论文中文题名: | 氢燃料电池催化剂对氢气爆炸特性影响规律及机理研究 |
姓名: | |
学号: | 21220089031 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 工业火灾与爆炸防控 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2024-06-17 |
论文答辩日期: | 2024-06-05 |
论文外文题名: | Study on the influence law of hydrogen fuel cell catalyst on hydrogen explosion characteristics and explosion mechanism |
论文中文关键词: | |
论文外文关键词: | Hydrogen fuel cell catalysts ; Explosion characteristics ; Flame propagation speed ; Hydrogen combustion |
论文中文摘要: |
氢燃料电池催化剂是氢燃料电池重要组成部分,对电池中所发生的电解反应起到重要催化作用,而氢燃料电池以氢气为能量载体,一旦受到外界碰撞挤压或接触到明火就可能存在爆炸风险。但以往研究却鲜有关注催化剂参与下对氢气爆炸风险影响及其作用机理,因此探索氢燃料电池催化剂如何影响氢气的爆炸特性具有重要意义。鉴于此,本文以铂氧化铝(Pt/Al2O3)、钌氧化铝(Ru/Al2O3)和镍铬合金(Ni/Cr)三种氢燃料电池催化剂和氢气作为研究对象,通过实验研究和数值模拟等方法,研究了氢燃料电池催化剂对氢气爆炸宏观特征及反应机理的影响规律,研究结果可为氢燃料电池及存在类似催化剂场景爆炸事故的防控提供参考和数据支撑。主要开展工作如下: 首先,利用20L球形爆炸装置,分析了氢燃料电池催化剂添加前后氢气爆炸压力参数、爆炸时间参数以及爆炸极限的变化特征,研究了三种催化剂对氢气燃爆特性的影响规律。结果表明,与未添加催化剂时相比,Pt/Al2O3、Ru/Al2O3和Ni/Cr催化剂能够一定程度促进氢气的最大爆炸压力上升速率、缩短氢气的燃烧时间和快速燃爆时间。其中,Pt/Al2O3催化剂对氢气爆炸的促进效果与Ru/Al2O3催化剂和Ni/Cr催化剂相比更为明显。随着三种氢燃料电池催化剂添加量的增加,氢气最大爆炸压力上升速率先增加后减小,爆炸时间、快速燃爆时间先缩短后增加;在添加量为500~800mg时,氢气的最大爆炸压力上升速率达到最大,爆炸时间、快速燃爆时间最小;与未添加催化剂时相比,对氢气爆炸的促进效果仍较为明显。 与此同时,通过高速摄像机获得了氢气火焰初期传播图像,结合“Canny”算法的边缘检测技术识别并提取了火焰锋面数据,计算了氢气火焰传播速度,揭示了氢燃料电池催化剂对氢气火焰传播的影响规律。结果表明,三种催化剂能够加快氢气火焰半径变化、提高氢气火焰传播速度。随着Pt/Al2O3、Ru/Al2O3、Ni/Cr三种氢燃料电池催化剂添加量的增加,氢气火焰充满视窗所用时长先减少后增大,且催化剂整体加快了火焰半径的变化、提高了火焰传播速度。 最后,使用动力学模拟软件Chemkin,系统分析了Pt催化剂影响氢气反应动力学过程,得到了混合体系反应组分变化、敏感性系数变化和反应路径等参数。结果显示,添加Pt催化剂后氢气的摩尔分数消耗速度比未添加Pt催化剂时更迅速,且由敏感性分析可知,氢吸附具有很强的正敏感性,与Pt催化剂接触后发生表面反应,其中生成大量活性自由基H、O、OH是促进氢气燃烧的主要因素。 综上所述,三种催化剂不会改变氢气的气相反应路径,只是降低反应活化能,减少反应壁垒,提高反应速率,从而能够促进氢气最大爆炸压力上升速率、提高氢气火焰传播速度,并且缩短爆炸时间和快速燃爆时间,使氢气爆炸危险性进一步提高。 |
论文外文摘要: |
Hydrogen fuel cell catalysts are an important component of hydrogen fuel cells and play an important catalytic role in the electrolysis reaction occurring in the battery. Hydrogen fuel cells use hydrogen as an energy carrier. Once they are subjected to external collision, compression or contact with open flames, there may be an explosion risk. However, previous studies have rarely paid attention to the impact of catalysts on the risk of hydrogen explosion and its mechanism of action. Therefore, it is of great significance to explore how hydrogen fuel cell catalysts affect the explosion characteristics of hydrogen. In view of this, this paper takes three hydrogen fuel cell catalysts and hydrogen, platinum alumina (Pt/Al2O3), ruthenium alumina (Ru/Al2O3) and nickel-chromium alloy (Ni/Cr), as research objects. Through experimental research and numerical simulation methods, the effects of hydrogen fuel cell catalysts on the macroscopic characteristics and reaction mechanism of hydrogen explosion are studied. The research results can provide reference and data support for the prevention and control of explosion accidents in