- 无标题文档
查看论文信息

论文中文题名:

 过流水冷多片盘式制动器的设计与分析    

姓名:

 郭春秋    

学号:

 18305201005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085201    

学科名称:

 工学 - 工程 - 机械工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 湿式制动器    

第一导师姓名:

 张红兵    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-25    

论文答辩日期:

 2021-05-28    

论文外文题名:

 Design and Analysis of Multi-disc Brake with Overflow Cooling    

论文中文关键词:

 湿式制动器 ; 水冷型多片盘式制动器 ; 有限元分析 ; 热流固耦合 ; 制动性能    

论文外文关键词:

 Wet brake ; Water-cooled multi-disc friction brake ; Finite element analysis ; Thermal fluid-structure coupling ; Braking performance    

论文中文摘要:

采煤机在采煤过程中,尤其在大倾角、急倾斜工作面工作时,所需制动扭矩大,容易导致制动器发热、磨损。制动摩擦盘在工作中容易产生热变形、热衰退等现象,甚至出现因过热造成的摩擦失效、制动失稳及结构损坏等情况。本论文旨在原有多盘制动器的基础上,结合采煤机的结构及工作特点,通过对多盘制动器结构的改进,利用采煤机冷却系统的水路系统,对制动器摩擦片进行过流式强制水冷,改善其工作性能,克服采煤机制动器失稳现象,提出循环水介质多片盘式制动器,并对制动器展开一系列的设计与分析,研究内容包括以下几方面:

(1)在现有多片盘式制动器的的基础上,通过结构改进,完成过流水冷多片盘式制动器的原理及结构设计。

(2)以MG/750/1910型采煤机为对象,结合采煤机冷却喷雾系统的水路组成,完成过流水冷多片盘式制动器水路系统设计;针对该机型,结合采煤机主要工作参数,对制动器主要性能参数进行了计算,提出了制动器设计要求,完成了整体结构的设计与计算。

(3)对过流水冷盘式制动器的工作性能进行仿真分析和研究。使用有限元分析软件对制动器动、静摩擦片以及制动腔体中的过流冷却流场建立了有限元模型,对制动盘固体变形场和流场进行了数字分析和计算。针对摩擦片表面的接触应力进行仿真分析,获取其表面的接触压力分布。并对湿式多盘制动器腔体内的循环冷却水进行了流场仿真分析,得到了过流水冷多片盘式制动器制动时流场流速及压力的分布特点。利用 ANSYS Workbench软件建立了多片盘式制动器制动过程中的热流固耦合模型,对过流水冷方式下的制动器的制动温升进行了仿真分析。

(4)通过对比试验对过流水冷多片盘式制动器实际制动性能进行分析,分别对过流水冷多片盘式制动器与普通多片盘式制动器进行对比试验,测试制动器的制动性能和散热能力。最终发现过流水冷多片盘式制动器在保证制动性能满足要求的前提下大大提高了散热能力,多次紧急制动试验中水冷制动器与普通制动器相比,制动结束后的温度显著降低,且在持续制动试验中水冷制动器的温升速度缓慢,具有较好的工作稳定性。

本文提出的过流水冷多片盘式制动器具有强散热、制动性能稳定、工作可靠的特点,在采煤机现有工作系统的基础上,对普通制动器不需进行大的结构变化,利用采煤机现有的喷雾冷却系统的水路,通过引入过流水冷的方式,显著改善传统多片摩擦式制动器的工作性能,从而提高了采煤机工作的安全性和可靠性。本文所得结论具有较好的工程应用前景和较高的使用推广价值。

论文外文摘要:

In the working process of shearer, especially in the working face with large dip angle and steep dip angle, the braking torque required is large, which is easy to cause the brake heating and wear. The brake friction disc is easy to produce thermal deformation, thermal decay and other phenomena in the work, and even the friction failure, brake instability and structural damage caused by overheating. In this paper, on the basis of the original multi disc brake, combined with the structure and working characteristics of the shearer, through the improvement of the structure of the multi disc brake, and the hydraulic system of the shearer cooling system is used to carry out the forced water cooling of the brake friction plate, so as to improve its working performance. In order to overcome the instability phenomenon of shearer brake, a multi disc brake with circulating water medium is put forward, and a series of design and analysis of the brake are carried out. The research content includes the following aspects:

(1) On the basis of the existing multi disc brake, through the structural improvement, the principle and structural design of the super water cooling multi disc brake are completed.

(2) Taking the MG/750/1910 shearer as the research object, combined with the water component of the cooling and spraying system of the shearer, the design of the water system for the multi disc brake system with water cooling is completed. According to the main working parameters of the shearer, the main performance parameters of the brake are calculated, the design requirements of the brake are put forward, and the design and calculation of the overall structure are completed.

