题名: | 基于界面结构调控MXene/PVDF复合材料介电性能研究 |
作者: | |
学号: | 22213225057 |
保密级别: | 保密(1年后开放) |
语种: | chi |
学科代码: | 085600 |
学科: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学位年度: | 2025 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 电介质复合材料 |
导师姓名: | |
导师单位: | |
第二导师姓名: | |
提交日期: | 2025-06-16 |
答辩日期: | 2025-06-03 |
外文题名: | Enhancing Dielectric Properties of MXene/PVDF Composites via Interface Engineering |
关键词: | |
外文关键词: | Polymer composites ; Core-shell structure filler ; Dielectric properties ; Breakdown performance |
摘要: |
面向高性能、多功能化和微型化方向发展的新型高频微电子器件及高电压、大功率电力设备越来越依赖于具有优异综合性能的介电复合材料。目前获得同步卓越力学柔韧性及高介电常数 (ɛ)-低损耗与高击穿强度 (Eb) 的聚合物复合电介质依然面临巨大挑战,针对逾渗型聚合物复合电介质,在优化ɛ的同时,有效调控介电损耗 (tanδ) 与Eb,实现二者同步优化,是攻克该难题的关键。高导电型二维碳化钛 (MXene) 纳米片因表面富含羟基/氧基等官能团和聚合物界面相容性好,在很低含量下可显著提升聚合物的ɛ,但也面临着漏电流和损耗增大的劣势。本研究通过表面功能化改性调控 MXene 纳米片的表面化学特性,结合溶液混合-流延工艺成功制备了系列聚偏氟乙烯 (PVDF) 基复合材料。系统探究了MXene纳米片表面官能团及与PVDF的界面作用、在基体中空间分布状态,揭示了填料表面结构-分散行为-界面极化之间的协同效应对复合材料的介电响应的影响及调控规律。论文的主要研究内容和取得结果如下: (1) 采用原位刻蚀法制备了MXene纳米片,通过溶液流延工艺制备了不同填料含量的MXene/PVDF复合材料。研究结果表明:少量MXene纳米片的引入可显著提高复合材料的ɛ。在102 Hz下,9 wt% MXene/PVDF的ɛ由纯PVDF的5提升至960 (增幅达192倍),但tanδ也由0.03激增至5670.42,较大的tanδ导致材料的Eb显著下降。MXene的高导电特性虽能通过微电容网络大幅提升极化响应,但过量填料形成的导电渗流通道会诱发直流漏导并削弱其电绝缘性能。 (2) 通过溶胶凝胶法在MXene纳米片表面构筑氧化硅 (SiO2) 绝缘包覆层,制备了具有不同壳层厚度的MXene@SiO2填料,并采用溶液流延法制备了系列MXene@SiO2/PVDF复合材料。研究结果表明:SiO2包覆策略有效优化了复合材料的介电性能,9 wt% MXene@20wt% SiO2/PVDF复合材料的ɛ达33.5 (102 Hz),较纯PVDF提升约5.7倍,且tanδ显著降低至0.13,Eb提升至7.6 kV/mm (MXene/PVDF的Eb为4.8 kV/mm)。综合性能的提升归因于SiO2绝缘壳层的双重调控机制:a) SiO2壳层作为电子迁移阻碍势垒,通过阻断MXene纳米片间的电子长程传输路径,抑制了漏导损耗与电树枝生长;b) SiO2界面层缓解了高导电MXene与高绝缘PVDF之间在ɛ与电导率上的介电失配,重构了空间电荷分布,缓解了局部电场畸变与集中现象,实现了ɛ与Eb的协同优化。在该策略启发下,还通过硅烷偶联剂 (KH550) 对纳米SiO2粒子进行表面氨基化改性,利用静电自组装技术将其锚定于MXene表面,制备了MXene--SiO2⁺复合纳米片,并基于溶液流延工艺制备了MXene--SiO2⁺/PVDF复合材料。当MXene--20wt% SiO2⁺填料量为9 wt%时,复合材料介电性能最优:ɛ达到48.1 (102 Hz),较纯PVDF提升约8.6倍,同时 tanδ 降低至0.14,Eb提升至7.9 kV/mm。这归因于KH550改性的SiO2表面氨基与MXene表面含氧官能团的静电自组装形成的稳定异质界面,其大大改善了填料的分散性,并抑制了载流子迁移,降低了漏导损耗,进而提升了复合材料的Eb。 (3) 基于聚多巴胺 (PDA) 界面修饰策略在MXene纳米片表面构筑有机包覆层,制备了核壳结构MXene@PDA填料,通过溶液流延工艺制备了系列MXene@PDA/PVDF复合材料。PDA界面层有效阻断了MXene导电网络的形成并引入电荷陷阱,抑制了载流子迁移以降低漏导损耗,从而提升了材料的Eb。9 wt%填料时,MXene@20 wt% PDA/PVDF在102 Hz下的ɛ达36.1 (较纯PVDF提升约6.2倍),tanδ显著降低至0.4,Eb提升至7.2 kV/mm。为进一步提升MXene@PDA/PVDF的介电性能,还通过对MXene的氧化预处理与PDA包覆策略结合制备了氧化层-PDA双壳层结构填料(O-MXene@PDA),并制备了系列O-MXene@PDA/PVDF复合材料。双壳层策略通过提高MXene电阻率、增强绝缘性能及诱导额外界面极化,协同提升了材料的介电与击穿性能。9 wt% O-MXene@20 wt% PDA/PVDF在102 Hz下的ɛ达39.9 (较纯PVDF提升6.98倍),tanδ低至0.04,Eb提升至14 kV/mm。相比单一壳层体系,双壳结构体系呈现更高的ɛ与Eb及更低的漏电流及tanδ,该双壳层设计策略为设计与开发高介电-高绝缘性能的柔性复合电介质材料提供了新方向。 |
外文摘要: |
The new high-frequency microelectronic devices and high-voltage, high-power power equipment that are developing towards high performance, multi-functionality and miniaturization increasingly rely on dielectric composite materials with excellent comprehensive properties. Currently, obtaining polymer composite dielectrics that simultaneously possess excellent mechanical flexibility, high dielectric permittivity (ɛ), low loss and high breakdown strength (Eb) still poses significant challenges. For percolation-type polymer composite dielectrics, optimizing ɛ while effectively regulating dielectric loss (tanδ) and Eb to achieve synchronous