- 无标题文档
查看论文信息

论文中文题名:

 黄土高原极端气候时空变化及其对植被的影响    

姓名:

 赵滢滢    

学号:

 21210226101    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0857    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 环境遥感与空间分析    

第一导师姓名:

 杨梅焕    

第一导师单位:

 西安科技大学    

第二导师姓名:

 郭举乾    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Temporal and spatial changes of extreme climate in the Loess Plateau and its impacts on vegetation    

论文中文关键词:

 极端气候 ; 时空变化 ; NDVI ; CMIP6 ; 黄土高原    

论文外文关键词:

 Extreme climate ; Temporal and spatial changes ; NDVI ; CMIP6 ; Loess Plateau    

论文中文摘要:

联合国政府间气候变化专门委员会(IPCC)第六次评估报告指出,气候变化正在改变地球环境,特别是极端气候事件发生的频率和强度均呈增加态势,给人类社会和自然生态系统带来不同程度的影响和挑战。黄土高原是我国典型的生态脆弱区和气候敏感区,系统分析其极端气候特征和未来趋势及其对植被的影响研究,对于黄土高原应对气候变化及生态政策调整可提供科学支持。本文以黄土高原为研究区,基于1960-2020年气象数据、2001-2020年MOD13C2归一化植被指数(NDVI)和1960-2100年NEX-GDDP-CMIP6数据集,采用线性回归、M-K检验、相关性分析、双线性插值和多元线性回归等方法,分析了该地区极端气候指数和植被NDVI的时空变化特征及极端气候对植被NDVI的影响,并对不同气候情景下未来(2015-2100年)极端气候指数以及植被NDVI的变化进行了预测。主要研究结论如下:

(1)年际变化上,黄土高原地区极端降水指数和极端气温指数均呈上升趋势。极端降水指数主要表现为总降水量(PRCPTOT)、中雨日数(R10mm)、大雨日数(R20mm)、强降水日数(R25mm)和降水强度(SDII)呈显著上升趋势(P<0.05)。极端气温指数主要表现为最高气温(TMAXmean)、最低气温(TMINmean)、冷夜指数(TN10p)和暖夜日数(TN90p)呈显著上升趋势(P<0.05)。季节变化上,极端降水指数中春季、夏季和秋季最大日降水量(RX1day)均呈上升趋势,春季和夏季最大5天连续降水量(RX5day)呈上升趋势,秋季最大5天连续降水量(RX5day)呈下降趋势;春季、夏季和秋季极端气温指数整体呈上升趋势。其中,春季和夏季最高气温(TMAXmean)呈上升趋势的站点数量最多,占比为96.88%。月变化上,极端降水中11月最大日降水量(RX1day)和最大5天连续降水量(RX5day)呈上升趋势的站点最多,占92.19%和95.31%;极端气温指数中最高气温(TMAXmean)3月呈上升趋势的站点数量最多,占98.44%。综上,黄土高原地区总体上降水量和气温均呈增加趋势,暖湿化特征明显。

(2)年际变化上,2001-2020年黄土高原地区NDVI呈显著增加趋势(P<0.01);空间上呈增加趋势的区域占区域总面积的94.22%,其中显著增加区域占72.06%(P<0.05),主要分布在山西省、陕西省中北部、内蒙古自治区南部和甘肃省东部地区。季节变化上,黄土高原地区春、夏和秋季NDVI均呈显著增加趋势(P<0.01),且夏季和秋季增加速率高于春季;空间上春季、夏季和秋季呈增加趋势的区域占区域总面积的比重分别为91.14%、93.48%和95.07%,其中呈显著增加的区域占比分别为62.72%,70.76%和70.59%,主要分布在山西西部、陕西中北部和内蒙古自治区东部。月变化上,月NDVI均呈显著增加趋势(P<0.01),其中7月和8月增加速率最高,均为0.07/10a;在黄土高原南部部分地区NDVI呈显著减少趋势,主要由城市扩张导致。

