- 无标题文档
查看论文信息

论文中文题名:

 动态高渗压环境下开挖卸荷岩体循环加卸载力学特性研究    

姓名:

 白亚妮    

学号:

 21204053047    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 岩土力学与工程应用    

第一导师姓名:

 陈兴周    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-07-02    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Research on the cyclic loading and unloading mechanical characteristics of excavation unloading rock mass under dynamic high osmotic pressure environment    

论文中文关键词:

 开挖卸荷岩体 ; 循环加卸载 ; 力学特性 ; 能量分配 ; 数值模拟    

论文外文关键词:

 Excavation and unloading of rock mass ; Cyclic loading and unloading ; Mechanical properties ; Energy distribution ; Numerical simulation    

论文中文摘要:

高渗压环境下工程可利用岩体除经受先期开挖扰动及后续施工造成的反复加卸载作用外,还因地下水的渗透潜蚀,进一步加剧了其内部结构的损伤演化。因此,本课题以渗压环境下卸荷岩石为研究对象,综合采用理论研究、室内试验及数值模拟分析方法,探究了孔压量级及卸荷量级影响下、损伤岩石加卸载过程中的力学响应机制及能量演化特征与能量分配规律;基于弹性模量法和耗散能法,讨论了卸荷岩石加卸载过程中的损伤演化特征;并通过数值模拟揭示了渗压条件下隧洞围岩随开挖进程的应力变形变化特征。主要研究成果如下:

恒定孔压及循环孔压应力路径下,卸荷岩样加卸载过程应力-应变曲线的外包络线、同对应初始孔压下岩石常规三轴压缩试验曲线形态近似,且相同孔压应力路径下各卸荷量级岩样的循环加载曲线形态也基本相似。卸荷岩样加卸载过程应力-应变曲线均可以划分为原生微裂隙压密闭合、弹性压缩、裂纹稳定扩展、裂纹快速发展及峰后变形破坏五个阶段。

卸荷岩样循环加载变形特征与孔压量级、卸荷量级及加载应力水平紧密相关。随初始孔压水平的增加,恒定孔压下30%卸荷岩样的累积应变值呈先增后减趋势,60%卸荷量级岩样应变变化特征与之相反;循环孔压下卸荷岩样的累积应变则均呈现出先减小后增加的变化趋势。

卸荷岩样加卸载过程中的特征能量均随着循环周次的增加呈非线性增长趋势。恒定孔压下卸荷岩样的能量吸收比随加载进程呈先急剧增加-再趋于稳定-后逐渐下降的变化趋势;叠加孔压往复作用时,产生的耗散能整体大于弹性能。弹性模量法定义下卸荷岩样的损伤变量演化特征曲线呈“上凸”形态,而采用耗散能法定义的损伤变量演化特征曲线呈“下凹”形态,且基于能量定义的损伤变量更直观准确。

衬砌支护情况下,压应力主要集中分布在衬砌及洞室围岩位置处,两侧拱腰为压应力集中区;相较仅开挖条件下围岩应力分布,主应力及孔隙水压力均有所降低。洞室围岩仍以收敛变形为主,整体变形量值在施加防护措施后也有所减小。实际隧洞施工过程中,需要综合考虑地层岩性、地质构造、地下水位分布情况等多个因素,以便选择合理有效的加固防护措施,确保施工的安全稳定和工程质量。

论文外文摘要:

Under high osmotic pressure environment, engineering can utilize rock mass, which not only undergoes repeated loading and unloading caused by early excavation disturbance and subsequent construction, but also further intensifies the damage evolution of its internal structure due to groundwater infiltration and erosion. Therefore, this project takes unloading rocks under seepage pressure environment as the research object, and comprehensively adopts theoretical research, indoor experiments, and numerical simulation analysis methods to explore the mechanical response mechanism, energy evolution characteristics, and energy distribution law during the loading and unloading process of damaged rocks under the influence of pore pressure level and unloading level; Based on the elastic modulus method and dissipation energy method, the damage evolution characteristics during the loading and unloading process of unloaded rocks were discussed; And through numerical simulation, the stress and deformation characteristics of tunnel surrounding rock under seepage pressure conditions were revealed as excavation progresses. The main research results are as follows:

(1) Under constant pore pressure and cyclic pore pressure stress paths, the envelope of the stress-strain curve during the loading and unloading process of unloaded rock samples is similar to the conventional triaxial compression test curve under the corresponding initial pore pressure, and the cyclic loading curve shape of each unloading magnitude rock sample under the same pore pressure stress path is also basically similar. It can be divided into five stages: primary microcrack compaction closure, elastic compression, stable crack propagation, rapid crack development, and post peak deformation and failure.