optimization is the key to overcoming this problem. High-conductivity two-dimensional titanium carbide (MXene) nanosheets, due to their surface rich in functional groups such as hydroxyl/oxy groups and good polymer interface compatibility, can significantly enhance the ɛ of polymers at very low content. However, they also face the disadvantages of increased leakage current and loss. This study successfully prepared a series of polyvinylidene fluoride (PVDF)-based composite materials by surface functionalization modification to regulate the surface chemical properties of MXene nanosheets, combined with solution mixing-extrusion process. The main research contents and results of this paper are as follows: (1) MXene nanosheets were synthesized via an in-situ etching method, and MXene/PVDF composites with varying filler contents were fabricated using a solution casting process. Results demonstrated that introducing a small amount of MXene nanosheets significantly enhanced the composite’s ε. At 102 Hz, the ε of 9 wt% MXene/PVDF increased from 5 for pure PVDF to 960 (a 192-fold enhancement). However, the tanδ surged from 0.03 to 5670.4, and the substantial tanδ increase led to a significant reduction in Eb. While the high conductivity of MXene amplified polarization responses through micro-capacitor networks, excessive filler content formed conductive percolation pathways, triggering Direct Current conduction and deteriorating electrical insulation properties. (2) MXene@SiO2 fillers with varying shell thicknesses were prepared by constructing SiO2 insulating coatings on MXene nanosheets via a sol-gel method, and MXene@SiO2/PVDF composites were fabricated using solution casting. Results revealed that the SiO2 coating strategy effectively optimized dielectric properties. The 9 wt% MXene@20wt% SiO2/PVDF composite exhibited a ε of 33.5 at 102 Hz (a 5.7-fold increase over pure PVDF), with tanδ significantly reduced to 0.13 and Eb enhanced to 7.6 kV/mm (the Eb of MXene/PVDF is 4.8 kV/mm). The performance improvement stemmed from the dual regulatory mechanisms of the SiO2 insulating shell: a) The SiO2 layer acted as an electron-blocking barrier, suppressing leakage conduction loss and electrical treeing by disrupting long-range electron transport pathways between MXene nanosheets; b) The SiO2 interfacial layer alleviated dielectric mismatch in ε and conductivity between highly conductive MXene and insulating PVDF, redistributing space charges and mitigating local electric field distortion, thereby synergistically optimizing ε and Eb. Inspired by this strategy, amino-functionalized nano-SiO2 particles modified with silane coupling agent (KH550) were electrostatically self-assembled onto MXene surfaces to create MXene--SiO2⁺ composite nanosheets. The resulting MXene--20wt% SiO2⁺/PVDF composite (9 wt% filler loading) achieved optimal dielectric performance: ε reached 48.1 at 102 Hz (a 8.6-fold increase over pure PVDF), tanδ decreased to 0.14, and Eb increased to 7.9 kV/mm. This enhancement originated from the stable heterogeneous interface formed by electrostatic interactions between KH550-modified SiO2 amino groups