- 无标题文档
查看论文信息

论文中文题名:

 基于遗传算法的矿用挖掘机控制室布局优化设计研究    

姓名:

 李由    

学号:

 19214109004    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 130500    

学科名称:

 艺术学 - 设计学    

学生类型:

 硕士    

学位级别:

 艺术学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 艺术学院    

专业:

 设计学    

研究方向:

 工业设计    

第一导师姓名:

 冯青    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-19    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Layout optimization design of mining excavator controlroom based on genetic algorithm    

论文中文关键词:

 布局优化 ; 遗传算法 ; 模块化 ; 模糊聚类 ; 人机功效    

论文外文关键词:

 ayout optimization ; genetic algorithm ; fuzzy clustering ; modularity ; human-machine efficacy    

论文中文摘要:

布局优化问题作为智能制造领域中较为重要的环节,对产品最终的方案呈现、运行效率都存在较大的影响力。特别是对于复杂机械设备来说,各组件的布局问题对设备的运转效率会产生很大影响:一方面能够提升设备设计流程的速度及准确度,另一方面会改善操作人员的使用舒适度,从而间接的提升设备生产效率。因此对产品布局问题方法进行深入研究能够使国家大型设备的设计制造能力得到提升。主要研究工作如下:

(1)从布局问题出发,对布局问题的现状及方式方法进行分析及文献综述,从而明确布局优化的解决途径以及相关方法的优缺点、侧重点。利用布局方法特性,对复杂布局问题进行方向选择,并深入优化方案。

(2)根据复杂机械设备的布局情况,以及遗传算法的运算特点,提出了结合模块化设计思维进行算法优化的思路:通过将待布空间进行模块拆分,划分出不同层级的布局模块,同时对具有不同复杂程度的模块内容进行划分方式上的区分处理。利用模糊聚类分析划分出元件层级树,使复杂模块的设备元件具备充分的功能相关性,获得满足布局要求的多个模块。

(3)利用人机功效学相关理论原理,对空间布局存在影响的视野范围、坐姿可及性等数值进行约束函数设立;利用层次分析法对元件使用频率进行数据处理,区分出各元件布局优先级,进一步建立约束条件;对各模块之间设立重叠系数,保证优化迭代过程考虑到活动空间的碰撞情况。

(4)通过算法输出解集,进行人工筛选得到初步方案优化集。为了验证解集点位的可利用性,利用Rhino等建模软件进行空间模拟。基于专家打分数据进行重心排序的模糊综合评价方法,验证优化集中的方案可行性,均能实现进一步的设计细化。

(5)验证通过模块化的遗传算法过程优化,与基本遗传算法的运算效率对比,运行效率以及约束条件的设立都产生了数值提升。

论文外文摘要:

As a more important link in the field of intelligent manufacturing, the layout optimization problem has a great influence on the final product presentation and operation efficiency. Especially for complex mechanical equipment, the layout of each component will have a great impact on the operating efficiency of the equipment: on the one hand, it can improve the speed and accuracy of the equipment design process, on the other hand, it will improve the comfort of the operator, This indirectly improves the production efficiency of the equipment. Therefore, the in-depth study of the product layout problem method can improve the design and manufacturing capacity of the country's large-scale equipment. The main research work is as follows:

(1) Starting from the layout problem, analyze the current situation, methods and methods of the layout problem and review the literature, so as to clarify the solution to the layout optimization and the advantages and disadvantages and focus of the related methods. Use the characteristics of layout methods to select directions for complex layout problems and optimize solutions in depth.

(2) According to the layout of complex mechanical equipment and the operation characteristics of genetic algorithm, the idea of algorithm optimization combined with modular design thinking is proposed: by dividing the space to be distributed into modules, the layout modules of different levels are divided, and at the same time Differentiate the content of modules with different degrees of complexity in the way of division. The component hierarchy tree is divided by fuzzy clustering analysis, so that the equipment components of complex modules have sufficient functional correlation, and multiple modules that meet the layout requirements are obtained.

(3) Use the relevant theoretical principles of ergonomics to establish a constraint function on the values of the field of view and the accessibility of the sitting posture that have an impact on the spatial layout; use the AHP to process the data of the frequency of component use, and distinguish the layout of each component. level, and further establish constraints; set overlapping coefficients between modules to ensure that the optimization iterative process takes into account the collision in the active space.

(4) Through the algorithm output solution set, manual screening is carried out to obtain the preliminary scheme optimization set. In order to verify the availability of the solution set points, a spatial simulation is performed using modeling software such as Rhino. The fuzzy comprehensive evaluation method based on expert scoring data to sort the center of gravity can verify the feasibility of the optimized centralized scheme, and can achieve further design refinement.

(5) Verification Through the process optimization of the modular genetic algorithm, compared with the operation efficiency of the basic genetic algorithm, the operation efficiency and the establishment of constraints have both improved numerically.

中图分类号:

 TB472    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式