(2) The deformation characteristics of unloading rock samples under cyclic loading are closely related to the magnitude of pore pressure, unloading magnitude, and loading stress level. As the initial pore pressure level increases, the cumulative strain value of the 30% unloaded rock sample under constant pore pressure shows a trend of first increasing and then decreasing, while the strain variation characteristics of the 60% unloaded rock sample are opposite; The cumulative strain of unloading rock samples under cyclic pore pressure shows a trend of first decreasing and then increasing.

(3) The characteristic energy during the loading and unloading process of unloading rock samples shows a non-linear growth trend with the increase of cycle times. The energy absorption ratio of unloaded rock samples under constant pore pressure shows a trend of first increasing sharply, then stabilizing, and finally gradually decreasing with the loading process; When the superimposed pore pressure reciprocates, the overall dissipated energy generated is greater than the elastic performance. The damage variable evolution characteristic curve of unloaded rock samples defined by the elastic modulus method shows an upward convex shape, while the damage variable evolution characteristic curve defined by the dissipation energy method shows a downward concave shape, And the damage variables defined based on energy are more intuitive and accurate.

(4) In the case of lining support, compressive stress is mainly concentrated at the positions of lining and surrounding rock of the tunnel, and the two sides of the arch waist are areas of compressive stress concentration; Compared to the stress distribution of surrounding rock under excavation only conditions, both the principal stress and pore water pressure have been reduced. The surrounding rock of the tunnel still exhibits convergent deformation, and the overall deformation value also decreases after the application of protective measures. In the actual tunnel construction process, it is necessary to comprehensively consider multiple factors such as geological lithology, geological structure, and groundwater level distribution in order to select reasonable and effective reinforcement and protection measures, ensure the safety, stability, and engineering quality of construction.

参考文献:

[1] 孙广忠.岩体结构力学[M].北京:科学出版社,1988.

[2] 李江腾,肖峰,马钰沛.单轴循环加卸载作用下红砂岩变形损伤及能量演化[J].湖南大学学报(自然科学版),2020,47(01):139-146.

[3] 卢高明,李元辉,张希巍,等.周期荷载作用下黄砂岩疲劳破坏变形特性试验研究[J].岩土工程学报,2015,37(10):1886-1892.

[4] Guo H J, Ji M, Zhang Y D, et al. Study of mechanical property of rock under uniaxial cyclic loading and unloading[J]. Advances in Civil Engineering, 2018, 2018(4): 1-6.

[5] Meng Q B, Zhang M W, Han L J, et al. Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3873-3886.

[6] Zhang M W, Meng Q B, Liu S D, et al. Impacts of cyclic loading and unloading rates on acoustic emission evolution and felicity effect of instable rock mass[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-16.

[7] 花伟.单轴循环加卸载下弱胶结砂岩力学特性及损伤演化机理研究[D].安徽建筑大学,2021.

[8] Niu S J, Ge S S, Yang D F, et al. Mechanical properties and energy mechanism of saturated sandstones[J]. Journal of Central South University, 2018, 25(6): 1447-1463.

[9] Munoz H, Taheri A. Postpeak deformability parameters of localized and nonlocalized damage zones of rocks under cyclic loading[J]. Geotechnical Testing Journal, 2019, 42(6): 1663-1684.

[10] Liang D X, Zhang N, Xie L X, et al. Damage and fractal evolution trends of sandstones under constant-amplitude and tiered cyclic loading and unloading based on acoustic emission[J]. International Journal of Distributed Sensor Networks, 2019, 15(7): 1-16.

[11] 刘书文.循环荷载作用下不同强度岩石动力特性实验研究[D].南华大学,2021.