and MXene oxygen-containing functional groups, which improved filler dispersion, suppressed carrier migration, and reduced leakage conduction loss, ultimately boosting Eb. (3) Based on the polydopamine (PDA) interface modification strategy, an organic coating layer was constructed on the surface of MXene nanosheets, resulting in the preparation of MXene@PDA filler. A series of MXene@PDA/PVDF composite materials were fabricated through the solution casting process. The PDA interface layer effectively prevented the formation of the MXene conductive network and introduced charge traps, inhibiting the carrier migration to reduce leakage loss, thereby enhancing the materials Eb. When the filler content was 9 wt%, MXene@20 wt% PDA/PVDF achieved an ε of 36.1 at 102 Hz (an increase of approximately 6.2 times compared to pure PVDF), and tanδ was significantly reduced to 0.4, with Eb increasing to 7.2 kV/mm. To further enhance the dielectric properties of MXene@PDA/PVDF, an oxide-layer-PDA double-shell structure filler (O-MXene@PDA) was prepared by combining the oxidation pretreatment of MXene with the PDA coating strategy, and a series of O-MXene@PDA/PVDF composite materials were fabricated. The double-shell strategy enhances the resistivity of MXene, improves the insulation performance, and induces external surface polarization, thereby synergistically improving the dielectric and breakdown properties of the material. At 102 Hz, 9 wt% O-MXene@ 20 wt% PDA/PVDF has an ε value of 39.9 (an increase of 6.98 times compared to pure PVDF), a tanδ value as low as 0.04, and an Eb value as high as 14 kV/mm. Compared to the single-shell system, the double-shell structure system exhibits higher ε and Eb values and lower leakage current and tanδ. This double-shell design strategy provides a new direction for the design and development of flexible composite dielectric materials with high dielectric and high insulation properties. |
参考文献: |
[5] 冯遵鹏.聚合物基复合材料的结构设计与电性能调控[D].北京邮电大学,2024. [10] 董久锋, 邓星磊, 牛玉娟等. 面向高温介电储能应用的聚合物基电介质材料研究进展[J]. 物理学报, 2020, 69(21): 43-58. [11] 张天栋, 杨连印, 张昌海, 迟庆国. 聚合物基复合薄膜的高温储能性能研究进展[J].中国电机工程学报, 2021, 41(05): 1526-1540. [12] 廖书迪. 聚合物基陶瓷纳米棒阵列复合电介质材料的制备及性能研究[D]. 清华大学, 2018. [16] 谭艺鹏.介电复合材料多层协同效应设计及其高温储能特性研究[D].广州大学,2024. [24] 党智敏.高介电无机/有机复合材料的研究[D].清华大学,2003. [27] 王海燕, 咸龙帝, 尚天蓉等. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 245-250. [29] 梁学良, 宋波. 聚合物/石墨烯介电复合材料研究进展[J]. 山东化工, 2023, 52(06): 89-91. [30] 谢兵, 蔡金峡, 王铜铜等. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(02): 137-147. [31] 李宜陶, 王静荣, 孙珩斯等. MXene/氮化硼/聚偏氟乙烯复合材料的制备及介电性能[J]. 东华大学学报(自然科学版), 2024. [32] 孙新阳. 基于纳米碳多层级构筑的结构/功能一体化复合材料及性能研究[D]. 中国科学技术大学, 2024. [35] 李海蓉. 聚偏氟乙烯基复合材料的结构调控与介电性能研究[D]. 武汉理工大学, 2014. [41] 薄睿恬.钛酸钡填充PVDF-LDPE复合材料的结构设计与介电性能研究[D]. 哈尔滨理工大学, 2024. [42] 陈富佳. 高储能PVDF基复合聚合物薄膜设计及储能特性研究[D]. 电子科技大学, 2024. [52] 姚凯. 铋基钙钛矿型弛豫铁电陶瓷的结构、电性能与储能性能研究[D]. 桂林电子科技大学, 2021. [56] 李玉超, 付雪连, 战艳虎等. 高介电常数、低介电损耗聚合物复合电介质材料研究进展[J]. 材料导报, 2017, 31(15): 18-23. [59] 李乐毅.介电复合材料制备工艺与储备性能研究现状[J].一重技术, 2024, (06):58-60+24. [65] 申悦. 聚酰亚胺基全有机高温介电储能复合材料的研究[D]. 广西大学, 2024. [66] 李红叶. 片状纳米粉体制备及其提高PEI基介电复合材料高温储能性能研究[D]. 北京化工大学,2024. |
中图分类号: | TB333 |
开放日期: | 2026-06-16 |