- 无标题文档
查看论文信息

论文中文题名:

 氢燃料电池催化剂对氢气爆炸特性影响规律及机理研究    

姓名:

 王雪峰    

学号:

 21220089031    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 工业火灾与爆炸防控    

第一导师姓名:

 杨漪    

第一导师单位:

 南京工业大学    

第二导师姓名:

 刘长春    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Study on the influence law of hydrogen fuel cell catalyst on hydrogen explosion characteristics and explosion mechanism    

论文中文关键词:

 氢燃料电池催化剂 ; 爆炸特性 ; 火焰传播速度 ; 氢气燃烧    

论文外文关键词:

 Hydrogen fuel cell catalysts ; Explosion characteristics ; Flame propagation speed ; Hydrogen combustion    

论文中文摘要:

氢燃料电池催化剂是氢燃料电池重要组成部分,对电池中所发生的电解反应起到重要催化作用,而氢燃料电池以氢气为能量载体,一旦受到外界碰撞挤压或接触到明火就可能存在爆炸风险。但以往研究却鲜有关注催化剂参与下对氢气爆炸风险影响及其作用机理,因此探索氢燃料电池催化剂如何影响氢气的爆炸特性具有重要意义。鉴于此,本文以铂氧化铝(Pt/Al2O3)、钌氧化铝(Ru/Al2O3)和镍铬合金(Ni/Cr)三种氢燃料电池催化剂和氢气作为研究对象,通过实验研究和数值模拟等方法,研究了氢燃料电池催化剂对氢气爆炸宏观特征及反应机理的影响规律,研究结果可为氢燃料电池及存在类似催化剂场景爆炸事故的防控提供参考和数据支撑。主要开展工作如下:

首先,利用20L球形爆炸装置,分析了氢燃料电池催化剂添加前后氢气爆炸压力参数、爆炸时间参数以及爆炸极限的变化特征,研究了三种催化剂对氢气燃爆特性的影响规律。结果表明,与未添加催化剂时相比,Pt/Al2O3、Ru/Al2O3和Ni/Cr催化剂能够一定程度促进氢气的最大爆炸压力上升速率、缩短氢气的燃烧时间和快速燃爆时间。其中,Pt/Al2O3催化剂对氢气爆炸的促进效果与Ru/Al2O3催化剂和Ni/Cr催化剂相比更为明显。随着三种氢燃料电池催化剂添加量的增加,氢气最大爆炸压力上升速率先增加后减小,爆炸时间、快速燃爆时间先缩短后增加;在添加量为500~800mg时,氢气的最大爆炸压力上升速率达到最大,爆炸时间、快速燃爆时间最小;与未添加催化剂时相比,对氢气爆炸的促进效果仍较为明显。

与此同时,通过高速摄像机获得了氢气火焰初期传播图像,结合“Canny”算法的边缘检测技术识别并提取了火焰锋面数据,计算了氢气火焰传播速度,揭示了氢燃料电池催化剂对氢气火焰传播的影响规律。结果表明,三种催化剂能够加快氢气火焰半径变化、提高氢气火焰传播速度。随着Pt/Al2O3、Ru/Al2O3、Ni/Cr三种氢燃料电池催化剂添加量的增加,氢气火焰充满视窗所用时长先减少后增大,且催化剂整体加快了火焰半径的变化、提高了火焰传播速度。

最后,使用动力学模拟软件Chemkin,系统分析了Pt催化剂影响氢气反应动力学过程,得到了混合体系反应组分变化、敏感性系数变化和反应路径等参数。结果显示,添加Pt催化剂后氢气的摩尔分数消耗速度比未添加Pt催化剂时更迅速,且由敏感性分析可知,氢吸附具有很强的正敏感性,与Pt催化剂接触后发生表面反应,其中生成大量活性自由基H、O、OH是促进氢气燃烧的主要因素。

综上所述,三种催化剂不会改变氢气的气相反应路径,只是降低反应活化能,减少反应壁垒,提高反应速率,从而能够促进氢气最大爆炸压力上升速率、提高氢气火焰传播速度,并且缩短爆炸时间和快速燃爆时间,使氢气爆炸危险性进一步提高。

论文外文摘要:

