论文中文题名: |
转轮除湿蒸发冷却冷水机组性能及其在数据中心的应用
|
姓名: |
杨婷婷
|
学号: |
21203053011
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
081404
|
学科名称: |
工学 - 土木工程 - 供热、供燃气、通风及空调工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
能源学院
|
专业: |
土木工程
|
研究方向: |
制冷、空调系统的节能技术
|
第一导师姓名: |
陈柳
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-25
|
论文答辩日期: |
2024-06-07
|
论文外文题名: |
Performance of Desiccant Wheel Evaporative Cooling Chiller and Application in Data Center
|
论文中文关键词: |
蒸发冷却 ; 转轮除湿 ; 冷水机组 ; 数据中心
|
论文外文关键词: |
Evaporative cooling ; Desiccant wheel ; Chiller ; Data center
|
论文中文摘要: |
︿
冷水机组是民用建筑、工业生产和数据中心等领域常用的空调冷源。降低冷水机组能耗对于整个空调系统的节能具有重大意义。蒸发冷却冷水机组通过水蒸发吸热降低水的温度,无需压缩机辅助且不使用制冷剂,是一种节能环保的制冷技术。为了拓宽蒸发冷却冷水机组的应用范围,提出一种转轮除湿蒸发冷却冷水机组并对其进行性能和适用性研究。该冷水机组应用转轮除湿技术降低环境空气露点温度,再利用蒸发冷却技术制备出低于环境空气露点温度的冷冻水;同时,利用热管换热器回收蒸发冷却低温排风降低转轮除湿系统的显热负荷并提高转轮除湿机的解吸性能。
首先,对转轮除湿蒸发冷却冷水机组进行热力过程分析和㶲特性分析。研究表明:与蒸发冷却机械制冷复合冷水机组相比,转轮除湿蒸发冷却冷水机组的㶲效率增加28.4%,㶲损失降低17.0%。
其次,对转轮除湿蒸发冷却冷水机组进行实验研究。设计并搭建机组实验台,研究了主要运行参数对转轮除湿蒸发冷却冷水机组的影响,并与直接蒸发式冷水机组在5种环境条件下就供水温度和湿球效率进行了对比。研究表明:转轮除湿蒸发冷却冷水机组在5种环境条件下的供水温度平均低于直接蒸发式冷水机组10.2 ℃,且机组的湿球效率在高温高湿状态(36 ℃、80% RH)下达到最高,是直接蒸发式冷水机组的6倍。
再次,将转轮除湿蒸发冷却冷水机组应用于数据中心冷却。为了回收数据中心余热作为转轮除湿的驱动力,获得数据中心在不同冷热通道封闭方式下的回风温度,应用Airpak模拟软件对数据中心热环境进行模拟。研究表明:当送风温度从18 ℃变化至27 ℃,未封闭冷热通道的机房回风口处的空气温度为29.5~39.8 ℃;封闭冷通道的机房回风口处的空气温度为30.3~40.9 ℃;封闭冷热通道的机房回风口处的空气温度为30.0~42.2 ℃。在三种不同的通道封闭形式中,封闭冷热通道的机房具有最高的回风温度,更有利于降低转轮除湿蒸发冷却冷水机组的再生能耗。
最后,利用TRNSYS模拟软件对转轮除湿蒸发冷却冷水机组建模,将其应用在5个典型城市的数据中心,并根据环境湿球温度实现对该冷水机组的模式切换。研究表明:转轮除湿蒸发冷却冷水机组在5个城市的送风温度基本稳定在22±1 ℃,供水温度稳定在17±1 ℃,可以满足数据中心的冷却要求。转轮除湿蒸发冷却冷水机组在5个地区的年平均电能使用效率(PUE)均低于1.4。
﹀
|
论文外文摘要: |
︿
Chiller is a common air conditioning cold source in the fields of civil construction, industrial production and data center. Reducing the energy consumption of the air conditioning water system is of great significance for the energy saving of the entire air conditioning system. Evaporative cooling chillers reduce the water temperature by absorbing heat from water evaporation. It is an energy-saving and environmentally friendly cooling technology without compressor assistance and refrigerant. In order to broaden the application range of evaporative cooling chillers, a desiccant wheel evaporative cooling chiller was designed and its performance and applicability were studied. The chiller uses a rotary wheel dehumidification system to reduce the ambient air dew-point temperature, and then uses evaporative cooling technology to prepare chilled water below the ambient air dew-point temperature. The sensible cooling capacity of the evaporative cooling low-temperature exhaust air recovered by the unit reduces the sensible heat load of the wheel dehumidification system and improves the desorption performance of the wheel dehumidification machine.
