论文中文题名: | 宝鸡油库风险分析及安全防护距离研究 |
姓名: | |
学号: | 20320226002 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 安全管理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-20 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Risk Analysis and Safety Protection Distance Research of Baoji Oil Depot |
论文中文关键词: | |
论文外文关键词: | Oil depot risk ; major hazard sources ; accident consequences ; domino effect ; Safety pro-tection distance |
论文中文摘要: |
油库作为油品储存的主要场所,存储了大量易燃、可燃液体,这使得油库本身具有较高的火灾爆炸事故风险。为了防止火灾爆炸事故发生和降低事故后果严重程度,有必要对油库风险和事故后果进行分析研究,为油库安全措施制定与事故应急处置提供依据。宝鸡油库的危险物品主要为汽油和柴油,均为易燃液体。通过重大危险源辨识方法进行评估发现,宝鸡油库属于一级重大危险源。 通过对宝鸡油库个人风险和社会风险进行计算,发现个人风险和社会风险均存在不符合要求情况。其中个人风险中风险为3×10-5的风险等值线覆盖了部分胥家崖村的居民区,社会风险达到了不可接受风险。分别通过降低油库储量和人员搬迁的方法来降低个人风险和社会风险。结果表明,停用TG01储罐和将可能覆盖区域人员搬迁的方法可以将个人风险由不符合个人风险基准值要求降低到基本符合个人风险基准值,可将社会风险由不可接受区域降低到尽可能降低风险区域,个人风险覆盖区域搬迁人员越多,社会风险越小。 通过对宝鸡油库储罐、罐车和槽车进行事故后果模拟,发现泄漏孔径为5mm时,汽油储罐、罐车和槽车池火灾后期37.5kw/m2热辐射的半径分别为7.5m、4.5m和4m,均小于两个相邻设备之间的最小距离,这不会引起相邻设备的多米诺效应。当泄漏孔径大于5mm时,池火灾后期热辐射通量没有达到37.5 kw/m2,所以不会引起相邻设备的多米诺效应;当汽油储罐泄漏孔径为25mm和100mm、汽油罐车泄漏孔径为100mm以及汽油槽车泄漏孔径为100mm时,超过两个储罐、罐车和槽车之间的最小距离,在这些情况下发生喷射火时可能会引起相邻设备的多米诺效应;储罐、罐车和槽车在发生蒸汽云爆炸时,爆炸区域均不在罐区,所以不会引起相邻储罐发生多米诺效应;柴油储罐、罐车和槽车均不会发生多米诺效应。另外,储罐、罐车和槽车产生的爆炸冲击波以及产生的热辐射可能不会引起多米诺效应,但会对厂区工人及周边居民区人员造成身体伤害。不同事故后果产生的热辐射和爆炸冲击波等高线半径即为安全防护距离,当发生泄漏爆炸时,应将人群疏散至安全防护距离之外。最后计算了不同风速时的汽油储罐全破裂事故后果,发现随着风速(1m/s~1.7 m/s)的增加4 kw/m2的热辐射半径逐渐增大,爆炸超压半径先增大后减小,爆炸中心距泄漏点距离逐渐减小,而最大爆炸超压保持不变。 |
论文外文摘要: |
As the main place for oil storage, the oil depot stores a large number of flammable and combustible liquids, which makes the oil depot itself have a high risk of fire and explosion accidents. In order to prevent the occurrence of fire and explosion accidents and reduce the severity of the consequences of accidents, it is necessary to analyze and study the risks and accident consequences of oil depots to provide a basis for the formulation of safety measures and emergency handling of accidents in oil depots. The dangerous goods in Baoji Oil Depot are mainly gasoline and diesel, both of which are flammable liquids. Through the evaluation of major hazard identification methods, it was found that Baoji oil depot belonged to the first major hazard source. Through the calculation of personal risk and social risk of Baoji oil depot, it is found that both personal risk and social risk do not meet the requirements. Among them, the risk contour line of 3×10-5 in the personal risk covers some residential areas of Xujiaya Village, and the social risk has reached an unacceptable risk. Reduce personal and social risks by reducing oil depot reserves and relocating personnel, respectively. The results show that the method of stopping the TG01 tank and relocating personnel in the possible coverage area can reduce the personal risk from not meeting the requirements of the personal risk benchmark value to basically meeting the personal risk benchmark value, and can reduce the social risk from the unacceptable area to the risk reduction area as much as possible. By simulating the consequences of accidents on storage tanks, tank cars and tank cars in Baoji Oil Depot, it is found that when the leak hole diameter is 5mm, the radii of 37.5kw/m2 heat radiation in the late stage of the fire of gasoline storage tanks, tank cars and tank cars are 7.5m, 4.5m and 4.5m respectively. 