(3)极端气候对植被NDVI具有不同程度的影响。年尺度上,极端降水指数中总降水量(PRCPTOT)、中雨日数(R10mm)和强降水日数(R25mm)与植被NDVI呈显著正相关关系(P<0.05);大雨日数(R20mm)和降水强度(SDII)与植被NDVI呈显著正相关关系达,且到了0.01显著性水平(P<0.01),表明黄土高原地区植被生长与降水关系密切。季节上,春季最大日降水量(RX1day)与NDVI呈显著正相关关系,夏季最低气温(TMINmean)与NDVI呈显著正相关关系,表明春季降水是影响植被生长的主要因素,夏季低温促进植被生长。月尺度上,最高气温(TMAXmean)、最低气温(TMINmean)和暖夜日数(TN90p)与NDVI呈显著正相关(P<0.01),4月为该区植被快速生长阶段,降水的增加和温度的回暖有利于植被的生长。极端降水指数对NDVI的影响存在一定的滞后性,主要对同期和滞后1-2个月的植被生长有明显影响。

(4)利用NEX-GDDP-CMIP6数据集对未来极端气候和植被NDVI进行模拟和预测,结果显示,多模式集合平均值对降水、气温的模拟效果最优。时间上,SSP1-2.6(低辐射强迫,2.6W•m-2情景)和SSP2-4.5(中等辐射强迫,4.5W•m-2情景)情景下未来极端降水指数变化均较大,相较于历史时期两种情景,连续干燥日和最长连续降水均有所增加,总降水量和降水强度相较历史时期减少。极端气温相较历史时期呈上升趋势,主要表现为低温和高温的上升。基于两种情景下预测植被NDVI变化,结果显示,SSP2-4.5情景下植被NDVI优于SSP1-2.6情景下植被NDVI,两种情景下植被NDVI均呈波动上升趋势。

论文外文摘要:

The Sixth Assessment Report of the United Nations Intergovernmental Panel on Climate Change (IPCC) pointed out that climate change is changing the Earth's environment, especially the frequency and intensity of extreme climate events are increasing, bringing varying degrees of impact and challenges to human society and natural ecosystems. The Loess Plateau is a typical ecologically fragile and climate-sensitive area in China. A systematic analysis of its extreme climate characteristics and future trends and their effects on vegetation can provide scientific support for coping with climate change and adjusting ecological policies on the Loess Plateau. Based on 1960-2020 meteorological data, 2001-2020 MOD13C2 normalized Vegetation Index (NDVI) and 1960-2100 NEX-GDDP-CMIP6 data set, the Loess Plateau was selected as the study area. Using linear regression, M-K test, correlation analysis, bilinear interpolation and multiple linear regression, we analyzed the temporal and spatial changes of extreme climate index and vegetation NDVI, and the effects of extreme climate on vegetation NDVI. The future changes of extreme climate index and vegetation NDVI under different climate scenarios (2015-2100 year) are predicted. The main conclusions are as follows:

(1) In terms of inter-annual variation, both the extreme precipitation index and the extreme temperature index in the Loess Plateau showed an increasing trend. The extreme precipitation index mainly showed that the total precipitation (PRCPTOT), the number of moderate rain days (R10mm), the number of heavy rain days (R20mm), the number of heavy precipitation days (R25mm) and the precipitation intensity (SDII) showed a significant increasing trend (P<0.05). The extreme temperature index mainly showed that the maximum temperature (TMAXmean), the minimum temperature (TMINmean), the cold night index (TN10p) and the number of warm night days (TN90p) showed a significant increasing trend (P<0.05). In terms of seasonal variation, the maximum daily precipitation (RX1day) in spring, summer and autumn showed an increasing trend, the maximum 5-day continuous precipitation (RX5day) in spring and summer showed an increasing trend, and the maximum 5-day continuous precipitation (RX5day) in autumn showed a decreasing trend. The extreme temperature index in spring, summer and autumn showed an overall upward trend. Among them, the maximum temperature in spring and summer (TMAXmean) showed an increasing trend, accounting for 96.88%. In terms of monthly variation, the maximum daily precipitation (RX1day) and the maximum 5-day continuous precipitation (RX5day) in November showed an increasing trend, accounting for 92.19% and 95.31%. In the extreme temperature index (TMAXmean), the number of stations with a rising trend in March was the largest, accounting for 98.44%. In summary, the precipitation and temperature in the Loess Plateau showed an increasing trend, and the characteristics of warming and humidification were obvious.