Firstly, the thermodynamic process analysis and exergy analysis of the desiccant wheel evaporative cooling water chiller are carried out. The research shows that compared with the evaporative cooling mechanical refrigeration composite chiller, the exergy efficiency of the desiccant wheel evaporative cooling chiller is 28.4% higher and the exergy loss is reduced by 17.0%.
Secondly, the experimental study on the desiccant wheel evaporative cooling chiller was carried out. The effects of air-water ratio, regeneration temperature and ambient air parameters on the desiccant wheel evaporative cooling chiller were studied by designing and building the experimental platform of rotary dehumidification evaporative cooling chiller. The water supply temperature and wet-bulb efficiency of the desiccant wheel evaporative cooling chiller were compared with those of the direct evaporative chiller under five environmental conditions. The results show that the average water supply temperature of the desiccant wheel evaporative cooling chiller under five environmental conditions is 10.2 ℃ lower than that of the direct evaporative chiller, and the wet-bulb efficiency of the proposed chiller reaches the highest at high temperature and high humidity ( 36 ℃, 80 % RH ), which is 6 times that of the direct evaporative chiller.
Thirdly, the desiccant wheel evaporative cooling chiller is applied to the data center cooling. In order to recover the waste heat of the data center as the driving force of the desiccant wheel, the return air temperature of the data center under different cold and hot channels is obtained. The thermal environment of the data center was simulated using the Airpak software. The results show that when the supply air temperature changes from 18 ℃ to 27 ℃, the air temperature at the return air outlet of the data center without closed cold and hot channels is 29.5 ~ 39.8 ℃. The air temperature at the return air outlet of the data center with closed cold channel is 30.3 ~ 40.9 ℃ The air temperature at the return air outlet of the data center with closed cold and hot channels is 30.0 ~ 42.2 ℃. Among the three different channel closure forms, the data center with closed hot and cold channels has the highest return air temperature, which is more conducive to reducing the regeneration energy consumption of the desiccant wheel evaporative cooling chiller.
Finally, using TRNSYS simulation software to model the desiccant wheel evaporative cooling chiller, it is applied to the data center of five typical cities and the mode switching of the chiller is realized according to the wet-bulb temperature. The research shows that the supply air temperature of the desiccant wheel evaporative cooling chiller in five cities is basically stable at 22 ± 1 °C, and the water supply temperature is stable at 17 ± 1 °C, which can meet the cooling requirements of the data center. The annual average power use efficiency ( PUE ) of desiccant wheel evaporative cooling chillers in five regions was less than 1.4.
﹀
|
参考文献: |
︿
[1]Hassan H Z, Mohamad A A, Al-Ansary H A. Development of a continuously operating solar-driven adsorption cooling system: Thermodynamic analysis and parametric study[J]. Applied Thermal Engineering, 2012,48:332-341. [2]王厉. 基于(火用)方法的暖通空调系统热力学分析研究[D]. 湖南大学, 2012. [3]Chua K J, Chou S K, Yang W M, et al. Achieving better energy-efficient air conditioning – A review of technologies and strategies[J]. Applied Energy, 2013,104:87-104. [4]王蕊. 冷水机组建模及其在空调系统优化控制中的应用研究[D]. 西安建筑科技大学, 2016. [5]Abdullah S, Mohd B N M Z, Bin R M M , et al. Technological development of evaporative cooling systems and its integration with air dehumidification processes: A review[J]. Energy and Buildings, 2023,283:112805. [6]Goetzler W, Guernsey M, Young J, et al. The future of air conditioning for buildings[J]. Executive summary, 2016. [7]朱永忠. 