4m, both less than the minimum distance between two adjacent devices, which will not cause a domino effect of adjacent devices. When the leakage aperture is larger than 5mm, the thermal radiation flux in the later stage of the pool fire does not reach 37.5 kw/m2, so it will not cause the domino effect of adjacent equipment; when the leakage aperture of the gasoline storage tank is 25mm and 100mm, the leakage aperture of the gasoline tanker is 100mm and When the leakage hole diameter of gasoline tanker is 100mm, the minimum distance between two storage tanks, tanker and tanker is exceeded, and the domino effect of adjacent equipment may be caused when a jet fire occurs under these circumstances. When the steam cloud explosion of storage tanks, tank trucks and tank trucks occurs, the explosion area is not in the tank area, so it will not cause domino effects in adjacent storage tanks; diesel storage tanks, tank trucks and tank trucks will not have domino effects. In addition, the explosion shock waves and thermal radiation generated by storage tanks, tank trucks and tank trucks may not cause a domino effect, but they will cause bodily harm to workers in the factory and surrounding residential areas. The radius of the contour lines of thermal radiation and explosion shock waves produced by different accident consequences is the safety protection distance. When a leakage explosion occurs, the crowd should be evacuated beyond the safety protection distance. Finally, the consequences of the total rupture accident of gasoline storage tanks at different wind speeds were calculated, and it was found that with the increase of wind speed (1m/s~1.7 m/s), the heat radiation radius of 4 kw/m2 gradually increased, and the explosion overpressure radius increased first After decreasing, the distance between the explosion center and the leakage point gradually decreases, while the maximum explosion overpressure remains unchanged. |
参考文献: |
[1] 郎需庆, 刘全桢. 英国邦斯菲尔德油库火灾爆炸事故引发的思考[J].石油化工安全环保技术, 2009, 25(6): 45-48. [2] 徐刚. 石油化工设施风险管理丛书—HAZOP 风险评估指南[M].北京:中国石化出版社,2007. [3] 徐刚. 石化装置定量风险评估指南[M]. 北京:中国石化出版社,2007. [5] The Japan Society for Safety Engineering. Report of large crude oil fire tests[M]. 1979. [6] The Japan Society for Safety Engineering. Report of large crude oil burning tests [M]. 1987. [8] Moorhouse J. Scaling criteria for pool fires derived from large scale experiments[J]. 1982. [10] 傅智敏, 黄晓哲, 李元梅. 烃类池火灾热辐射量化分析模型探讨[J].中国安全科学学报, 2010, 20(08): 65-70. [11] 陈利琼, 冯雨翔, 宋利强等. 大型油罐火灾爆炸危害范围研究[J].中国安全生产科学技术, 2018, 14(01): 100-105. [12] 韦善阳, 王川, 胡庆革. 油罐泄漏爆炸影响范围研究[J].消防科学与技术, 2015, 34(01): 22-25. [13] 丛琦, 徐梦轩. 