(2) From 2001 to 2020, NDVI in the Loess Plateau showed a significant increasing trend (P<0.01). The regions with a spatial increasing trend accounted for 94.22% of the total area of the region, of which 72.06% were significantly increased (P<0.05), mainly distributed in Shanxi Province, north-central Shaanxi Province, southern Inner Mongolia Autonomous Region and eastern Gansu Province. In terms of seasonal variation, NDVI showed a significant increase trend in spring, summer and autumn (P<0.01), and the increase rate in summer and autumn was higher than that in spring. The proportion of regions with an increasing trend in spring, summer and autumn in the total area of the region was 91.14%, 93.48% and 95.07%, respectively, and the proportion of regions with a significant increase was 62.72%, 70.76% and 70.59%, respectively, mainly distributed in western Shanxi, north-central Shaanxi and eastern Inner Mongolia Autonomous Region. In terms of monthly variation, monthly NDVI showed a significant increasing trend (P<0.01), and the highest increasing rate was 0.07/10a in July and August. In the southern part of the Loess Plateau, NDVI showed a significant decreasing trend, which was mainly caused by urban expansion.

(3) Extreme climate has different effects on NDVI. At the annual scale, the total precipitation (PRCPTOT), the number of moderate rain days (R10mm) and the number of heavy precipitation days (R25mm) in the extreme precipitation index were significantly positively correlated with NDVI (P<0.05). The number of heavy rain days (R20mm) and precipitation intensity (SDII) were positively correlated with NDVI, and reached the significance level of 0.01 (P<0.01), indicating that vegetation growth was closely related to precipitation in the Loess Plateau. Seasonally, the maximum daily precipitation in spring (RX1day) was significantly positively correlated with NDVI, and the minimum temperature in summer (TMINmean) was significantly positively correlated with NDVI, indicating that spring precipitation was the main factor affecting vegetation growth, and low temperature in summer promoted vegetation growth. On the monthly scale, the maximum temperature (TMAXmean), the minimum temperature (TMINmean) and the number of warm night days (TN90p) were significantly positively correlated with NDVI (P < 0.01). April was the stage of rapid growth of vegetation in this region, and the increase of precipitation and warming of temperature were conducive to the growth of vegetation. The effect of extreme precipitation index on NDVI has a certain lag, mainly affecting the vegetation growth in the same period and 1-2 months lag.

(4) The NEX-GDDP-CMIP6 dataset is used to simulate and forecast the future extreme climate and vegetation NDVI. The results show that the multi-model ensemble average has the best simulation effect on precipitation and temperature. In terms of time, both SSP1-2.6 (low radiative forcing, 2.6W•m-2 scenario) and SSP2-4.5 (medium radiative forcing, 4.5W•m-2 scenario) scenarios have greater changes in the future extreme precipitation index. Compared with the two scenarios in the historical period, the continuous dry days and the longest continuous precipitation have increased. The total precipitation and precipitation intensity decreased compared with the historical period. Compared with the historical period, the extreme temperature is on the rise, mainly manifested as the rise of low temperature and high temperature. Based on the prediction of vegetation NDVI changes under two scenarios, the results showed that the vegetation NDVI under the SSP2-4.5 scenario was better than that under the SSP1-2.6 scenario, and the vegetation NDVI under both scenarios showed a fluctuating upward trend.

