- 无标题文档
查看论文信息

论文中文题名:

 冻融循环下土石混合体-混凝土界面力学特性宏细观研究    

姓名:

 黄涛    

学号:

 19204209063    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 冻土工程    

第一导师姓名:

 唐丽云    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-15    

论文答辩日期:

 2022-05-28    

论文外文题名:

 Macro and mesoscopic study on mechanical properties of soil-rock mixture-concrete interface under freeze-thaw cycles    

论文中文关键词:

 土石混合体-混凝土 ; 冻融循环 ; 界面粗糙度 ; 孔隙特征 ; 力学特性 ; 数值模拟    

论文外文关键词:

 Soil-rock mix-concrete ; Freeze-thaw cycle ; Interface roughness ; Pore features ; Mechanical properties ; Numerical Simulation    

论文中文摘要:

~目前寒区桩基多采用钻孔灌注施工工艺,造成桩侧土体形成不同程度的粗糙面,且寒区桩基受冻融影响多产生间歇性失稳、融沉等工程病害,究其原因是土石混合体与混凝土界面受冻融影响抗剪强度损失、黏结劣化所致。因此,为探究冻融循环下不同粗糙度土石混合体-混凝土界面强度劣化机制开展了以下试验研究:(1)基于NMR核磁共振技术开展了不同冻融次数、含石率、粗糙度下土石混合体-混凝土核磁分层测试,探究各参数变化下界面层细观孔隙结构演化特征规律;(2)开展不同工况下土石混合体-混凝土界面室内直剪试验,探究各变量下界面抗剪强度及抗剪强度参数劣化规律,构建含有冻融次数、粗糙度、孔隙度等参数的界面抗剪强度劣化理论模型;(3)基于PFC数值模拟软件构建不同工况下的界面直剪模型,明晰界面剪切带裂隙发育全过程,探究剪切带颗粒旋转、位移特征对剪切带变形破坏特征的影响,从细观角度揭示土石混合体-混凝土试样界面宏观变形破坏机制,为寒区桩基承载力劣化提供理论参考。
针对冻融循环下土石混合体-混凝土界面层细观孔隙结构劣化问题。开展核磁共振分层测试发现:界面层存在3类孔径孔隙且随着冻融次数的增加3个特征T2谱均向右移动,孔隙体积增加使界面整体性被破坏;随含石率增加界面层介孔、大孔孔隙占比逐渐增加,孔隙总体积剧烈增大;受粗糙度影响界面孔隙结构变化复杂多样,由于混凝土对土石混合体凹槽的侵占及水泥浆液的渗入界面层小孔孔隙及大孔孔隙含量随粗糙度的增大而减小,介孔孔隙占比增大,孔隙分布向均一化趋势发展;随着含石率的增加微孔、大孔孔径占比逐渐减少,介孔孔隙占比增加且总体孔隙度增加量在逐渐降低。
针对冻融循环下土石混合体-混凝土界面强度损失特征问题,开展不同冻融次数、粗糙度、含石率、法向应力下土石混合体-混凝土界面室内直剪试验,探究界面力学参数变化特征。发现试样剪切应力-位移曲线均呈应变硬化型,抗剪强度受冻融影响显著呈迅速下降、小幅度反翘、缓慢下降三阶段,界面粗糙度不同产生的“树根桩”效应也不尽相同,体现为抗剪强度随界面粗糙度的增大而增大;黏聚力与界面强度变化趋势大致相同,粗糙度对高含石率内摩擦角影响程度较小。最终构建了含有虑冻融次数、粗糙度、界面孔隙度等参数土石混合体-混凝土界面抗剪强度冻融劣化损伤理论模型,经验证该模型能较好表征其劣化损伤特征。
针对土石混合体-混凝土界面剪切带变形破坏特征问题,基于PFC数值模拟软件开展不同工况下直剪模拟试验,模拟结果发现试样剪切破坏裂纹数量受冻融循环影响,随冻融次数增加最终破坏时剪切带裂缝数量也在逐渐增加,冻融作用对颗粒旋转及位移量影响较小;界面碎石赋存情况不同,剪切带厚度随含石率的增加而变厚,由于界面处碎石与混凝土的互锁作用,剪切带常常出现“绕石”现象;粗糙度为0时试样破坏多为滑移破坏,与其他粗糙度相对剪切破坏时剪切带破坏特征较为简单,破坏时颗粒旋转及位移量很小,随着粗糙度的增加剪切带破坏变得复杂多样。
针对土石混合体-混凝土界面抗剪强度变化特征机制问题,结合宏细观试验研究绘制不同影响因素下强度变化机制示意图。发现低含石试样由于冻融作用使土石混合体孔隙体积增大界面损伤劣化显著,土体与混凝土黏结力减小,抗剪强度降低;高含石试样由于冻融作用使土石混合体整体变得松散,剪切时界面处碎石与混凝土咬合力变小,抗剪强度表现出降低趋势;随着含石率及粗糙度的增加,界面处碎石的咬合、锁固作用强化,剪切面呈现出不规则的剪切带,且剪切带厚度不断增大,界面抗剪强度增大。以上研究成果不仅是对土石混合体-混凝土界面体系的有益补充,更可为寒区桩基工程建设、运营及维护提供有效指导。

