small, the CA model was used for evaluation. If the CA model has a prediction blind spot, the IA model was directly selected. When the difference of k‧ECx was big, the TNL model should be used.
In summary, the characteristic parameter k∙ECx of CRC was determined, and the functional relationship between the parameter ∆(k∙ECx)% and the combined action of the mixture was explored. The parameter k∙ECx is used to predict the joint toxicity of binary mixtures, which can quickly obtain very important data when planning experiments and the number of experiments can also be reduced. By studying the changing law of the combined action of the four types of mixtures, it can provide more detailed and specific theoretical support for the prediction of the joint toxicity of the binary mixture and the determination of the “effective combination”. The joint toxicity evaluation model of the mixture was selected and optimized. As a supplementary model, the TNL model can be combined with CA and IA models to evaluate the combined effects of binary mixtures, and accurate results can be obtained.
﹀
|
参考文献: |
︿
[1] Meng D, Fan D, Gu W, et al. Development of an integral strategy for non-target and target analysis of site-specific potential contaminants in surface water: A case study of Dianshan Lake, China[J]. Chemosphere, 2020, 243: 125367. [2] Tian Z, Peter K T, Gipe A D, et al. Suspect and nontarget screening for contaminants of emerging concern in an urban estuary[J]. Environmental Science Technology, 2019, 54(2). [3] Vinod K, Daman P R, Anket S, et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses[J]. Chemosphere, 2019, 236: 124364. [4] 高东. 水体的重金属污染与防治[J]. 化工管理,2019(04):37-38. [5] 李玉宝, 夏锦梦, 论东东. 土壤重金属污染的4种植物修复技术[J]. 科技导报, 2017, 35(11): 47-51. [6] Sathasivam R, Ki J S. Differential transcriptional responses of carotenoid biosynthesis genes in the marine green alga Tetraselmis suecica exposed to redox and non-redox active metals[J]. Molecular Biology Reports, 2019, 46(1): 1167-1179. [7] Egorova K S, Ananikov V P. Toxicity of metal compounds: knowledge and myths[J]. Organometallics, 2017, 36(21): 4071-4090. [8] Ota S, Yamaguchi H, Vanel F, et al. Differential heavy metal sensitivity in seven algal species from the NIES culture collection based on delayed fluorescence assays[J]. Phycological Research,2020,68(1). [9] 姜楠. 浅析水体重金属污染的生态效应与防治技术[J]. 科学技术创新, 2020(14): 161-162. [10] Pang G F, Fan C L, Chang Q Y, et al. Screening of 485 pesticide residues in fruits and vegetables by liquid chromatography-quadrupole-time-of-flight mass spectrometry based on tof accurate mass database and qtof spectrum library[J]. Journal of AOAC International, 2018, 101(04). [11] 赵玲, 滕应, 骆永明. 中国农田土壤农药污染现状和防控对策[J]. 土壤, 2017, 49(03): 417-27. [12] Junghans M, Backhaus T, Faust M, et al. Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures[J]. AquaticToxicology (Amsterdam, Netherlands), 2006, 76(2):93-110. [13] Thomas B, Michael F, Martin S, et al. Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action. [J]. Environmental toxicology and chemistry, 2004, 23(2). [14] Faust M, AltenburgeR R, Backhaus T, et al. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants[J]. Aquatic Toxicology, 2001, 56(1): 13-32. [15] 胡振国, 刘菲, 郭张. 