Key words: Extreme climate; Temporal and spatial changes; NDVI; CMIP6; Loess Plateau

Thesis:Application Research

参考文献:

[1] Wang Y, Sarkar A, Hasan A K, et al. The evaluation of temporal and spatial trends of global warming and extreme ocean surface temperatures: A case study of canada[J]. ISPRS International Journal of Geo-Information, 2021, 11(1): 21-40.

[2] 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学:地球科学,2019, 49(9): 1321-1334.

[3] 张顺利, 陶诗言, 张庆云, 等. 1998年夏季中国暴雨洪涝灾害的气象水文特征[J]. 应用气象学报,2001, (4): 442-457.

[4] 尹宜舟, 李多, 孙劭, 等. 2019年全球重大天气气候事件及其成因[J]. 气象, 2019, 46(4): 459-469.

[5] 张颖娴, 孙劭, 刘远, 等. 2021年全球重大天气气候事件及其成因[J]. 气象, 2022, 48(4): 1321-1334.

[6] 刘昌军, 吕娟, 翟晓燕, 等. 河南“21·7”暴雨洪水风险模拟及对比分析[J]. 水利水电快报, 2021, 42(9): 8-14.

[7] 戴思薇, 倪颖. 基于IPCC第五次评估报告的气候变化与可持续发展分析[J]. 江苏第二师范学院学报, 2014, 30(11): 12-14.

[8] 王蕾, 张百超, 石英, 等. IPCC AR6报告关于气候变化影响和风险主要结论的解读[J]. 气候变化研究进展, 2022,18(4): 389-394.

[9] 迪丽努尔·托列吾别克, 姚俊强, 毛炜峄, 等. 1951—2020年阿富汗气候变化特征分析[J].干旱区研究, 2022, 39(4): 1036-1046.

[10]吴欣宇, 朱秀芳. 中国不同植被区对极端气候的响应差异[J]. 生态学报, 2023, 43(24): 10202-10215.

[11]Alfredo H. Ecology: Vegetation’s responses to climate variability.[J]. Nature, 2016, 531(7593): 229-232.

[12]Ben A A, Bounouh O, Farah I R, et al. Comparative study of three satellite image time-series decomposition methods for vegetation change detection[J]. European Journal of Remote Sensing, 2018, 51(1): 607-615.

[13]Kuan C, Genbatu G, Gang B, et al. Impact of extreme climate on the NDVI of different steppe areas in inner mongolia, China[J]. Remote Sensing, 2022, 14(7): 1530-1545

[14]倪铭,张曦月,姜超,等. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021,45(6): 626-640.

[15]Benjamin A, Gexia Q, Chunbin L, et al. Grassland phenology’s sensitivity to extreme climate Indices in the sichuan province, Western China[J]. Atmosphere, 2021, 12(12): 1650-1671.

[16]吴欣宇, 朱秀芳. 中国不同植被区对极端气候的响应差异[J]. 生态学报, 2023, 43(24): 10202-10215.

[17]樊杰, 王亚飞, 王怡轩. 基于地理单元的区域高质量发展研究——兼论黄河流域同长江流域发展的条件差异及重点[J]. 经济地理, 2020, 40(1): 1-11.

[18]Pei T, Ji Z, Chen Y, et al. The Sensitivity of Vegetation Phenology to Extreme Climate Indices in the Loess Plateau, China[J]. Sustainability, 2021, 13(14): 7623-7641.

[19]杨封科, 何宝林, 高世铭. 气候变化对甘肃省粮食生产的影响研究进展[J]. 应用生态学报, 2015, 26(3): 930-938.

[20]李锐. 黄土高原水土保持工作70年回顾与启示[J]. 水土保持通报, 2019,39(6): 298-301.