论文外文摘要:

~At present, most of the pile foundations in cold regions adopt the drilling and pouring construction technology, which causes the soil on the side of the piles to form rough surfaces of different degrees. Moreover, the pile foundations in the cold regions are affected by freezing and thawing, and many engineering diseases such as intermittent instability and thaw settlement are caused. It is caused by the loss of shear strength and the deterioration of the bond between the soil-rock mixture and the concrete interface affected by freezing and thawing. Therefore, in order to explore the deterioration mechanism of soil-rock mixture-concrete interface strength with different roughness under freeze-thaw cycles, the following experimental studies were carried out: (1) Based on NMR nuclear magnetic resonance technology, soil-rock mixture under different freeze-thaw times, rock content, and roughness was carried out. Body-concrete nuclear magnetic delamination test was carried out to explore the evolution characteristics of the mesoscopic pore structure of the interface layer under the changes of various parameters; (2) Indoor direct shear tests of the soil-rock mixture-concrete interface under different working conditions were carried out to explore the interface shear strength under various variables. and the deterioration law of shear strength parameters, and build a theoretical model of interface shear strength deterioration including freeze-thaw times, roughness, porosity, etc. The whole process of the development of cracks in the interface shear zone, explore the influence of particle rotation and displacement characteristics of the shear zone on the deformation and failure characteristics of the shear zone, and reveal the macroscopic deformation and failure mechanism of the soil-rock mixture-concrete sample interface from a mesoscopic perspective. The base bearing capacity degradation provides a theoretical reference.
Aiming at the deterioration of the mesopore structure of the soil-rock mixture-concrete interface layer under freeze-thaw cycles. Carrying out NMR layering test, it is found that there are three types of pores in the interface layer, and with the increase of freeze-thaw times, the three characteristic T2 spectra all move to the right, and the increase of pore volume destroys the integrity of the interface; The proportion of mesopores and macropores gradually increases, and the total pore volume increases dramatically; the interface pore structure changes complex and diverse due to the influence of roughness. The macroporous pore content decreases with the increase of roughness, the proportion of mesoporous pores increases, and the pore distribution develops toward a uniform trend; The porosity ratio increases and the overall porosity increase gradually decreases.
Aiming at the characteristics of strength loss of soil-rock mixture-concrete interface under freeze-thaw cycles, the indoor direct shear test of soil-rock mixture-concrete interface under different freeze-thaw times, roughness, rock content and normal stress was carried out to explore the change characteristics of interface mechanical parameters. . It is found that the shear stress-displacement curves of the samples are all strain hardening, and the shear strength is significantly reduced by freezing and thawing in three stages: rapid decline, slight inversion, and slow decline. The "root stump" effect caused by different interface roughness also The results show that the shear strength increases with the increase of the interface roughness; the cohesion force and the interface strength change in roughly the same trend, and the roughness has little effect on the internal friction angle with high stone content. Finally, a theoretical model of freeze-thaw deterioration damage of soil-rock mixture-concrete interface shear strength is constructed, which includes parameters such as freeze-thaw times, roughness, and interface porosity. It is verified that the model can better characterize its deterioration damage characteristics.
Aiming at the deformation and failure characteristics of the shear zone of the soil-rock mixture-concrete interface, direct shear simulation tests under different working conditions were carried out based on the PFC numerical simulation software. The number of fractures in the shear zone increases gradually when the final failure increases, and the freeze-thaw effect has little effect on the rotation and displacement of the particles; the occurrence of rubble at the interface is different, and the thickness of the shear zone becomes thicker with the increase of the stone content. The interlocking effect of the crushed stone and the concrete at the interface often causes the phenomenon of "wrap around the stone" in the shear band; when the roughness is 0, the failure of the sample is mostly slip failure, and the shear band failure characteristics are relative to other roughness. Relatively simple, the particle rotation and displacement are small during failure, and the shear band failure becomes complex and diverse with the increase of roughness.
Aiming at the characteristic mechanism of shear strength change at the soil-rock mixture-concrete interface, a schematic diagram of the strength change mechanism under different influencing factors was drawn based on the macro and mesoscopic experimental research. It was found that the pore volume of the soil-rock mixture was increased due to the freezing and thawing of the low rock-containing samples, and the interface damage was significantly deteriorated, the bonding force between the soil and the concrete was reduced, and the shear strength was reduced; The whole becomes loose, the occlusal force between the crushed stone and the concrete at the interface becomes smaller during shearing, and the shear strength shows a decreasing trend; The shear plane presents an irregular shear band, and the thickness of the shear band increases continuously, and the shear strength of the interface increases. The above research results are not only beneficial supplements to the soil-rock mixture-concrete interface system, but also provide effective guidance for the construction, operation and maintenance of pile foundation engineering in cold regions.