数据中心制冷技术的应用及发展[J]. 工程建设标准化, 2015(08):62-66. [8]Brunschwiler T, Smith B, Ruetsche E, et al. Toward zero-emission data centers through direct reuse of thermal energy[J]. IBM Journal of Research and Development, 2009,53(3):11. [9]郑勇锋, 苑学贺, 张金帅, 等. 高效能数据中心制冷技术研究[J]. 科技经济导刊, 2020(2):3. [10]Hua T, Yitai M, Minxia L, et al. The status and development trend of the water chiller energy efficiency standard in China[J]. Energy Policy, 2010,38(11):7497-7503. [11]Leung M K H, Tso C Y, Wu W, et al. Chillers of air-conditioning systems: An overview[J]. Transactions Hong Kong Institution of Engineers, 2020,27(3):113-127. [12]Sarbu I, Sebarchievici C. Review of solar refrigeration and cooling systems[J]. Energy and Buildings, 2013,67:286-297. [13]刘明亮, 王娟, 郭丰. 蒸发冷却技术在数据中心应用[J]. 现代信息科技, 2020,4(12):3. [14]Zhang Y, Wei Z, Zhang M. Free cooling technologies for data centers: energy saving mechanism and applications[J]. Energy Procedia, 2017,143:410-415. [15]Chen Q, Yang K, Wang M, et al. A new approach to analysis and optimization of evaporative cooling system I: Theory[J]. Energy, 2010,35(6):2448-2454. [16]Jing Y, Zhao C, Xie X, et al. Optimization and performance analysis of water-mediated series indirect evaporative chillers: Experimental and simulated investigation[J]. Energy Conversion and Management, 2022,268:115990. [17]Jiang Y, Xie X. Theoretical and testing performance of an innovative indirect evaporative chiller[J]. Solar Energy, 2010,84(12):2041-2055. [18]La D, Dai Y J, Li Y, et al. Technical development of rotary desiccant dehumidification and air conditioning: A review[J]. Renewable and Sustainable Energy Reviews, 2010,14(1):130-147. [19]Zhang T, Liu X, Jiang Y. Development of temperature and humidity independent control (THIC) air-conditioning systems in China—A review[J]. Renewable and Sustainable Energy Reviews, 2014,29:793-803. [20]She X, Yin Y, Zhang X. A proposed subcooling method for vapor compression refrigeration cycle based on expansion power recovery.[J]. International Journal of Refrigeration, 2014,50-61(43). [21]Ersoy H K, Sag N B. Preliminary experimental results on the R134a refrigeration system using a two-phase ejector as an expander[J]. International Journal of Refrigeration, 2014(43):97-110. [22]Patil A P. Performance analysis of HFC-404A vapor compression refrigeration system using shell and u-tube smooth and micro-fin tube condensers[J]. Experimental Heat Transfer, 22012,25(2):77-9. [23]Li Z, Dong P, Zheng Z, et al. Experimental study on the operational characteristics of a dual evaporation temperatures based water chiller[J]. Journal of Building Engineering, 2023,72:106616. [24]Huang M, Yao Y E. Modeling of a vapor- comperssion Chiller for performance study[J]. International Journal of Air-Conditioning and Refrigeration, 2013,21(04):1350025. [25]尹应德, 朱冬生, 汪南, 等. 集中空调冷水机组配置及水系统能耗分析[J]. 暖通空调, 2009,39(12):4. [26]Huang Y, Jin D, Radermacher R. Comparison of R-290 and two HFC blends for walk-in refrigeration systems[J]. International Journal of Refrigeration, 2007,30(4):633-641. [27]Pottker G H P. Experimental investigation of the effect of condenser subcooling in R134a and R1234yf air-conditioning systems with and without internal heat exchanger[J]. International Journal of Refrigeration, 2015,50:104-113. [28]Kung Y S, Qu M, Peng S. Model based analysis of an integrated system of vapor compression chiller and absorption heat pump[C]// Asme International Conference on Energy Sustainability Collocated with the Asme Heat Transfer Summer Conference & the Asme International Conference on Fuel Cell Science.2013. [29]Han Z, Sun X, Wei H, et al. Energy saving analysis of evaporative cooling composite air conditioning system for data centers[J]. Applied Thermal Engineering, 2021,186:116506. [30]Han L, Shi W, Wang B, et al. Development of an integrated air conditioner with thermosyphon and the application in mobile phone base station[J]. International Journal of Refrigeration, 2013,36(1):58-69. [31]黄翔, 徐方成, 闫振华, 等. 