[21]童冉, 周本智, 姜丽娜, 等. 我国杉木人工林可持续经营面临的问题及发展策略——基于全国分布区的调查[J]. 世界林业研究, 2019, 32(2): 90-96.

[22]蒋帅, 张黎, 景元书, 等. 1981-2015年中国区域极端气候事件的时空分布特征[J]. 水土保持研究, 2023, 30(6): 295-306.

[23]Pl F, Alexandrl L, Della-Marta P, et al. Observed coherent changes in climatic extremes during 2nd half of the 20th century[J]. Climate Research, 2002, 19(6):193-212.

[24]罗伯良, 张超, 林浩. 近40年湖南省极端强降水气候变化趋势与突变特征[J]. 气象, 2008,1(1): 80-85.

[25]张扬, 楚新正, 杨少敏, 等. 近56 a新疆北部地区气候变化特征[J]. 干旱区研究, 2019, 36(1): 212-219.

[26]Sun W, Li J, Yu R, et al. Exploring changes of precipitation extremes under climate change through global variable-resolution modeling[J]. Science Bulletin, 2024, 69(2): 237-247.

[27]Li C, Dike V N, Lin Z, et al. Projected changes in precipitation extremes over jiulongjiang river basin in coastal southeast China[J]. Frontiers in Earth Science, 2021, 9(9): 2296-6463.

[28]Dickinson T A, Richman M B, Furtado J C. Subseasonal-to-Seasonal extreme precipitation events in the contiguous united States: Generation of a Database and Climatology[J]. Journal of Climate, 2021, 34(18): 7571-7586.

[29]Jamali M, Gohari A, Motamedi A, et al. Spatiotemporal changes in air temperature and precipitation extremes over Iran[J]. Water, 2022, 14(21): 3465-3428.

[30]Gulizia C N, Rggio G A, Camilloni I A, et al. Changes in mean and extreme climate in southern South America under global warming of 1.5 °C, 2 °C, and 3 °C[J]. Theoretical and Applied Climatology, 2022, 152(1-2): 787-803.

[31]TOŠIĆ I, PUTNIKOVIĆ S, TOŠIĆ M, et al. Extreme temperature events in serbia in relation to atmospheric circulation[J]. Atmosphere, 2021, 12(12): 1584-1606.

[32]Alvarez O R, Suastegui A C, ŠTĚPÁNEK P, et al. Temporal trends of daily extreme temperature indices in North-Central Mexico[J]. Meteorologische Zeitschrift, 2022, 31(4): 265-288.

[33]翟盘茂, 潘晓华. 中国北方近50年温度和降水极端事件变化[J]. 地理学报, 2003,(S1): 1-10.

[34]蒋帅, 张黎, 景元书, 等. 1981-2015年中国区域极端气候事件的时空分布特征[J]. 水土保持研究, 2023, 30(6): 295-306.

[35]雅茹, 丽娜, 银山, 等. 1960-2015年内蒙古极端气候事件的时空变化特征[J]. 水土保持研究, 2020, 27(3): 106-112.

[36]周玉科. 1960–2012年青藏高原极端气候时空动态与变异研究(英文)[J]. Journal of Resources and Ecology, 2019, 10(4): 397-414.

[37]徐用兵, 雷秋良, 周脚根, 等. 1960—2015年云南省极端气候指数变化特征研究[J]. 中国农业资源与区划, 2021, 41(11): 15-27.

[38]李胜利, 巩在武, 石振彬. 近50年来山东省极端降水指数变化特征分析[J]. 水土保持研究, 2016, 23(4): 120-127.

[39]孟清, 高翔, 白红英, 等. 1960-2015年秦岭地区极端降水的时空变化特征[J]. 水土保持研究, 2019, 26(6): 171-178+183.

[40]吴丹瑞, 吴安琪, 何新玥, 等. 赣南地区近58年来极端气候变化趋势分析[J]. 长江科学院院报, 2017, 34(1): 24-29+39.