参考文献:

[1]孙廷东, 葛树东. 季节冻土区与多年冻土区的冻胀浅析[J]. 东北水利水电, 2005, 23(12): 50-51.

[2]蔡汉成, 李 勇, 杨永鹏, 等. 青藏铁路沿线多年冻土区气温和多年冻土变化特征[J]. 岩石力学与工程学报, 2016, 35(7): 1434-1444.

[3]吴青柏, 朱元林, 刘永智. 人类工程活动下冻土环境变化评价模型[J]. 中国科学(D辑: 地球科学), 2002, 32(2): 141-148.

[4]孙厚超, 杨平, 王国良. 冻土与结构接触界面层力学试验系统研制及应用[J]. 岩土力学, 2014, 35(12): 3636-3641+3643.

[5]史向阳. 冻土层下水对桩基热稳定性影响研究[D]. 兰州交通大学, 2016.

[6]汪双杰, 王佐, 陈建兵. 青藏高原工程走廊冻土环境与高速公路布局[M]. 上海: 上海科学出版社, 2017.

[7]Liu J K, Wang T F, Wen Z. Research on pile performance and state-of-the-art practice in cold regions[J]. Sciences in Cold and Arid Regions, 2018, 10(1): 1-11.

[8]中铁第一勘察设计院集团有限公司. 改建铁路青藏线格尔木至拉萨段扩能改造车站工程勘察报告[R]. 西安: 中铁第一勘察设计院集团有限公司, 2014.

[9]Chang W J, Phantachang T. Effects of gravel content on shear resistance of gravelly soils[J]. Engineering Geology, 2016, 207: 78-90.

[10]Zhang Z L, Xu W J, Xia W, et al. Large-scale in-situ test for mechanical characterization of soil–rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 317-322.

[11]王宇, 李晓, 赫建明, 等. 土石混合体细观特性研究现状及展望[J]. 工程地质学报, 2014, 22(01): 112-123.

[12]Tian F H, Jian K L, Ben Z Z, et al. Study on Sliding Characteristics and Controlling Measures of Colluvial Landslides in Qinghai-Tibet Plateau[J]. Procedia Engineering, 2016, 143: 1477-1484.