环境水样中农药污染分析技术研究进展[J]. 岩矿测试, 2021, 40(1): 16-32. [16] Stenstrm J R, Kreuger J, Goedkoop W. Pesticide mixture toxicity to algae in agricultural streams–Field observations and laboratory studies with in situ samples and reconstituted water[J]. Ecotoxicology Environmental Safety, 2021, 215(L155): 112153. [17] Jin H, Wang C, Shi J, et al. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis [J]. Journal of Hazardous Materials,2014,279:156-162. [18] He Q, Qu R J, Wang X H, et al. Toxicity of arsenic to photobacterium phosphoreum , daphnia magna , and danio rerio at different pH levels[J]. CLEAN – Soil, Air, Water, 2016, 44(1). [19] 高玮岐, 董玉瑛, 汪皓琦, 等. 水体常见喹诺酮类抗生素对发光菌的毒性作用[J]. 湖北农业科学, 2017, 56(16): 3074-3077. [20] 冯晓娜, 杨芷, 孙洁, 等. 有机污染物对发光菌和鱼的毒性相关性研究[J]. 生态毒理学报, 2017, 12(03): 687-694. [21] 张亚雪, 王少坡, 常晶, 等. 水中医药品的污染现状及高级氧化处理[J]. 工业水处理, 2019, 39(03): 11-16. [22] Yang C, Song G, Lim W. A review of the toxicity in fish exposed to antibiotics[J]. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2020, 237: 108840. [23] Kim H, Hong Y, Park J E, et al. Sulfonamides and tetracyclines in livestock wastewater[J]. Chemosphere, 2013, 91(7): 888-894. [24] Sato T, Qadir M, Yamamoto S, et al. Global, regional, and country level need for data on wastewater generation, treatment, and use[J]. Agricultural Water Management, 2013, 130: 1-13. [25] 杨虹. 常见重金属对费氏弧菌的生物毒性研究[J]. 环境科学与管理, 2015, 40(10): 140-142. [26] Fan Y, Liu S S, Qu R, et al. Polymyxin B sulfate inducing time-dependent antagonism of the mixtures of pesticide, ionic liquids, and antibiotics to Vibrio qinghaiensis sp.-Q67[J]. RSC Advances, 2017, 7(10): 6080-6088. [27] Ma X Y, Wang X C, Ngo H H, et al. Reverse osmosis pretreatment method for toxicity assessment of domestic wastewater using Vibrio qinghaiensis sp.-Q67[J]. Ecotoxicology and Environmental Safety, 2013, 97: 248-254. [28] 曾祺雯. 应用重组发光细菌评价水中环境污染物毒性的研究进展[J]. 中国资源综合利用, 2019, 37(01): 97-101, 108. [29] 李钧泽. 生物毒性试验评估水质研究进展[J]. 中国高新科技,2018, (024): 31-33. [30] 查晓松. 生物毒性检测技术在饮用水健康安全评价中应用的研究进展[J]. 科技创新与应用, 2019, (29): 181-182. [31] 张捷, 王海玲. 水环境中微生物检测[J]. 食品安全导刊, 2020, (36): 109+11. [32] 隋成瑶. 发光细菌法在环境监测中的应用[J]. 黑龙江环境通报, 2018, 042(003): 23-25. [33] 游猛. 典型城市污水处理工艺中多种生物毒性检测及水质安全评价[D]. 西安: 西安建筑科技大学, 2017. [34] Dunlap P V, Kuo A. Cell density-dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein[J]. Journal of Bacteriology, 1992, 174(8): 2440-2448. [35] Reading N C, Vanessa S. Quorum sensing: the many languages of bacteria[J]. Fems Microbiology Letters, 2010(1): 1-11. [36] 于振豪, 吕岚清, 刘文侃, 等. 一株海洋发光细菌的分离、鉴定及发光特性[J]. 海南热带海洋学院学报, 2020, 27(05):36-42. [37] Kudryasheva N S, Petrova A S, Dementyev D V, et al. Exposure of luminous marine bacteria to low-dose gamma-radiation[J]. Journal of Environmental Radioactivity, 2017, 169-170. [38] Ramesh C H, Mohanraju R. Predominance of Harveyi clade luminous bacteria in coastal waters of South Andaman, India[J]. Marine Pollution Bulletin, 2020, 158: 111416. [39]王壮. 有机污染物的混合毒性效应研究 [D]. 大连: 大连理工大学, 2007. [40]Carder J P, Hoagland K D. Combined effects of alachlor and atrazine on benthic algal communities in artificial streams[J]. Environmental Toxicology Chemistry, 1998, 17(7). [41] Rider C V, Leblanc G A. An integrated addition and interaction model for assessing toxicity of chemical mixtures[J]. Toxicological Sciences, 2005, 87(2): 520-528. [42] 刘树深, 刘玲, 陈浮. 