(3) Simulation analysis and Research on the working performance of the over flow cold disc brake are carried out. The finite element analysis software is used to establish the finite element model of the flow field of the brake's dynamic and static friction plates and the over-current cooling in the brake chamber. The solid deformation field and flow field of the brake disc are analyzed and calculated. The contact stress on the surface of the friction plate is simulated and the contact pressure distribution is obtained.The flow field of the circulating cooling water in the cavity of the wet multi-disc brake is simulated and the distribution characteristics of flow velocity and pressure of the multi-disc brake were obtained. The thermal fluid-structure coupling model of multi-disc brake is established by ANSYS Workbench, and the braking temperature rise of multi-disc brake is simulated and analyzed.

(4) Through the comparative test, the actual braking performance of the super water cooling multi disc brake is analyzed, and the comparative test between the super water cooling multi disc brake and the ordinary multi disc brake is carried out to test the braking performance and heat dissipation capacity of the brake. Finally, it is found that under the premise of ensuring the braking performance to meet the requirements, the heat dissipation capacity of the water-cooled multi disc brake is greatly improved. Compared with the ordinary brake, the temperature of the water-cooled brake is significantly lower after braking in many emergency braking tests, and the temperature rise speed of the water-cooled brake is slow in the continuous braking test, which has good working stability. It can be seen that the over water cooling multi disc brake has the characteristics of strong heat dissipation, stable braking performance and reliable operation. On the basis of the existing working system of the shearer, there is no need to make large structural changes to the common brake, and the existing spray cooling system water system of the shearer is introduced through the way of over water cooling. The working performance of the traditional multi disc friction brake is significantly improved, so as to improve the safety and reliability of the shearer. The conclusion of this paper has good engineering application prospect and high application value.

参考文献:

[1]孔令军.刍议现代煤矿企业提升采煤效率的有效措施[J].中国高新技术企业,2015(09):155-157.

[2]漆俐.湿式与干式制动器的比较及应用[J].建筑机械化,2006(10):29-31.

[3]刘佳.采煤机液压制动器的分析与改进[J].机械管理开发,2019,2:77-81.

[4]Valvano T,Lee K J. An Analytical Method to Pre-dict Thermal Distortion of a Brake Rotor[C]//Pro-ceedings of the SAE 2000 World Congress. Detroit,2000: 1537-1545.

[5]Choi J H.Lee I. Finite Element Analysis of Transi-ent Thermoelastic Behaviors in Disk Brakes [ J ].Wear, 2004,257(1/2):47-58.

[6]Day A J,Tirovic M.Newcomb T P. Thermal Effectsand Pressure Distributions in Brakes[J」. Proceed-ings of the Institution of Mechanical Engineers. PartD: Journal of Automobile Engineering, 1991,205(3):199-206.

[7]Aviles R, Hennequet G. Low F requency V ibrationsin Disc Brakes at High Car Speed,Part I : Mathe-matical Model and SimulationLJ」. International Journal of Vehicle Design, 1995,16(6):556- -569.

[8]Hwang P, Wu X,Cho S W,et al. Temperature and Coning Analysis of Ventilated Brake Disc Based on-Finite Element Technique [ C ]/ /Proceedings of the14th Asia Pacific Automotive Engineering Conference. Hollywood ,2007 ,SAE Paper ,2007-01-3670.

[9]吕振华.亓昌.蹄—鼓式制动器热弹性耦合有限元分析[J].机械强度2003 ,25(4):401-407.

[10]Gao C H,HuangJ M,Lin X Z,et al. Stress Analysis of Thermal Fatigue Fracture of Brake Discs Basedon Thermomechanical CouplingLJ]. Journal of Tri-bology, 2007 ,129(3) :536-543.

[11]杨智勇,韩建民,李卫京,等.制动盘制动过程的热—机耦合仿真[J].机械工程学报.2010.46(2) :88-92.

[12]彭增雄.基于流固耦合震动理论的湿式离合器高速稳定性研究[D].北京:北京理工大学,2016.

[13]周新建.采煤机湿式多盘制动器的散热问题[J].机床与液压,2004,8:176-179.

[14]高洋洋 ,何锋 ,余国宽 ,等.油槽结构影响湿式制动器摩擦盘流体换热分析[J].机械设计与制造,2018,6:203-206.

[15]王晶,冯茂林。车用多功能湿式多盘制动器[J]矿山机械,1999(1):53~54

[16]刘佳.采煤机液压制动器的分析与改进[J].机械管理开发,2019,2:77-81

[17]王淼.湿式多盘制动器的设计与研究[D].西安:长安大学,2016.

[18]王晶,姚志芳.车用湿式多盘制动器[J].建筑机械,2000,2:46-52.