[13]Wen-Jie X, Qiang X, Rui-Lin H. Study on the shear strength of soil–rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1235-1247.

[14]严莉华. 高寒冻土地区桥梁病害机理及处理方法研究[D]. 长安大学, 2010.

[15]穆彦虎, 马巍, 牛富俊, 等. 多年冻土区道路工程病害类型及特征研究[J]. 防灾减灾工程学报, 2014, 34(03): 259-267.

[16]张玉芝, 杜彦良, 孙宝臣, 等. 季节性冻土地区高速铁路路基冻融变形规律研究[J]. 岩石力学与工程学报, 2014, 33(12): 2546-2553.

[17]Sheng bo X , Jianjun Q U , Yuanming L , et al. Effects of Freeze–thaw Cycles on Soil Mechanical and Physical Properties in the Qinghai–Tibet Plateau[J]. Journal of Mountain Science, 2015, 12(4): 999-1009.

[18]Lu Z, Xian S, Yao H, et al. Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil[J]. Cold Regions Science and Technology, 2019, 157: 42-52.

[19]侯鑫, 马巍, 李国玉, 等. 冻融循环对硅酸钠固化黄土力学性质的影响[J]. 冰川冻土, 2018, 40(1): 86-93.

[20]刘晖, 刘建坤, 邰博文, 等. 冻融循环对含砂粉土力学性质的影响[J]. 哈尔滨工业大学学报, 2018, 50(3): 135-142.

[21]Qi J L, Vermeer P A, Cheng G D. A review of the influence of freeze‐thaw cycles on soil geotechnical properties[J]. Permafrost and Periglacial Processes, 2006, 17(3): 245-252.

[22]王铁权. 多年冻土区高等级公路路基路面结构变形特性研究[D]. 长安大学, 2016.

[23]牛富俊, 马巍, 吴青柏. 青藏铁路主要冻土路基工程热稳定性及主要冻融灾害[J]. 地球科学与环境学报, 2011, 033(002): 196-206.

[24]陈建兵, 熊治华, 李军, 等. 青藏高原冻土区桥梁使用状况调研及对新建工程的启示简[J]. 公路交通科技: 应用技术版, 2018, 000(002): P.255-258.

[25]Lixin Z. Unfrozen Water Content of Soil Containing Nacl Relating to Freezing-Thawing Processes[J]. journal of glaciolgy and geocryology, 1995.

[26]Chang W J, Phantachang T. Effects of gravel content on shear resistance of gravelly soils[J]. Engineering Geology, 2016, 207: 78-90.

[27]Zhang Z L, Xu W J, Xia W, et al. Large-scale in-situ test for mechanical characterization of soil–rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 317-322.

[28]Ladanyi B , Morel J F . Effect of internal confinement on compression strength of frozen sand[J]. Canadian Geotechnical Journal, 1990, 27(1):8-18.

[29]Ko S G, Choi C H. Experimental study on adfreeze bond strength between frozen sand and aluminium with varying freezing temperature and vertical confining pressure[J].Journal of the Korean Geotechnical Society,2011, 27( 9):67-76.

[30]Zhao L Z, Yang P, Wang J G. et al. Impacts of surface roughness and loading conditions on cyclic direct shear behaviors of an artificial frozen silt-structure interface[J]. Cold Regions Science and Technology, 2014, 106-107: 183-193.

[31]Zhao L, Yang P, Zhang L C, et al. Cyclic direct shear behaviors of an artificial frozen soil-structure interface under constant normal stress and sub-zero temperature[J]. Cold Regions Science and Technology, 2017, 133: 70-81.

[32]Sun H, Yang P. Monotonic shear mechanical characteristics of interface layers between frozen soil and structure[J]. Electronic Journal of Geotechnical Engineering, 2015, 20(3):1053-1066.

[33]Sun W, Wu A, Hou K, et al. Real-time observation of meso-fracture process in backfill body during mine subsidence using X-ray CT under uniaxial compressive conditions[J]. Construction and Building Materials, 2016, 113: 153-162.