浓度加和模型在化学混合物毒性评估中的应用[J]. 化学学报, 2013, 71(10): 1335-1340. [43] Tan Y M, Harvey C, Jerry C, et al. Evaluating pharmacokinetic and pharmacodynamic interactions with computational models in supporting cumulative risk assessment[J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1613-1630. [44] Sprague J B, Ramsay B A. Lethal levels of mixed copper–zinc solutions for juvenile salmon[J]. Journal of the Fisheries Research Board of Canada, 1965, 22(2): 425-432. [45] Marking L L. Method for assessing additive toxicity of chemical mixtures[R]. Philadelphia: Special Technical Publication, 1977. [46] Könemann H. Fish toxicity tests with mixtures of more than two chemicals: a proposal for a quantitative approach and experimental results[J]. Toxicology, 1981, 19(3): 229-238. [47] Bundschuh M, Goedkoop W, Kreuger J. Evaluation of pesticide monitoring strategies in agricultural streams based on the toxic-unit concept — Experiences from long-term measurements[J]. Science of The Total Environment, 2014, 484: 84-91. [48] 汪皓琦, 董玉瑛, 汪灵伟. 3种新型污染物对发光菌的毒性作用研究[J]. 生态毒理学报, 2018, 013(004): 179-184. [49] Prakash J, Nirmalakhandan N, Sun B, et al. Toxicity of binary mixtures of organic chemicals to microorganisms[J]. Water Research, 1996, 30(6): 1459-1463. [50] 曾鸣, 林志芬, 尹大强, 等. 混合污染物联合毒性研究进展[J]. 环境科学与技术, 32(02): 80-86. [51] 徐小庆, 郭璞, 王晓静, 等. 浓度加和模型与独立作用模型在化学混合物联合毒性预测方面的研究进展[J]. 动物医学进展, 2020, 41(4): 91-94. [52] Spurgeon D J, Jones O A, Dorne J L C M, et al. Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures[J]. Science of the Total Environment, 2010, 408(18): 3725-3734. [53] 邓杨, 覃礼堂, 曾鸿鹄, 等. 基于主成分回归的整合模型预测重金属混合物毒性[J]. 中国环境科学, 2018, 38(05): 1970-1978. [54] Yoo J W, Cho H, Lee K W, et al. Combined effects of heavy metals (Cd, As, and Pb): Comparative study using conceptual models and the antioxidant responses in the brackish water flea[J]. Comparative Biochemistry and Physiology part C Toxicology and Pharmacology, 2021, 239: 108863. [55] Qu R , Liu S S , Chen F, et al. Complex toxicological interaction between ionic liquids and pesticides to Vibrio qinghaiensis sp.-Q67[J]. RSC Advances, 2016, 24: 21012–21018. [56] Wang Z, Wang S, Peijnenburg W J G M, et al. Prediction of joint algal toxicity of nano-CeO 2 /nano-TiO 2 and florfenicol: Independent action surpasses concentration addition[J]. Chemosphere, 2016, 156: 8-13. [57] Jonker M J, Svendsen C, Bedaux J J M, et al. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis[J]. Environmental toxicology chemistry, 2005, 24(10): 2701-2713. [58] Grimme L H, Faust M, Boedeker W, et al. Aquatic toxicity of chemical substances in combination: Still a matter of controversy[J]. Human and Ecological Risk Assessment: An International Journal, 2008, 2(3):426-433. [59] Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects[J]. Toxicology Letters, 2003, 142(3): 185-194. [60] Altenburger R, Nendza M, Schüürmann G. Mixture toxicity and its modeling by quantitative structure-activity relationships[J]. Environmental Toxicology and Chemistry, 2003, 22 (8): 1900-1915. [61] Jonker M J, Svendsen C, Bedaux J J M, et al. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis[J]. 2005, 24(10). [62] 张超. 基于整合模型预测相互作用混合物联合毒性[D]. 桂林: 桂林理工大学, 2014. [63] Nagai T, de Schamphelaere K A C. The effect of binary mixtures of zinc, copper, cadmium, and nickel on the growth of the freshwater diatom Navicula pelliculosa and comparison with mixture toxicity model predictions[J]. Environmental Toxicology Chemistry, 2016, 35(11). [64] Wang N, Wang X C, Ma X Y. Characteristics of concentration-inhibition curves of individual chemicals and applicability of the concentration addition model for mixture toxicity prediction.[J]. Ecotoxicology and environmental safety, 2015, 113: 176-182. [65] Kortenkamp A, Backhaus T, Faust M. State of the art report on mixture toxicity. Report for Directorate General for the Environment of the European Commission.[J]. 2009. [66] Olmstead A W, Leblanc G A. Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model[J]. Integrated Environmental Assessment and Management: An International Journal, 2005, 1(2): 114-122. [67] Mwense M, Wang X Z, Buontempo F V, et al. Prediction of noninteractive mixture toxicity of organic compounds based on a fuzzy set method[J]. Journal of Chemical Information and Computer Sciences, 2004, 44(5): 1763-1773. [68] Qin L T, Liu S S, Zhang J, et al. A novel model integrated concentration addition with independent action for the prediction of toxicity of multi-component mixture[J]. Toxicology, 2011, 280(3): 164-172. [69] Cedergreen N, Christensen A M, Kamper A, et al. A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites[J]. Environmental Toxicology and Chemistry, 2008, 27(7): 12. [70] 朱文杰, 郑天凌, 李伟民. 发光细菌与环境毒性检测[M]. 北京: 中国轻工业出版社, 2009, 8-10. [71] 李恺, 刘树深, 屈锐. 组合指数在环境混合物联合毒性研究中的初步应用[J]. 生态毒理学报, 2017, 12(03): 62-71. [72] 王娜, 马晓妍, 王晓昌, 等. 基于物质剂量效应曲线形状的联合作用分析[J]. 安全与环境学报, 2018, 18(01): 386-90. [73] 窦容妮, 刘树深, 刘海玲, 等. 部分含J-型剂量-效应关系二元混合物的毒性效应[J]. 生态毒理学报, 2010, 5(04): 498-504. [74] Brezovšek P, Eleršek T, Filipič M. Toxicities of four anti-neoplastic drugs and their binary mixtures tested on the green alga Pseudokirchneriella subcapitata and the cyanobacterium Synechococcus leopoliensis[J]. Water Research, 2014, 52: 168-177. [75] Chao T C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. [J]. Pharmacological Reviews, 2006, 58(3): 621-681. [76] Baas J, Van Houte B P P, Van Gestel C A M, et al. Modeling the effects of binary mixtures on survival in time [J]. Environmental Toxicology and Chemistry, 2007, 26(6). [77] Jonker J M, Svendsen C, Bendaux J J M, et al. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis[J]. Environmental toxicology and chemistry, 2005, 24(10). [78] 王娜. 基于发光细菌生物毒性检测的混合毒性评价及预测研究[D]. 西安: 西安建筑科技大学, 2014. [85] Chen Y H, Qin L T, Mo L Y, et al. Synergetic effects of novel aromatic brominated and chlorinated disinfection byproducts on Vibrio qinghaiensis sp.-Q67[J]. Environmental Pollution, 2019, 250: 375-385. [80] Loewe S, Muischnek H. Effect of combinations: mathematical basis of problem[J]. Archiv fur Experimentalle Pathologie und Pharmakologie, 1926, 114: 313-326. [81] Bliss C I. The toxicity of poisons spplied jointly[J]. Annals of Applied Biology, 1939, 26: 585-615. [82] 王娜, 王晓昌, 马晓妍. 菌密度对青海弧菌生物毒性测试的影响 [J]. 安全与环境学报, 2014, 14(01): 306-310. [83] Chowdhury S, Mazumder M A J, Al-attas O, et al. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries[J]. Science of The Total Environment, 2016, 569-570: 476-488. [84] Gao C, Gao L, Duan P F, et al. Evaluating combined toxicity of binary heavy metals to the cyanobacterium Microcystis: A theoretical non-linear combined toxicity assessment method[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109809. [85] Wang A W, Zhu Q, Xing Z P. A functionalized chitosan wrinkled hollow sphere containing calcium ions: Efficient adsorption of sodium dodecylbenzenesulfonate (SDBS) from aqueous solutions[J]. Journal of Colloid and Interface Science, 2019, 555: 203-213. [86] Yu J, Cui Y, Zhang H, et al. Degradation of SDBS in water solutions using plasma in gas-liquid interface discharge: Performance, byproduct formation and toxicity evaluation[J]. Chemosphere, 2019, 234: 471-477. [87] Ruiz De Arcaute C, Soloneski S, Larramendy M L. Evaluation of the genotoxicity of a herbicide formulation containing 3,6-dichloro-2-metoxybenzoic acid (dicamba) in circulating blood cells of the tropical fish Cnesterodon decemmaculatus[J]. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 2014, 773: 1-8. [88] Sorensen K C, Stucki J W, Warner R E, et al. Modulation of the genotoxicity of pesticides reacted with redox‐modified smectite clay[J]. Environmental and molecular mutagenesis, 46(3): 174-181. [89] Jones G M, Vale J A. Mechanisms of toxicity, clinical features, and management of diquat poisoning: a review[J]. Journal of Toxicology: Clinical Toxicology, 2000, 38(2): 123-128. [90] De Figueiredo-Filho L C S, Baccarin M, Janegitz B C, et al. A disposable and inexpensive bismuth film minisensor for a voltammetric determination of diquat and paraquat pesticides in natural water samples[J]. Sensors and Actuators B: Chemical, 2017, 240: 749-756. [91] Zambianco N A, Silva T A, Zanin H, et al. Novel electrochemical sensor based on nanodiamonds and manioc starch for detection of diquat in environmental samples[J]. Diamond and Related Materials, 2019, 98: 107512. [92] Vinhal J O, Nege K K, Lage M R, et al. Adsorption of the herbicides diquat and difenzoquat on polyurethane foam: Kinetic, equilibrium and computational studies[J]. Ecotoxicology and Environmental Safety, 2017, 145: 597-604. [93] Zhang Q, Cheng J P, Xin Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos[J]. Ecotoxicology, 2015, 24(4): 707-719. [94] Ji J Y, Ahn Y, Khare S, et al. An in vitro study to assess the impact of tetracycline on the human intestinal microbiome[J]. Anaerobe, 2018, 49: 85-94. [95] Cui D, Mebel A M, Arroyo-Mora L E, et al. Fundamental study of the ultrasonic induced degradation of the popular antihistamine, diphenhydramine (DPH)[J]. Water Research,2018, 144: 265-273. [96] Guo Y, Liu T, Zhang J, et al. Biochemical and genetic toxicity of the ionic liquid 1‐octyl‐3‐methylimidazolium chloride on earthworms (Eisenia fetida)[J]. Environmental toxicology and chemistry, 2016, 35(2): 411-418. [97] Liu T, Zhu L, Wang J, et al. The genotoxic and cytotoxic effects of 1-butyl-3-methylimidazolium chloride in soil on Vicia faba seedlings[J]. Journal of Hazardous Materials, 2015, 285: 27-36. [98] Zhang J, Liu S S, Xiao Q F, et al. Identifying