[41]慎璐璐, 杨艳芬, 吴晶, 等. 黄河流域极端气候事件时空变化规律[J]. 水土保持研究, 2022, 29(2): 231-242.

[42]张俊, 高雅琦, 徐卫立, 等. 长江流域极端降雨事件时空分布特征[J]. 人民长江, 2019, 50(8): 81-86+135.

[43]吴路华, 王世杰, 白晓永, 等. 近60年来印江河流域极端气候演变及其对净初级生产力和归一化植被指数的影响[J]. 生态学报, 2022, 42(3): 960-981.

[44]赵安周, 刘宪锋, 朱秀芳, 等. 1965-2013年黄土高原地区极端气温趋势变化及空间差异[J]. 地理研究, 2016, 35(4): 639-652.

[45]杨维涛, 孙建国, 康永泰, 等. 黄土高原地区极端气候指数时空变化[J]. 干旱区地理, 2020, 43(6): 1456-1466.

[46]刘盼, 赵西宁, 高晓东, 等. 黄土高原极端气温变化特征及其与平均气温的相关性[J]. 应用生态学报, 2022, 33(7): 1975-1982.

[47]张天峰, 王位泰, 姜惠峰, 等. 甘肃陇东黄土高原暖冬异常气候事件特征分析[J]. 中国农学通报, 2019, 35(12): 81-88.

[48]李双双, 孔锋, 韩鹭, 等. 陕北黄土高原区极端降水时空变化特征及其影响因素[J]. 地理研究, 2020, 39(1): 140-151.

[49]于贵瑞, 李文华, 邵明安, 等. 生态系统科学研究与生态系统管理[J]. 地理学报,2020, 75(12): 2620-2635.

[50]王慧, 肖登攀, 赵彦茜, 等. 基于CMIP6气候模式的华北平原极端气温指数评估和预测[J]. 地理与地理信息科学, 2021, 37(5): 86-94+142.

[51]Pei F, Zhou Y, Xia Y. Application of Normalized Difference Vegetation Index (NDVI) for the detection of extreme precipitation change[J]. Forests, 2021, 12(5): 594-610.

[52]Sharma M, Bangotra P, Gautam A S, et al. Sensitivity of normalized difference vegetation index (NDVI) to land surface temperature, soil moisture and precipitation over district Gautam Buddh Nagar, UP, India[J]. Stochastic Environmental Research and Risk Assessment, 2022, 36(6):1779-1789.

[53]刘静,温仲明,刚成诚. 黄土高原不同植被覆被类型NDVI对气候变化的响应[J]. 生态学报, 2020, 40(2): 678-691.

[54]He L, Guo J, Yang W, et al. Multifaceted responses of vegetation to average and extreme climate change over global drylands[J]. Science of The Total Environment, 2022, 858(12): 159942-159960.

[55]何航, 张勃, 侯启, 等. 1982-2015年中国北方归一化植被指数(NDVI)变化特征及对气候变化的响应[J]. 生态与农村环境学报, 2020, 36(1): 70-80.

[56]张艳军, 李子辉, 官冬杰, 等. 2000-2020年成渝双城经济圈植被生态质量变化及其对极端气候因子的响应[J]. 中国环境科学, 2023, 43(9): 4876-4885.

[57]Cheng Q, Zhong F, Wang P. Potential linkages of extreme climate events with vegetation and large-scale circulation indices in an endorheic river basin in northwest China[J]. Atmospheric Research, 2021,2 47(1): 105256-105260.

[58]Li C, Wang J, Hu R, et al. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013[J]. Ecological Indicators, 2018, 81(10): 101-109.

[59]刘炜, 焦树林. 喀斯特流域极端气候变化特征及对NDVI的影响[J]. 水土保持学报, 2022, 36(5): 220-232.

[60]陆晴, 刘根林, 闫冰, 等. 气候变暖背景下中亚地区极端降水事件变化及其对植被覆盖的影响[J]. 水土保持研究, 2021, 28(4): 226-235+243.