[34]Liu J, Lv P, Cui Y, et al. Experimental study on direct shear behavior of frozen soil–concrete interface[J]. Cold regions science and technology, 2014, 104: 1-6.

[35]Liu J, Cui Y, Wang P, et al. Design and validation of a new dynamic direct shear apparatus for frozen soil[J]. Cold Regions Science and Technology, 2014, 106: 207-215.

[36]张国栋, 罗雯, 杜鹏. 三峡库区典型土石混合体与混凝土接触面大型剪切试验研究[J]. 水利水电技术, 2014, 45(08): 149-152.

[37]董博. 堆石料与混凝土面板之间接触面变形特性试验研究[D]. 大连理工大学, 2018.

[38]Potyondy. Skin friction between various soils and construction material.Geotechnique, 1961, 11(4): 339-353.

[39]成浩, 王晅, 张家生, 等. 颗粒粒度与级配对碎石料与结构接触面剪切特性的影响[J]. 中南大学学报(自然科学版), 2018, 49(04): 925-932.

[40]陈静, 李邵军, 孟凡震, 等. 三峡库区滑坡土石混合体与桩的接触面力学特性试验研究[J]. 岩石力学与工程学报, 2011, 30(S1): 2888-2895.

[41]张嘎, 张建民. 粗粒土与结构接触面单调力学特性的试验研究[J]. 岩土工程学报, 2004, 26(1): 21-25.

[42]张嘎, 张建民. 大型土与结构接触面循环加载剪切仪的研制及应用[J]. 岩土工程学报, 2003(02): 149-153.

[43]丑亚玲, 黄守洋, 孙丽源, 等. 基于冻融作用的氯盐渍土-钢块界面力学模型[J]. 岩土力学, 2019(S1): 1-13.

[44]丑亚玲, 郏书胜, 张庆海. 基于冻融作用的非饱和黄土-混凝土界面力学模型[J].工程地质学报, 2018, 26(04): 825-834.

[45]何鹏飞, 马巍, 穆彦虎, 等. 冻融循环对冻土–混凝土界面冻结强度影响的试验研究[J]. 岩土工程学报, 2020, 42(02): 299-307.

[46]卢廷浩, 鲍伏波. 接触面薄层单元耦合本构模型[J]. 水利学报, 2000(02): 71-75.

[47]石泉彬, 杨平. 冻结粉细砂与钢板接触面剪切统计损伤模型构建[J]. 铁道科学与工程学报, 2021, 18(10): 2591-2599.

[48]Luan M, Wu Y. A nonlinear elasto-perfectly plastic model of interface element for soil-structure interaction and its applications[J]. Rock and Soil Mechanics-WuHan, 2004, 25(4; ISSU 93): 507-513.

[49]刘志强, 王博, 王涛, 等. 高压冻(融)土-结构接触面剪切应力-应变关系[J].哈尔滨工业大学学报, 2021, 53(05): 134-140.

[50]杨平, 赵联桢, 王国良. 冻土与结构接触面循环剪切损伤模型[J]. 岩土力学, 2016, 37(05): 1217-1223. DOI:10.16285/j.rsm.2016.05.001.

[51]董盛时, 董兰凤, 温智, 等. 青藏冻结粉土与混凝土基础接触面本构关系研究[J]. 岩土力学, 2014, 35(06): 1629-1633.

[52]陈俊桦, 张家生, 李键. 考虑粗糙度的黏性土-结构接触面力学特性试验[J]. 四川大学学报(工程科学版), 2015, 47(04): 22-30.

[53]成浩, 王晅, 张家生, 等. 考虑粗糙度影响的不同土与混凝土界面大型直剪试验研究[J]. 工程科学与技术, 2019, 51(05): 117-125.

[54]胡黎明, 濮家骝. 土与结构物接触面物理力学特性试验研究[J]. 岩土工程学报, 2001(04): 431-435.

[55]金子豪, 杨奇, 陈琛, 等. 粗糙度对混凝土–砂土接触面力学特性的影响试验研究[J]. 岩石力学与工程学报, 2018, 37(03): 754-765.

[56]杨砚宗. 砂土与结构接触面粗糙度试验研究[J]. 建筑科学, 2013, 29(01): 55-57.