[12] 程建超.水—力耦合作用下饱水砂岩峰后循环加卸载力学特性研究[D].湖南科技大学,2021.

[13] 王春力.不同循环加卸载路径下红砂岩损伤演化规律研究[D].绍兴文理学院,2021.

[14] Liu Y, Dai F. A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5): 1203-1230.

[15] Meng Q B, Liu J F, Ren L, et al. Experimental study on rock strength and deformation characteristics under triaxial cyclic loading and unloading conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 777-797.

[16] Chen J, Du C, Jiang D Y, et al. The mechanical properties of rock salt under cyclic loading-unloading experiments[J]. Geomechanics and Engineering, 2016, 10(3): 325-334.

[17] 蔡燕燕,唐欣,林立华,等.疲劳荷载下大理岩累积损伤过程的应变速率响应[J].岩土工程学报,2020,42(05):827-836.

[18] 葛修润.周期荷载下岩石大型三轴试件的变形和强度特性研究[J].岩土力学,1987,8(02):11-19.

[19] 葛修润,卢应发.循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,14(03):56-60.

[20] 葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22(10):1581-1585.

[21] 张媛.循环荷载条件下岩石变形损伤及能量演化的实验研究[D].重庆大学,2011.

[22] 张晓悟,徐金海,孙垒,等.三轴循环加卸载条件下热损伤石灰岩力学特性演化规律[J].采矿与岩层控制工程学报,2022,4(04):87-98.

[23] Zhang T, Liu Y, Yang K, et al. Hydromechanical coupling characteristics of the fractured sandstone under cyclic loading-unloading[J]. Geofluids, 2020, 2020: 1-12.

[24] 王瑞红,李建林,蒋昱州,等.循环加卸载对岩体残余强度影响的试验研究[J].岩石力学与工程学报,2010,29(10):2103-2109.

[25] 魏元龙,杨春和,郭印同,等.单轴循环荷载下含天然裂隙脆性页岩变形及破裂特征试验研究[J].岩土力学,2015,36(06):1649-1658.

[26] 魏元龙,杨春和,郭印同,等.三轴循环荷载下页岩变形及破坏特征试验研究[J].岩土工程学报,2015,37(12):2262-2271.

[27] 周志华,曹平,叶洲元,等.单轴循环载荷与渗透水压下预应力裂隙岩石破坏试验研究[J].采矿与安全工程学报,2014,31(02):292-298.

[28] 张培森,许大强,张睿,等.不同围压及循环载荷下砂岩的渗流、力学特性试验研究[J].岩石力学与工程学报,2022,41(12):2432-2450.

[29] 贾亚星.高渗透压下脆性岩石循环蠕变破坏宏细观力学模型[D].北京建筑大学,2023.

[30] 陈兴周,白亚妮,陈莉丽,等.高渗压与循环加卸载环境下开挖卸荷岩体力学特性试验研究[J].岩土工程学报,2024,46(04):737-745.

[31] Lin Q B, Cao P, Mao S Y, et al. Fatigue behaviour and constitutive model of yellow sandstone containing pre-existing surface crack under uniaxial cyclic loading[J]. Theoretical and Applied Fracture Mechanics, 2020, 109(2020): 102776.

[32] 谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.

[33] 谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.

[34] 张志镇,高峰.单轴压缩下红砂岩能量演化试验研究[J].岩石力学与工程学报,2012,31(05):953-962.

[35] 李欣慰,姚直书,黄献文,等.循环加卸载下砂岩变形破坏特征与能量演化研究[J].岩土力学,2021,42(06):1693-1704.

[36] 苗胜军,刘泽京,赵星光,等.循环荷载下北山花岗岩能量耗散与损伤特征[J].岩石力学与工程学报,2021,40(05):928-938.

[37] 孟庆彬,王从凯,黄炳香,等.三轴循环加卸载条件下岩石能量演化及分配规律[J].岩石力学与工程学报,2020,39(10):2047-2059.

[38] 杨小彬,程虹铭,裴艳宇.不同加载方式下岩石变形及峰后能量演化特征研究[J].岩石力学与工程学报,2020,39(S2):3229-3236.

[39] 杨小彬,韩心星,刘恩来,等.等幅循环加载岩石非均匀变形演化试验研究[J].采矿与安全工程学报,2019,36(02):388-395.