蒸发冷却与机械制冷复合空调在中湿度地区运行模式研究[C]//全国纺织空调除尘新技术及应用研讨会, 2009. [32]殷平. 磁悬浮离心式冷水机组和独立新风系统(1):现状[J]. 暖通空调, 2013,43(12):91-100. [33]朱昌宙. 蒸发式风冷冷水机组性能分析与优化[D]. 湖南科技大学, 2013. [34]姜小伟. 基于冷水机组串联的热湿分段处理空调系统应用研究[D]. 东南大学, 2013. [35]Zhang X, Cai L, Chen T. Energetic and exergetic investigations of hybrid configurations in an absorption refrigeration chiller by aspen plus[J]. Processes, 2019,7(9):609. [36]Longo G A, Baggio P. Analysls of an absorption chiller driven by the heat recovery on a solid oxide fuel cell[J]. International Journal of Air-Conditioning and Refrigeration, 2010,18(03):181-190. [37]Udomsri S, Martin A R, Martin V. Thermally driven cooling coupled with municipal solid waste-fired power plant: Application of combined heat, cooling and power in tropical urban areas[J]. Applied Energy, 2011,88(5):1532-1542. [38]Hassan H Z, Mohamad A A. A review on solar cold production through absorption technology[J]. Renewable and Sustainable Energy Reviews, 2012,16(7):5331-5348. [39]Lohana K, Raza A, Mirjat N H, et al. Techno-Economic feasibility analysis of concentrated solar thermal power plants as dispatchable renewable energy resource of pakistan: A case study of Tharparkar[J]. 2021. [40]屈长杰. 溴化锂溶液在微肋圆管外降膜吸收过程的传热传质性能研究[D]. 长安大学, 2017. [41]罗斌. 基于槽式聚光太阳能吸收式空调系统研究[D]. 云南师范大学, 2014. [42]Wang X, Chua H T. Two bed silica gel–water adsorption chillers: An effectual lumped parameter model[J]. International Journal of Refrigeration, 2007,30(8):1417-1426. [43]Chekirou W, Boukheit N, Karaali A. Heat recovery process in an adsorption refrigeration machine[J]. International Journal of Hydrogen Energy, 2016,41(17):7146-7157. [44]Ghilen N, Gabsi S, Benelmir R, et al. Performance simulation of two-bed adsorption refrigeration chiller with mass recovery[J]. Journal of Fundamentals of Renewable Energy and Applications, 2017,07(03). [45]Pan Q, Wang R, Lu Z, et al. Thermodynamic analysis and performance simulation of different kinds of mass recovery processes applied in adsorption refrigeration system[J]. HVAC&R research, 2014,20(3):311-319. [46]Wang R Z. Efficient adsorption refrigerators integrated with heat pipes[J]. Applied Thermal Engineering, 2008,28(4):317-326. [47]Khan M Z I, Alam K C A, Saha B B, et al. Study on a re-heat two-stage adsorption chiller – The influence of thermal capacitance ratio, overall thermal conductance ratio and adsorbent mass on system performance[J]. Applied Thermal Engineering, 2007,27(10):1677-1685. [48]Zhang G, Wang D C, Zhang J P, et al. Simulation of operating characteristics of the silica gel–water adsorption chiller powered by solar energy[J]. Solar Energy, 2011,85(7):1469-1478. [49]王德昌, 吴静怡, 王如竹, 等. 新型硅胶一水吸附式冷水机组动态运行特性[J]. 上海交通大学学报, 2006,40(02):306-310. [50]Jing Y, Xie X, Jiang Y. Performance comparison and suitable climatic zones of three water-mediated evaporative cooling technologies[J]. Energy Conversion and Management, 2023,277:116637. [51]Chu J, Xu W, Huang X, et al. Study on optimization of indirect-direct evaporative chiller for producing cold water in hot and dry areas[J]. Renewable Energy, 2022,181:898-913. [52]Fan X, Lu X, Nie H, et al. An experimental study of a novel dew point evaporative cooling tower based on M-cycle[J]. Applied Thermal Engineering, 2021,190:116839. [53]Xie X, Jiang Y. Comparison of two kinds of indirect evaporative cooling system: To produce cold water and to produce cooling Air[J]. Procedia Engineering, 2015,121:881-890. [54]Heidarinejad G, Bozorgmehr M, Delfani S, et al. Experimental investigation of two-stage indirect/direct evaporative cooling system in various climatic conditions[J]. Building and Environment, 2009,44(10):2073-2079. [55]Heidarinejad G, Moshari S. Novel modeling of an indirect evaporative cooling system with cross-flow configuration[J]. Energy and Buildings, 2015,92:351-362. [56]Zhang J, He W, Guo R, et al. Optimal thermal management on server cooling system to achieve minimal energy consumption based on air-cooled chiller[J]. Energy reports, 2022,8:154-161. [57]白延斌, 黄翔, 孙铁柱, 等. 