[57]王天亮, 王海航, 王鸥, 等. 粉土与凹槽结构面抗剪强度特性试验研究[J].北京交通大学学报, 2019, 43(03): 115-121.

[58]熊彬涛, 黄广龙, 徐伟. 混凝土表面粗糙度对桩土接触面剪切特性影响试验研究[J]. 建筑科学, 2017, 33(03): 39-45.

[59]王永洪, 张明义, 刘俊伟, 等. 接触面粗糙度对黏性土-混凝土界面剪切特性影响研究[J]. 工业建筑, 2017, 47(10): 93-97.

[60]石熊, 张家生, 刘蓓, 等. 红黏土与混凝土接触面剪切特性试验研究[J]. 中南大学学报(自然科学版), 2015, 46(05): 1826-1831.

[61]刘方成, 尚守平, 王海东. 粉质黏土-混凝土接触面特性单剪试验研究[J]. 岩石力学与工程学报, 2011, 30(08): 1720-1728.

[62]邓国栋. 粗粒土与混凝土接触面剪切特性试验研究[J]. 中外公路, 2019, 39(03): 247-251.

[63]张英, 邴慧. 基于压汞法的冻融循环对土体孔隙特征影响的试验研究[J]. 冰川冻土, 2015, 37(01): 169-174.

[64]张英, 邴慧, 杨成松. 基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究[J]. 岩石力学与工程学报, 2015, 34(S1): 3597-3603.

[65]Wang S, Lv Q, Baaj H, et al. Volume change behaviour and microstructure of stabilized loess under cyclic freeze–thaw conditions[J]. Canadian Journal of Civil Engineering, 2016, 43(10): 865-874.

[66]谈云志, 吴翩, 付伟, 等. 改良粉土强度的冻融循环效应与微观机制[J]. 岩土力学, 2013(10): 2827-2834.

[67]Konrad J M, Duquennoi C. A model for water transport and ice lensing in freezing soils[J]. Water Resources Research, 1993, 29(9): 3109-3124.

[68]李刚, 唐丽云, 金龙, 等. 冻融循环下土石混合体强度劣化特性研究[J]. 河南科技大学学报(自然科学版), 2022, 43(04): 67-75+7-8.

[69]Li G, Ma W, Mu Y, et al. Effects of freeze-thaw cycle on engineering properties of loess used as road fills in seasonally frozen ground regions, North China[J]. Journal of Mountain Science, 2017, 14(2): 356-368.

[70]Tang Y Q , Yan J J . Effect of freeze–thaw on hydraulic conductivity and microstructure of soft soil in Shanghai area[J]. Environmental Earth Sciences, 2015, 73(11): 7679-7690.

[71]郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36(5): 1282-1287.

[72]齐吉琳, 马巍. 冻融作用对超固结土强度的影响[J]. 岩土工程学报, 2006, 28(12): 2082-2086.

[73]李楠, 王天亮, 徐昌, 等. 反复冻融作用下粉质黏土的微观分形特征研究[J].铁道标准设计, 2017, 61(10): 48-52.

[74]卢星航, 史海滨, 李瑞平, 等. 基于NMR技术的盐渍化冻融土壤未冻水及孔隙水含量试验研究[J]. 水土保持学报, 2017, 31(02): 111-116.

[75]叶万军, 强艳红, 景宏君, 等. 基于核磁共振的不同含水率黄土古土壤冻融循环试验研究[J/OL]. 工程地质学报: 1-10[2021-08-04].

[76]张强, 汪小刚, 赵宇飞, 等. 不同围压加载方式下土石混合体变形破坏机制颗粒流模拟研究[J]. 岩土工程学报, 2018, 40(11): 2051-2060.

[77]赵亦凡, 刘文白. 粗粒土与结构接触面往返剪切试验的PFC2D数值模拟[J]. 上海海事大学学报, 2015, 36(01): 81-85.

[78]Xu W J, Hu L M, Gao W. Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 166-178.