hydrogen fuel cells and similar catalyst scenarios. The main work carried out is as follows: Firstly, using a 20L spherical explosive device, we analyzed the change characteristics of hydrogen explosion pressure parameter, explosion time parameter and explosion limit before and after the addition of hydrogen fuel cell catalysts, and investigated the influence law of the three catalysts on the combustion and explosion characteristics of hydrogen. The results show that the Pt/Al2O3, Ru/Al2O3 and Ni/Cr catalysts can promote the maximum explosion pressure rise rate, shorten the combustion time and rapid detonation time of hydrogen to a certain extent, compared with those without catalysts. Among them, the promotion effect of Pt/Al2O3 catalyst on hydrogen explosion was more obvious compared with that of Ru/Al2O3 catalyst and Ni/Cr catalyst. With the increase of the three hydrogen fuel cell catalyst additive amount, the maximum explosion pressure rise rate of hydrogen first increased and then decreased, the explosion time, the rapid combustion time first shortened and then increased; in the additive amount of 500-800mg, the maximum explosion pressure rise rate of hydrogen reaches the maximum, the explosion time, the rapid combustion time is the smallest; compared with the unadded catalyst, the promotion of the effect of the explosion of hydrogen is still relatively obvious. At the same time, the initial hydrogen flame propagation image was obtained by a high-speed camera, and the flame front data were recognized and extracted by the edge detection technique of the “Canny” algorithm, and the hydrogen flame propagation speed was calculated, which revealed the influence of hydrogen fuel cell catalysts on the hydrogen flame propagation law. The results show that the three catalysts can accelerate the hydrogen flame radius change and increase the hydrogen flame propagation speed. With the increase of the three hydrogen fuel cell catalysts, Pt/Al2O3, Ru/Al2O3 and Ni/Cr, the time taken for the hydrogen flame to fill up the viewing window decreased and then increased, and the catalysts as a whole accelerated the change of the flame radius and improved the flame propagation speed. Finally, the kinetic process of hydrogen reaction affected by Pt catalyst was systematically analyzed using the kinetic simulation software Chemkin, and the parameters such as the change of reaction components, the change of sensitivity coefficients and the reaction paths of the mixed system were obtained. The results showed that the rate of molar fraction consumption of hydrogen after the addition of Pt catalyst was more rapid than that without the addition of Pt catalyst, and from the sensitivity analysis, hydrogen adsorption has a strong positive sensitivity, and the surface reaction