气水比对蒸发冷却高温冷水机组出水温度的影响[J]. 流体机械, 2011,39(10):83-86. [58]田振武, 黄翔, 褚俊杰, 等. 干燥地区数据中心水侧蒸发冷却空调系统的实测分析[J]. 暖通空调, 2021,51(08):12-17. [59]郝航, 黄翔, 邱佳, 等. 模块化间接-直接蒸发冷却复合冷水机组的设计计算[J]. 西安工程大学学报, 2013,27(4):5. [60]杜冬阳. 露点蒸发冷却冷水机组在干燥地区的优化设计及应用研究[D]. 西安工程大学, 2018. [61]Olmu U, Güzelel Y E, Pnar E, et al. Performance assessment of a desiccant air-conditioning system combined with dew-point indirect evaporative cooler and PV/T[J]. Solar Energy, 2022,231:566-577. [62]Zhou X. Thermal and energy performance of a solar-driven desiccant cooling system using an internally cooled desiccant wheel in various climate conditions[J]. Applied Thermal Engineering, 2020,185:116077. [63]Sun X Y C J. Experimental investigation on a dehumidification unit with heat recovery using desiccant coated heat exchanger in waste to energy system[J]. Applied thermal engineering: Design, processes, equipment, economics, 2021,185(1). [64]Casas W, Schmitz G. Experiences with a gas driven, desiccant assisted air conditioning system with geothermal energy for an office building[J]. Energy and Buildings, 2005,37(5):493-501. [65]范红, 石全成, 褚于颉, 等. 转轮除湿空调系统再生排风热湿回收性能试验研究[J]. 流体机械, 2022,50(03):11-18. [66]袁艳, 欧阳惕, 林创辉, 等. 热回收型转轮复合型除湿系统的实验研究[J]. 制冷, 2013,32(02):5-9. [67]Chen L, Chen S H, Liu L, et al. Experimental investigation of precooling desiccant-wheel air-conditioning system in a high-temperature and high-humidity environment[J]. International Journal of Refrigeration, 2018,95:83-92. [68]Zhang L Z, Niu J L. A pre-cooling munters environmental control desiccant cooling cycle in combination with chilled-ceiling panels[J]. Energy, 2003(28):275-292. [69]Ge T S, Li Y, Wang R Z, et al. Experimental study on a two-stage rotary desiccant cooling system[J]. International Journal of Refrigeration, 2009,32(3):498-508. [70]Li H, Dai Y J, Li Y, et al. Case study of a two-stage rotary desiccant cooling/heating system driven by evacuated glass tube solar air collectors[J]. Energy and Buildings, 2012,47:107-112. [71]A M M S D, B K S, A K K. Energy and Performance analysis of Solar Solid Desiccant Cooling Systems for Energy Efficient Buildings in Tropical Regions[J]. 2022. [72]陈思豪, 陈柳. 低温驱动双转轮除湿空调系统研究[J]. 建筑科学, 2019,35(08):89-94. [73]Guo J, Lin S, Bilbao J I, et al. A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification[J]. Renewable and sustainable energy reviews, 2017,67:1-14. [74]Goldsworthy M J, White S. Design and performance of an internal heat exchange desiccant wheel[J]. International Journal of Refrigeration, 2014,39:152-159. [75]Yang C K. Influence of manufacturing variables on surface properties and dynamic adsorption properties of silica gels[J]. Journal of Non-Crystalline Solids, 2001. [76]Chen C, Hsu C, Chen C, et al. Silica gel polymer composite desiccants for air conditioning systems[J]. Energy and Buildings, 2015,101:122-132. [77]牛永红, 修诗博, 张丽奇, 等. 空调用固体除湿材料研究进展[J]. 应用化工, 2018,47(11):2464-2468. [78]杨发妹, 陈柳. 硅胶除湿转轮性能优化实验研究[J]. 低温与超导, 2022,50(01):41-47. [79]Sphaier L A, Worek W M. Analysis of heat and mass transfer in porous sorbents used in rotary regenerators[J]. International Journal of Heat and Mass Transfer, 2004,47(14–16):3415-3430. [80]Ge F, Wang C. Exergy analysis of dehumidification systems: A comparison between the condensing dehumidification and the desiccant wheel dehumidification[J]. Energy Conversion and Management, 2020,224:113343. [81]Zhang L, Liu X, Jiang Y. Exergy analysis of parameter unmatched characteristic in coupled heat and mass transfer between humid air and water[J]. International Journal of