浅析油罐火灾的成因及消防对策[J]. 安全、健康和环境,2007 ,06:19-21. [14] 李野. 全液面油罐火的热辐射计算及扑救策略[J]. 消防科学与技术,2013,02:127-129. [15] 兰天其, 王靖元, 张国强. 浮顶结构对内浮顶油罐火灾扑救的影响研究[J]. 武警学院学报, 2016, 32(02): 19-23. [16] 赵大林, 魏东, 田亮等. 汽油储罐火灾燃烧特性的实验研究[J]. 工程热物理学报, 2004(02): 341-344. [17] 郑斌, 陈国华, 刘晖. 化工储罐火灾危害特性模拟实验研究[J].消防科学与技术, 2014, 33(12): 1435-1439. [18] 高建丰, 杜扬, 蒋新生等. 模拟油罐油气混合物爆炸实验与数值仿真研究[J].后勤工程学院学报, 2007(01): 79-83. [20] 厉建祥, 刘全桢, 宫宏等. 计算机软件模拟油罐火灾对环境的影响[J]. 安全、健康和环境,2008(04):43-45. [21] 庄磊, 陈国庆, 孙志友等. 大型油罐火灾的热辐射危害特性[J]. 安全与环境学报, 2008(04): 110-114. [22] 赵晨露, 黄维秋, 石莉等. 内浮顶罐中油气扩散运移的数值模拟[J]. 安全与环境学报, 2015, 15(03): 72-77. [23] 杨君涛, 魏东, 李思成等. 基于油罐火灾数值模拟的模型选取与分析[J]. 中国安全科学学报, 2004(01): 31-36+3. [24] 宋文华, 李庆功, 冯莉莉等. 火灾环境下大型浮顶罐内原油热响应行为的仿真模拟[J]. 南开大学学报(自然科学版), 2012, 45(01): 90-94. [25] 李玉, 张涛. 基于CFD的油罐全液面火灾热辐射分布研究[J]. 消防科学与技术, 2018, 37(01): 7-10. [26] 曹彬, 张礼敬, 张村峰等. 比较FDS和FLUENT在池火灾模拟中的应用[J]. 中国安全生产科学技术, 2011, 7(09): 45-49. [28] 郭欣, 康习锋. 火灾环境下邻近罐壁热辐射分布实验[J]. 油气储运, 2020, 39(04): 407-411. [29] 郭欣. 油罐火环境下邻近油罐冷却水强度研究[D]. 中国石油大学(北京), 2017. [30] 张兴强. 基于池火灾模型与事故树分析的石油库安全评价[J]. 石油库与加油站, 2021, 30(01): 7-11+5-6. [31] 牟善军,姜春明,彭湘潍等.轻柴油储罐火灾过程及安全性评价[J]. 中国安全科学学报.2003, 13(2):54-59, 46. [32] 赵承建, 于孝红. 原油罐区池火灾及其危险性分析[J]. 石油和化工设备, 2011, 14(06): 48-51. [33] 李育娟,於孝春,朱伯龄. 液化石油气球罐区的风险评价[J]. 石油化工设备. 2009, (1):85-89. [34] 杨守生, 王龙灿, 陈雷. 某油库储运系统安全评价[J]. 油气储运, 2003(08): 7-11+59-4. [35] 张颖,戴光,张莹等.储油罐区基于风险检验(RBI)技术的应用[J]. 化工机械.2006, 33(3):174-177. [36] 田震, 宋新志, 陈国华等. 化学品贮罐火灾爆炸模拟评价方法的研究及软件开发[J]. 计算机与应用化学, 2006(06): 545-548. [37] 刘勇, 蔡婉静, 赵铭等. 基于改进的模糊综合评判法的油库安全度评估系统研究[J]. 内蒙古石油化工, 2011, 37(21): 7-9. [38] 岳彬.油库安全度评估模型研究与软件实现[J]. 工业安全与环保,2010(2):189-197 [39] 余冷媚,吴灿.综合评价方法在油气储运工程中的应用现状[J]. 油气储运,2012(9):4-8 [40] 包丽雅. 基于事件树的石油储罐区火灾风险的定量评估[J]. 防灾科技学院学报, 2013, 01: 82-87. [41] 赵爽, 姜虎生, 陈广芳等.基于事故树分析的油库燃爆事故安全评价研究[J]. 当代化工, 2014, 43(12): 2585-2587. [42] 宋志强, 张清民, 张莹. 基于道指数法的储油库火灾危险性评估分析[J]. 石油库与加油站, 2015, 24(06): 21-23+11-12. [43] 栾海滨, 李增强, 刘焕涛. 原油罐清罐作业危险因素分析与对策[J]. 安全、健康和环境, 2016, 16(02): 11-14. [44] 许学瑞,帅健,吴宗之. 大型原油库火灾定量风险评价[J]. 油气储运, 2015, (5): 482-487. [45] 赵传奇, 张巨伟, 张园园等. 油库储罐区F&EI-HAZOP-FTA综合评价模型的建立[J]. 辽宁石油化工大学学报, 2017, 37(01): 53-60. [46] 路燕涛. 陕北某油库储罐区消防安全评价及火灾事故模拟研究[D]. 西安科技大学, 2016. [47] 李威臻,李继繁,段继伟等. 基于 L-R 型模糊故障树的石化企业罐区泄漏环境风险评价[J]. 南开大学学报(自然科学版). 2019, 52(5):77-85. [48] 毕海普,谢小龙,邵辉等. 外浮顶罐油气混合区域风险分析[J].安全与环境学报. 2019, 19(2):488-493. [49] 张斌, 曾烨. 油库火灾的风险特点及防范措施[J]. 化学工程与装备 ,2017(10) :261-263. [50] 胡多多. 罐区火灾事故原因分析及预防处置措施[J]. 石油化工建设, 2021, 43(02): 76-80. [51] 许利. 中石化石油库与加油站事故分析[J]. 中国安全生产, 2020, 15(12): 52-53. [52] 胡新义. 油库火灾爆炸安全综合评价研究[J]. 西部探矿工程, 2005(09): 235-237. [57] 黄莎. 火灾爆炸事故多米诺效应分析[J]. 中国石油和化工标准与质量, 2017(13): 4. [58] 赵东风, 王晓媛. 油库火灾爆炸事故多米诺效应定量评价[J]. 中国安全科学学报, 2008, 18(6):6. [59] 陈福真,张明广,王妍等.罐区池火灾多米诺效应试验研究[J].中国安全科学学报, 2017, 27(11): 31-36. [60] 许学瑞, 帅健, 吴宗之. 大型原油库火灾定量风险评价[J].油气储运, 2015, 34(05): 482-487. [61] 赵长勇. 储罐区火灾爆炸引发多米诺效应的风险分析[J]. 消防科学与技术, 2014, 33(12):4. [62] 伍壮, 侯磊, 伍星光等.安全防护对原油罐区多米诺火灾事故发生概率的影响[J].安全与环境工程, 2020, 27(01): 166-172. |
中图分类号: | X937 |
开放日期: | 2023-06-20 |