[79]Shan P, Lai X. Mesoscopic structure PFC 2D model of soil rock mixture based on digital image[J]. Journal of Visual Communication and Image Representation, 2019, 58: 407-415.

[80]杨忠平, 雷晓丹, 王雷, 等. 含石量对土石混合体剪切特性影响的颗粒离散元数值研究[J]. 工程地质学报, 2017, 25(04): 1035-1045.

[81]丁秀丽, 李耀旭, 王新. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与工程学报, 2010, 29(03): 477-484.

[82]张强, 汪小刚, 赵宇飞, 等. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究[J]. 岩土工程学报, 2019, 41(08): 1545-1554.

[83]Xu W J, Wang S, Zhang H Y, et al. Discrete element modelling of a soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 141-156.

[84]交通部公路科学研究院. JTG E40-2007 公路土工试验规程[S]. 北京: 人民交通出版社, 2007.

[85]蒋雅君, 陶双江. 隧道工程喷射混凝土衬砌基面粗糙度的面积扩大系数评定方法[J]. 铁道学报, 2010, 32(3): 95-99.

[86]冯上鑫, 柴军瑞, 许增光, 等. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J]. 岩土力学, 2018, 39(08): 2886-2894.

[87]Harmer J, Callcott T, Maeder M, et al. A novel approach for coal characterization by NMR spectroscopy: global analysis of proton T1 and T2 relaxations[J]. Fuel, 2001, 80(3): 417-425.

[88]Li J, Kaunda R B, Zhou K. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone[J]. Cold Regions Science and Technology, 2018, 154: 133-141.

[89]张雅慧, 汪丁建, 唐辉明,等. 基于PFC~(2D)数值试验的异性结构面剪切强度特性研究[J]. 岩土力学, 2016, v.37;No.259(04):124-134.

[90]BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1/2): 1-54.

[91]申艳军, 魏欣, 杨更社, 等. 岩石-混凝土界面黏结强度冻融劣化模型及试验分析[J]. 岩石力学与工程学报, 2020, 39(03): 480-490. DOI:10.13722/j.cnki.jrme.2019.1037.

[92]Igarashi S, Bentur A, Mindess S. Microhardness testing of cementitious materials[J]. Advanced Cement Based Materials, 1996, 4(2): 48-57.

[93]Yang X, Shen A, Guo Y, et al. Deterioration mechanism of interface transition zone of concrete pavement under fatigue load and freeze-thaw coupling in cold climatic areas[J]. Construction and Building Materials, 2018, 160: 588-597.

[94]Nix W D, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425.

[95]DU S, HU Y, HU X, et al. Comparison between empirical estimation by JRC-JCS model and direct shear test for joint shear strength[J]. Journal of Earth Science, 2011, 22(03): 411-420.

[96]梁胜增. 混凝土在冻融循环下的抗压强度研究[J]. 科技与创新, 2019, (13): 139-140.

[97]刘艳霞, 陈改新, 纪国晋, 等. 冻融对水工混凝土力学性能的影响及受冻混凝土强度衰减模型研究[J]. 大坝与安全, 2019, (2): 32–37.

[98]张兆文, 周茗如, 魏琴玲, 等. 基于冻融损伤下的高性能混凝土力学性能衰减规律研究[J]. 混凝土与水泥制品, 2019, (4): 16-19.

[99]Cundall, P. A. and Strack, O. D. L. A discrete numerical model for granular assemblies[J]. Geotechnique, 29(1), 47-65.

[100]Perfect E. Fractal models for the fragmentation of rocks and soils: a review[J]. Engineering geology, 1997, 48(3-4): 185-198.

[101]PORTENEUVE C, KORB J P, PETIT D, ZANNI H. Structure-texture correlation in ultra-high-performance concrete: A nuclear magnetic resonance study [J]. Cement and Concrete Research, 2002, 32: 97−101.

[102]Al-Mahrooqi S H, Grattoni C A, Moss A K, et al. An investigation of the effect of wettability on NMR characteristics of sandstone rock and fluid systems[J]. Journal of Petroleum Science and Engineering, 2003, 39(3-4): 389-398.

中图分类号:

 TU445    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式