Heat and Mass Transfer, 2015,84:327-338. [82]Qureshi B A, Zubair S M. Second-law-based performance evaluation of cooling towers and evaporative heat exchangers[J]. International Journal of Thermal Sciences, 2007,46(2):188-198. [83]Wang L, Li N. Exergy transfer and parametric study of counter flow wet cooling towers[J]. Applied Thermal Engineering, 2011,31(5):954-960. [84]Sun J, Li W, Cui B, et al. Energy and exergy analyses of R513a as a R134a drop-in replacement in a vapor compression refrigeration system[J]. International journal of refrigeration, 2020,112(C):348-356. [85]Smith S T, Hanby V I, Harpham C. A probabilistic analysis of the future potential of evaporative cooling systems in a temperate climate[J]. Energy and Buildings, 2011,43(2-3):507-516. [86]Yang Y, Cui G, Lan C Q. Developments in evaporative cooling and enhanced evaporative cooling - A review[J]. Renewable and Sustainable Energy Reviews, 2019,113:109230. [87]Chu J, Huang X. Research status and development trends of evaporative cooling air-conditioning technology in data centers[J]. Energy and Built Environment, 2023,4(1):86-110. [88]Fouda A, Melikyan Z. A simplified model for analysis of heat and mass transfer in a direct evaporative cooler[J]. Applied Thermal Engineering, 2011,31(5):932-936. [89]Chen L, Chu Y, Deng W. Experimental investigation of dedicated desiccant wheel outdoor air cooling systems for nearly zero energy buildings[J]. International Journal of Refrigeration, 2022,134:265-277. [90]Chen L, Deng W, Chu Y. Experimental study on desiccant evaporative combined chilled air/chilled water air conditioning systems[J]. Applied thermal engineering, 2021,199:117534. [91]Jani D B Manish M, Sahoo P K. Solid desiccant air conditioning – A state of the art review[J]. Renewable and Sustainable Energy Reviews, 2016,60(jul.):1451-1469. [92]Muangnoi T, Asvapoositkul W, Wongwises S. Effects of inlet relative humidity and inlet temperature on the performance of counterflow wet cooling tower based on exergy analysis[J]. Energy Conversion and Management, 2008,49(10):2795-2800. [93]Rasmussen N. Guidelines for specification of data center power density[J]. Electrical Technology of Intelligent Buildings, 2007. [94]Ebrahimi K, Jones G F, Fleischer A S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities[J]. Renewable and Sustainable Energy Reviews, 2014,31:622-638. [95]Beaty, Don, Davidson, et al. New Guideline for Data Center Cooling.[J]. ASHRAE Journal, 2003. [96]Steinbrecher R A, Schmidt R. Data center environments ASHRAE's evolving thermal guidelines[J]. ASHRAE Journal, 2011,53(12):42-44, 46-49. [97]洪晓涵. 数据中心空调系统节能模式的研究[D]. 南京理工大学, 2018. [98]Gao S, Li Y, Wang Y A, et al. A human thermal balance based evaluation of thermal comfort subject to radiant cooling system and sedentary status[J]. Applied Thermal Engineering, 2017,122:461-472. [99]Fletcher C A J, Mayer I F, Eghlimi A, et al. CFD as a building services engineering tool[J]. int j arch sci, 2001. [100]常健佩. 间接-直接蒸发冷却冷水机组的优化设计及应用研究[D]. 西安工程大学, 2020. [101]Hutchinson A J, Hale N, Born K, et al. Prandtl's extended mixing length model applied to the two-dimensional turbulent classical far wake[J]. 2021. [102]叶欣, 蒋修英, 沈国民. Airpak软件在气流组织领域的应用[J]. 应用能源技术, 2006(10):45-47. [103]Chen Q, Xu W. A zero-equation turbulence model for indoor airflow simulation[J]. Energy and Buildings, 1998,28(2):137-144. [104]陈盼. 某钢厂冷床热环境的Airpak模拟分析及热害控制技术[D]. 西安建筑科技大学, 2013. [105]Tsan-Hsing, Shih, And, et al. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995. [106]夏青, 黄翔, 殷清海. 蒸发冷却空调标准及术语标准化研究现状: 节能减排制冷空调行业升级与发展国际论坛暨中国制冷空调行业信息大会, 2012[C]. [107]廖云丹, 李茜林, 曹世杰. 数据中心复合冷源制冷系统的运行控制研究[J]. 建筑节能(中英文), 2022,50(06):18-23. [108]王博, 郭焱华, 邵双全, 等. 数据中心冷却系统相关能效评价指标综述[J]. 制冷学报, 2023,44(02):18-27. [109]王吉, 刘文, 生刘蔚. 数据中心能效比(PUE)分析与计算方法: 中国建筑业协会智能建筑分会, 2015[C].
﹀
|
中图分类号: |
TU831.5
|
开放日期: |
2024-06-25
|