the component responsible for antagonism within ionic liquid mixtures using the up-to-down procedure integrated with a uniform design ray method[J]. Ecotoxicology and Environmental Safety, 2014, 107: 16-21. [99] Ge H L, Liu S S, Su B X, et al. Predicting synergistic toxicity of heavy metals and ionic liquids on photobacterium Q67[J]. Journal of Hazardous Materials, 2014, 268: 77-83. [100] Zhang J, Liu S S, Yu Z Y, et al. The time-dependent hormetic effects of 1-alkyl-3-methylimidazolium chloride and their mixtures on Vibrio qinghaiensis sp. -Q67[J]. Journal of Hazardous Materials, 2013, 258-259. [101] Belden J B, Gilliom R J, Lydy M J. How well can we predict the toxicity of pesticide mixtures to aquatic life?[J]. Integrated Environmental Assessment and Management, 2010, 3: 364-372. [102] Tan Y M, Clewell H, Campbell J, et al. Evaluating pharmacokinetic and pharmacodynamic interactions with computational models in supporting cumulative risk assessment[J]. International Journal of Environmental Research and Public Health, 2011, 8(5). [103] Dou R N, Liu S S, Mo L Y, et al. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos[J]. Environmental Science Pollution Research, 2011, 18(5): 734-742. [104] Lasch A, Lichtenstein D, Marx-Stoelting P, et al. Mixture effects of chemicals: The difficulty to choose appropriate mathematical models for appropriate conclusions[J]. Environmental Pollution, 2020, 260, 113953. [105] Yamagishi T, Horie Y, Tatarazako N. Synergism between macrolide antibiotics and the azole fungicide ketoconazole in growth inhibition testing of the green alga Pseudokirchneriella subcapitata[J]. Chemosphere, 2017, 174, 1-7. [106] Liu S S, Wang C L, Zhang J, et al. Combined toxicity of pesticide mixtures on green algae and photobacteria[J]. Ecotoxicology and Environmental Safety, 2013, 95, 98-103. [107] Cao D J, Shi X D, Li H, et al. Effects of lead on tolerance, bioaccumulation, and antioxidative defense system of green algae, Cladophora[J]. Ecotoxicology and Environmental Safety, 2015, 112, 231-237. [108] Magdaleno A, Saenz M E, Juárez A B, et al. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata[J]. Ecotoxicology and Environmental Safety, 2015, 113, 72-78. [109] Gao C, Gao L, Duan P F, et al. Evaluating combined toxicity of binary heavy metals to the cyanobacterium Microcystis: A theoretical non-linear combined toxicity assessment method[J]. Ecotoxicology and Environmental Safety, 2020, 187, 109809. [110] 王娜,王晓昌,马晓妍. 化学物质对发光菌的联合毒性评价方法[J]. 环境工程学报, 2014, 8(09): 4040-4046. [111] 宋晓青, 刘树深, 刘海玲, 等. 部分除草剂与重金属混合物对发光菌的毒性[J]. 生态毒理学报, 2008, (03): 237-243. [112] 王滔, 张瑾, 卞志强, 等. 2种经典模型对抗生素与重金属锌的蛋白核小球藻时间依赖联合毒性作用的评估比较[J]. 生态毒理学报, 2019, 14(04): 130-139. [113] Backhaus T, Blank H, Faust M. Hazard and risk assessment of chemical mixtures under REACH - State of the art, gaps and options for improvement [J]. 2010, 10(1): 15. [114] 孟紫强. 环境毒理学[M]. 北京: 中国环境科学出版社, 2000, 44. [115] 申哲民. 环境毒理学: Environmental toxicology [M]. 上海: 上海交通大学出版社, 2014, 196-197. [116] Puckowski A, Stolte S, Wagil M, et al. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna[J]. International Journal of Hygiene and Environmental Health, 2017, 220(3): 575-582.
﹀
|
中图分类号: |
X708
|
开放日期: |
2021-06-16
|