occurred after contacting with the Pt catalyst, in which the generation of a large number of reactive free radicals, H, O, and OH, was the main factor to promote the hydrogen combustion. In summary, the three catalysts will not change the gas-phase reaction path of hydrogen, but only to reduce the activation energy of the reaction, reduce the reaction barriers, increase the reaction rate, which can promote the rate of increase of the maximum explosion pressure of hydrogen, increase the flame propagation speed of hydrogen, and shorten the explosion time and rapid ignition time, so that the explosion risk of hydrogen is further improved. |
参考文献: |
[1]刘会兵. 电解水催化剂及氢燃料电池关键材料制备[D]. 北京: 北京化工大学, 2022. [2]刘金伟. 氢燃料电池高性能催化剂制备及其性能研究[D]. 北京: 北京工业大学, 2021. [6]施倚. 铝镁金属机械加工中除尘系统存在哪些较大危险因素[J]. 劳动保护, 2016, (09): 107. [7]刘伟. 高分散Pt/介孔Al2O3催化剂的制备、成型及异丁烷脱氢性能研究[D]. 大连: 大连理工大学, 2021. [8]申立苗. Ru/Al2O3催化剂用于富氢气体中CO优先氧化反应[D]. 天津: 天津大学, 2012. [9]孙正健. 镍铬基电催化剂的设计、合成及制氢性能研究[D]. 南宁: 广西大学, 2023. [17]张海艳. 质子交换膜燃料电池用Pt基催化剂的制备与性能研究[D]. 上海: 华东理工大学, 2012. [18]高孝麟, 王昱飞, 谢和平. 在氢气氧化反应中具有高催化活性的Pt修饰的Ni/C纳米催化剂(英文)[J]. 催化学报, 2017, 38(02): 396-403. [23]王继元, 许建文, 陈韶辉. 粗对苯二甲酸加氢精制Pd-Ru/TiO2双金属催化剂的表征及活性评价[J]. 石油学报(石油加工), 2011, 27(06): 866-870. [24]杨滟均. 金属-金属氧化物复合催化剂析氢/氢氧化活性的DFT计算[D]. 重庆: 重庆大学, 2018. [35]刘扬, 张靖佳, 王红霞. M(M=Fe,Co,Mn)-N-C催化剂用于燃料电池的氧化还原反应[J]. 电池工业, 2021, 25(06): 308-316. [36]钱仲杰. 过渡金属(Fe、Co)、氮共掺杂纳米碳催化剂的制备及其氧还原催化性能研究[D]. 北京: 北京化工大学, 2016. [37]赵思琪. 过渡金属(Fe、Cu、Ni)/掺氮碳纳米管复合催化剂的制备及其ORR/OER性能研究[D]. 郑州: 郑州大学, 2020. [39]高书燕, 位港亚, 刘旭坡. 一种高效合成H2O2的Zn-N-C电催化剂的制备方法及其应用[P]. 中国专利: 202210318319, 2022-03-29. [40]陈林燕. 燃料电池用贵金属(Pt、Au、Pd)催化剂的制备及性能研究[D]. 昆明: 昆明理工大学, 2013. [41]王昭文, 陈明树, 万惠霖. 高分散负载Pd催化剂上CO氧化性能[J]. 厦门大学学报(自然科学版), 2011, 50(01): 65-69. [47]韩森. 立方舱中浓度梯度氢气爆炸特性研究[D]. 合肥: 合肥工业大学, 2019. [48]周宁, 徐莹莹, 陈兵. 泄爆条件对预混H2/空气燃爆特性影响的数值模拟[J]. 化工进展, 2021, 40(07): 3656-3663. [53]王超. 富燃氢气—空气湍流预混燃烧特性实验研究[D]. 北京: 北京交通大学, 2017. [61]宋晓婷. 甲烷球罐爆炸传播过程的数值模拟研究[D]. 廊坊: 华北科技学院, 2018. [66]曹利, 黄学敏, 冯燕. 掺杂CeO2的CuMnOx复合氧化物催化剂的制备及对甲苯催化燃烧性能研究[J]. 西安建筑科技大学学报(自然科学版), 2010, 42(05): 729-733. [67]王京. 不同金属离子掺杂MnOx催化剂的制备及CO氧化活性研究[D]. 新乡: 河南师范大学 2014. [68]岑丙横, 赵培培, 陈建. 助剂Ba对Pd/Al2O3和Pt/Al2O3催化剂的C1-C3烷烃催化燃烧性能的影响[J]. 工业催化, 2020, 28(04): 89-94. [69]雷静. 不同形貌Al2O3负载Pt基催化剂的热稳定性及对丙烷脱氢催化性能的影响[D]. 上海: 华东理工大学, 2016. [70]马静, 方子昂, 林静. 耐高温Pt@TiO2催化剂的制备及其催化燃烧丙烷、丙烯性能研究[J]. 现代化工, 2022, 42(09): 120-124. [71]凌玮. 负载型Cu-Mn-Ce催化剂制备及其催化燃烧性能研究[D]. 杭州: 浙江工业大学, 2012. [72]李兵, 王志良, 吴海锁. Ce-Ni-Mn-O复合氧化物催化剂催化燃烧苯的性能研究[J]. 功能材料, 2013, 44(10): 1457-1460. [73]梁川, 李溪, 祝嘉伟. 对CeO2/Cu-Co-O/Al2O3催化剂的表征分析及其催化燃烧甲苯的性能研究[J]. 应用化工, 2021, 50(08): 2071-2075. [74]欧锐. 过渡金属集成复合催化材料的设计制备及其甲苯催化燃烧研究[D]. 镇江: 江苏科技大学, 2021. [83]王新宇, 隋志军, 朱贻安. Pd/α-Al2O3催化乙炔选择性加氢微观反应动力学[J]. 化学反应工程与工艺, 2015, 31(04): 322-329. [84]李庆. Pt催化剂上丙烷脱氢反应与结焦动力学[D]. 上海: 华东理工大学, 2012. |
中图分类号: | X932 |
开放日期: | 2024-06-18 |