[61]Li S, Wei F, Wang Z, et al. Spatial heterogeneity and complexity of the impact of extreme climate on vegetation in China[J]. Sustainability, 2021, 13(10): 5748-5753.

[62]金佳鑫, 肖园园, 金君良, 等. 长江流域极端水文气象事件时空变化特征及其对植被的影响[J]. 水科学进展, 2021, 32(6): 867-876.

[63]Xu X, Jiang H, Guan M, et al. Vegetation responses to extreme climatic indices in coastal China from 1986 to 2015[J]. Science of The Total Environment, 2020, 744(6): 140784-140798.

[64]张晋霞, 徐长春, 杨秋萍. 2001-2017年新疆NDVI变化及其对极端气候的响应[J]. 水土保持通报, 2020, 40(5): 250-256+275+341.

[65]江姗珊, 张增信, 王玮琳, 等. 江苏省植被动态演变规律及其与极端气候事件的关系[J]. 南京林业大学学报,2016, 40(5): 74-80.

[66] 赵安周,张安兵,赵延旭,等.基于MODISNDVI数据的陕甘宁地区植被覆盖时空变化及其对极端气候的响应[J]. 水土保持研究,2018, 25(3):224-231+2.

[67]Luo M, Sa C, Meng F, et al. Assessing extreme climatic changes on a monthly scale and their implications for vegetation in Central Asia[J]. Journal of Cleaner Production, 2020, 271(2020): 122396-122404.

[68]Islam A, Islam T, Shahid S, et al. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change[J]. Journal of Environmental Management, 2020, 289: 112505-112520.

[69]Su R ,Guo E ,Wang Y , et al. Vegetation dynamics and its response to extreme climate on the Inner Mongolian Plateau during 1982-2020[J]. Remote Sensing,2023,15(15):3891-3911.

[70]高滢, 孙虎, 徐崟尧, 等. 陕西省植被覆盖时空变化及其对极端气候的响应[J]. 生态学报, 2022, 42(3): 1022-1033.

[71]王予, 李惠心, 王会军, 等. CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较[J]. 气象学报, 2021, 79(3): 369-386.

[72]Zhu H, Jjiang Z, Li J, et al. Does CMIP6 inspire more confidence in simulating climate extremes over China?[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1119-1132.

[73]陈炜, 姜大膀, 王晓欣. CMIP6模式对青藏高原气候的模拟能力评估与预估研究[J]. 高原气象, 2021, 40(6): 1455-1469.

[74]陈虹举, 杨建平, 丁永建, 等. 基于NEX-GDDP数据集的青藏高原牧区雪灾风险预估[J]. 灾害学, 2022, 37(2): 102-110.

[75]Zhang F, Wei L, Li Y, et al. Evaluation and projection of extreme high temperature indices in Southwestern China using NEX-GDDP-CMIP6[J]. Journal of Meteorological Research, 2024, 38(1): 88-107.

[76]Anil S, Raj P A. An exhaustive investigation of changes in projected extreme precipitation indices and streamflow using CMIP6 climate models: A case study[J]. Journal of Earth System Science, 2024, 133(2): 54-78.

[77]Abbas A, Bhatti A S, Ullah S, et al. Projection of precipitation extremes over South Asia from CMIP6 GCMs[J]. Journal of Arid Land, 2023,15(3): 274-296.

[78]Zhu H, Jiang Z, Li L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6[J]. Science Bulletin, 2021,66(24): 2528-2537.

[79]李金洁, 王爱慧, 郭东林, 等. 高分辨率统计降尺度数据集NEX- GDDP对中国极端温度指数模拟能力的评估[J]. 气象学报, 2019, 77(3): 579-593.

[80]王倩之, 刘凯, 汪明. NEX-GDDP降尺度数据对中国极端降水指数模拟能力的评估[J]. 气候变化研究进展, 2022, 18(1): 31-43.