[19]蔡运迪,唐文献,黄秋芸,王玲玲.水冷盘式制动器热疲劳失效有限元分析[J].中国机械工程,2012,23(22):2726-2731.

[20]张云龙,诸文农,张子达.湿式多盘制动器衬片压力分布模型及性能计算[J].吉林工业大学学报,1994,1:10-15.

[21]曾红,苏国营,郭 超,等.盘式制动器流固耦合传热仿真分析及试验研究[J].机械传动,2016,9:114-117.

[22]邢玉涛,战凯,刘大维,等.全封闭湿式多盘制动器温度场的有限元分析[J].矿冶,2007,16(1):57-60.

[23]吴小川.多片湿式制动器热摩擦特性分析[D].重庆:重庆交通大学,2014.

[24]唐衍稳,李宏才,阎清东.湿式多片制动器摩擦偶件温度场的研究[J].起重运输机械,2002,1:65-71.

[25]杜少敏.湿式多盘制动器在煤矿运输系统中的应用探讨[J].陕西煤炭,2018,3:36-41.

[26]王晶,冯茂林.车用多功能湿式多盘制动器[J]矿山机械,1999(1):53~54

[27]于建华.矿用湿式多盘制动器工作原理及冷却系统的设计[J].煤矿机械,2011,11:25-27.

[28]高梦熊.封闭多盘湿式制动器冷却系统的设计[J].起重运输机械,2004,3:39-42.

[29]曾红,苏国营,郭超,等.盘式制动器流固耦合传热仿真分析及试验研究[J].机械传动,2016,9:114-117.

[30]唐衍稳,李宏才,阎清东.湿式多片制动器摩擦偶件温度场的研究[J].起重运输机械,2002,1:65-71.

[31]朱同明.矿用无轨胶轮车湿式多盘制动器性能试验装置的设计[J].煤炭技术,2018,8:118-122.李文军.湿式多盘制动器的特点及应用[J].煤矿机械,2013,1:78-82.

[32]马少杰,袁军堂,董雪花,液压湿式制动器制动活塞的密封机

理研究[J].润滑与密封,2002,(3):10-12.

[33]Przemyslaw Zagrodzki, Wenping Zhao. Thermoelastic behaviour of an automatic transmission clutch with a 'finger' piston involving thermoelastic instability[J]. Int. J. of Vehicle Design,2008,48(1/2).

[34]Heerok Hong,Minsoo Kim,Hoyong Lee,Naktak Jeong,Hyunguk Moon,Eunseong Lee,Hyungmin Kim,Myungwon Suh,Jongduk Chung,Junghwan Lee. The thermo-mechanical behavior of brake discs for high-speed railway vehicles[J]. Journal of Mechanical Science and Technology,2019,33(4).

[35]Josef Voldřich. Frictionally excited thermoelastic instability in disc brakes—Transient problem in the full contact regime[J]. International Journal of Mechanical Sciences,2006,49(2).

[36]周新建,郭列琰.采煤机水介质液压制动器的研制[J].液压与气动,2006.8.56-61

[37]刘健红,王文虎.湿式制动器的几种密封方案的分析研究[J].液压气动与密封.2014.12.1-3

[38]宋玉栋.基于热流固耦合的湿式多盘制动器的温度场及应力场分析[D].山东:山东理工大学,2017.

[39]陈遥飞.湿式多片离合器热失效及摩擦特性研究[D].重庆:重庆大学,2009.

[40]呼勒宏.采煤机液压盘式制动器试验台的研制[D].西安:西安科技大学,2008.

[41]中华人民共和国专业标准.工程机械湿式铜基摩擦片技术条件.ZBJ19019-89.

[42]马胜利,王晔,张立平,路正雄.采煤机湿式多片盘式制动器温度分布研究[J].煤炭技术,2016,35(07):229-231.

[43]朱爱强,刘佐民.材料匹配性对盘式制动器摩擦温度场的影响[J].润滑与密封,2008(03):62-65.

[44]Xin R. C.,Tao W. Q.. Analytical Solution for Transient Heat Conduction in Two Semi-infinite Bodies in Contact[J]. Journal of Heat Transfer,1994,116(1).

[45]周虎. 采煤机用自动闭锁在线检测功能液压制动器的研制[D].西安:西安科技大学,2018.

[46]张传芳. 基于CFD的多片湿式离合器摩擦片间流体特性研究[D].吉林:吉林大学,2014.

[47]徐丹.基于ANSYS的盘式制动器结构有限元分析[J].林业机械与木工设备,2020,48(09):35-39+44.

[48]李康康. 采煤机用制动器液压检测试验台研制[D].西安:西安科技大学,2019

李东青. 采煤机用制动器性能试验台的研制[D].西安:西安科技大学,2017

中图分类号:

 TD421    

开放日期:

 2021-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式