[40] 杨小彬,程虹铭,吕嘉琦,等.三轴循环荷载下砂岩损伤耗能比演化特征研究[J].岩土力学,2019,40(10):3751-3757+3766.

[41] 徐颖,李成杰,郑强强,等.循环加卸载下泥岩能量演化与损伤特性分析[J].岩石力学与工程学报,2019,38(10):2084-2091.

[42] 赵闯,武科,李术才,等.循环荷载作用下岩石损伤变形与能量特征分析[J].岩土工程学报,2013,35(05):890-896.

[43] Wang Y, Feng W K, Hu R L, et al. Fracture evolution and energy characteristics during marble failure under triaxial fatigue cyclic and confining pressure unloading (FC-CPU) conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 799-818.

[44] 孙肇坤.循环加卸载下砂岩力学特性和能量演化研究[D].沈阳建筑大学,2021.

[45] 许江,张媛,杨红伟,等.循环孔隙水压力作用下砂岩变形损伤的能量演化规律[J].岩石力学与工程学报,2011,30(01):141-148.

[46] 刘海涛,杨心浩.三轴循环载荷下砂岩的力学特性与能量演化规律[J].黑龙江科技大学学报,2023,33(01):18-23+39.

[47] 李旭,张鹏超.循环加卸载下黄砂岩力学特性和能量演化规律[J].长江科学院院报,2021,38(04):124-131.

[48] 袁和川.分级循环加卸载下饱水砂岩变形损伤特性研究[D].重庆交通大学,2022.

[49] 徐鹏,周剑波,黄俊,等.循环加卸载下大理岩损伤与能量演化特征[J].长江科学院院报,2020,37(03):90-95+107.

[50] 潘彬,娄培杰,李成杰,等.分级循环加卸载作用下脆性岩石损伤特性分析[J].煤矿安全,2019,50(03):203-207.

[51] 俞缙,姚玮,任文斌,等.高应力下大理岩循环扰动变形规律及一种破坏前兆特征[J].岩土工程学报,2022,44(08):1521-1527.

[52] 张莹洁.周期荷载作用下红砂岩力学特性试验与数值模拟研究[D].中南大学,2022.

[53] 金丰年,蒋美蓉,高小玲.基于能量耗散定义损伤变量的方法[J].岩石力学与工程学报,2004,23(12):1976-1980.

[54] 彭瑞东,鞠杨,高峰,等.三轴循环加卸载下煤岩损伤的能量机制分析[J].煤炭学报,2014,39(02):245-252.

[55] Liu X S, Ning J G, Tan Y L, et al. Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 85(2016): 27-32.

[56] 邓晓平.循环加卸载下砂岩损伤演化及其本构模型研究[D].江西理工大学,2013.

[57] Xiao J Q, Ding D X, Jiang F L, et al. Fatigue damage variable and evolution of rock subjected to cyclic loading[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(3):461-468.

[58] 周天白.基于能量分析的岩石本构模型及巷道围岩损伤模拟研究[D].中国矿业大学(北京),2021.

[59] Martin C D, Chandler N A . The progressive fracture of Lac du Bonnet granite[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1994, 31(6): 643-659.

[60] Martin C D. Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength[J]. Canadian Geotechnical Journal, 1997, 34(5): 698-725.

[61] 曹文贵,赵衡,张玲,等.考虑损伤阀值影响的岩石损伤统计软化本构模型及其参数确定方法[J].岩石力学与工程学报,2008,27(06):1148-1154.

[62] 张莹洁.周期荷载作用下红砂岩力学特性试验与数值模拟研究[D].中南大学,2022.

[63] 晏斌.水压循环作用下砂岩卸荷力学特性及损伤本构模型研究[D].三峡大学,2019.

[64] Lemaitre J , Dufailly L J . Damage measurements[J]. Engineering Fracture Mechanics, 1987, 28(5/6): 643-661.

[65] Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1): 83-89.

[66] 鞠杨,谢和平.基于应变等效性假说的损伤定义的适用条件[J].应用力学学报,1998,15(01):45-51+144-145.

中图分类号:

 TU45    

开放日期:

 2024-07-02    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式