[81]王慧, 肖登攀, 赵彦茜, 等. 基于CMIP6气候模式的华北平原极端气温指数评估和预测[J]. 地理与地理信息科学, 2021, 37(5): 86-94+142.

[82]Castillo R, Amador J A. Precipitation and temperature in Costa Rica at the end of the century based on NEX-GDDP projected scenarios[J]. Atmosphere, 2020, 18(12): 1323-1338.

[83]于航,金磊,谭炳香,等.黄土高原退耕还林生态服务权衡协同分析——以安塞县为例[J].生态学杂志,2023, 42(3):544-551.

[84]姚荣鹏, 张勃, 张耀文, 等. 甘肃河东地区植被物候及其对气候变化的响应[J]. 生态学杂志, 2022, 41(4): 714-723.

[85]黄玥, 卫伟. 2000—2019年黄土高原NDVI时空变化特征及其归因分析[J]. 环境生态学, 2022, 4(5): 32-38.

[86]许小明, 易海杰, 何亮, 等. 黄土高原地区林地枯枝落叶层水土保持效应研究进展[J]. 水土保持研究, 2022, 29(4): 415-421.

[87]马爱华, 岳大鹏, 赵景波, 等. 近60 a来内蒙古极端降水时空变化及其影响[J]. 干旱区研究, 2020, 37(1): 74-85.

[88]柯杭, 王小军, 尹义星, 等. 衡水市1961-2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(4): 971-980.

[89]白燕,杨雅萍,孙九林. 黄河流域250 m分辨率植被生长季时空演变数据集(2000–2020年)[J]. 中国科学数据,2022, 7(1):118-128..

[90]吴晶璐,吴建秋,黄文彦,等. 近50年华东地区极端气温变化特征[J].湖北农业科学, 2021, 60(S1): 96-100+114.

[91]郝佳欣, 张会兰, 王云琦, 等. 涪江流域径流对气候与土地利用的响应[J]. 中国水土保持科学, 2022, 20(1): 15-24.

[92]李彦萌, 刘海鹏, 张冬峰, 等. 华北地区极端气候事件对农作物生长的影响研究[J].种子科技, 2021,39(05): 3-8.

[93]王军德, 苏振娟, 张丽娜, 等. 甘肃省极端降水指数时空变化特征[J]. 水土保持研究, 2022, 29(4): 270-276+291.

[94]吴晶璐, 惠品宏, 刘建勇, 等. 江淮流域极端降水时空变化特征:站点观测和再分析的对比[J]. 大气科学学报, 2019, 4(2): 207-220.

[95]贾何佳, 李谢辉, 文军,等. 黄河源区径流变化模拟及未来趋势预估[J]. 资源科学, 2022, 44(6): 1292-1304.

[96]王予, 李惠心, 王会军, 等. CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较[J]. 气象学报, 2021, 79(3): 369-386.

[97]庄园煌, 张井勇, 梁健. 1.5℃与2℃温升目标下“一带一路”主要陆域气温和降水变化的CMIP6多模式预估[J]. 气候与环境研究, 2021, 26(4): 374-390.

[98]黄子立, 吴小飞, 毛江玉. CMIP6模式水平分辨率对模拟我国西南地区夏季极端降水的影响评估[J]. 高原气象, 2021, 40(6): 1470-1483.

[99]Ali M, Bilal M, Wang, et al. Evaluation and comparison of CMIP6 models and MERRA-2 reanalysis AOD against Satellite observations from 2000 to 2014 over China[J]. Geoscience Frontiers, 2022, 13(2): 171-191.

[100]陈琦, 毛方杰, 杜华强, 等. 中国亚热带极端降水时空演变及其对潜在净初级生产力的影响[J]. 生态学杂志, 2022, 41(11): 2117-2127.

中图分类号:

 P208    

开放日期:

 2025-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式