Hydrogen fuel cell catalysts are an important component of hydrogen fuel cells and play an important catalytic role in the electrolysis reaction occurring in the battery. Hydrogen fuel cells use hydrogen as an energy carrier. Once they are subjected to external collision, compression or contact with open flames, there may be an explosion risk. However, previous studies have rarely paid attention to the impact of catalysts on the risk of hydrogen explosion and its mechanism of action. Therefore, it is of great significance to explore how hydrogen fuel cell catalysts affect the explosion characteristics of hydrogen. In view of this, this paper takes three hydrogen fuel cell catalysts and hydrogen, platinum alumina (Pt/Al2O3), ruthenium alumina (Ru/Al2O3) and nickel-chromium alloy (Ni/Cr), as research objects. Through experimental research and numerical simulation methods, the effects of hydrogen fuel cell catalysts on the macroscopic characteristics and reaction mechanism of hydrogen explosion are studied. The research results can provide reference and data support for the prevention and control of explosion accidents in hydrogen fuel cells and similar catalyst scenarios. The main work carried out is as follows: 

Firstly, using a 20L spherical explosive device, we analyzed the change characteristics of hydrogen explosion pressure parameter, explosion time parameter and explosion limit before and after the addition of hydrogen fuel cell catalysts, and investigated the influence law of the three catalysts on the combustion and explosion characteristics of hydrogen. The results show that the Pt/Al2O3, Ru/Al2O3 and Ni/Cr catalysts can promote the maximum explosion pressure rise rate, shorten the combustion time and rapid detonation time of hydrogen to a certain extent, compared with those without catalysts. Among them, the promotion effect of Pt/Al2O3 catalyst on hydrogen explosion was more obvious compared with that of Ru/Al2O3 catalyst and Ni/Cr catalyst. With the increase of the three hydrogen fuel cell catalyst additive amount, the maximum explosion pressure rise rate of hydrogen first increased and then decreased, the explosion time, the rapid combustion time first shortened and then increased; in the additive amount of 500-800mg, the maximum explosion pressure rise rate of hydrogen reaches the maximum, the explosion time, the rapid combustion time is the smallest; compared with the unadded catalyst, the promotion of the effect of the explosion of hydrogen is still relatively obvious.

At the same time, the initial hydrogen flame propagation image was obtained by a high-speed camera, and the flame front data were recognized and extracted by the edge detection technique of the “Canny” algorithm, and the hydrogen flame propagation speed was calculated, which revealed the influence of hydrogen fuel cell catalysts on the hydrogen flame propagation law. The results show that the three catalysts can accelerate the hydrogen flame radius change and increase the hydrogen flame propagation speed. With the increase of the three hydrogen fuel cell catalysts, Pt/Al2O3, Ru/Al2O3 and Ni/Cr, the time taken for the hydrogen flame to fill up the viewing window decreased and then increased, and the catalysts as a whole accelerated the change of the flame radius and improved the flame propagation speed.

Finally, the kinetic process of hydrogen reaction affected by Pt catalyst was systematically analyzed using the kinetic simulation software Chemkin, and the parameters such as the change of reaction components, the change of sensitivity coefficients and the reaction paths of the mixed system were obtained. The results showed that the rate of molar fraction consumption of hydrogen after the addition of Pt catalyst was more rapid than that without the addition of Pt catalyst, and from the sensitivity analysis, hydrogen adsorption has a strong positive sensitivity, and the surface reaction occurred after contacting with the Pt catalyst, in which the generation of a large number of reactive free radicals, H, O, and OH, was the main factor to promote the  hydrogen combustion.

In summary, the three catalysts will not change the gas-phase reaction path of hydrogen, but only to reduce the activation energy of the reaction, reduce the reaction barriers, increase the reaction rate, which can promote the rate of increase of the maximum explosion pressure of hydrogen, increase the flame propagation speed of hydrogen, and shorten the explosion time and rapid ignition time, so that the explosion risk of hydrogen is further improved.

参考文献:

[1]刘会兵. 电解水催化剂及氢燃料电池关键材料制备[D]. 北京: 北京化工大学, 2022.

[2]刘金伟. 氢燃料电池高性能催化剂制备及其性能研究[D]. 北京: 北京工业大学, 2021.

[3]Basavaraju A, Ramesh AB, Jajcevic D. Experimental parametric investigation of platinum catalysts using hydrogen fuel[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21307-21321.

[4]Sui R, Prasianakis NI, Mantzaras J. An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors[J]. Chemical Engineering Science, 2016, 141: 214-230.

[5]Kozhukhova AE, Du Preez SP, Shuro I. Development of a low purity aluminum alloy (Al6082) anodization process and its application as a platinum-based catalyst in catalytic hydrogen combustion[J]. Surface & Coatings Technology, 2020, 404: 126483.

[6]施倚. 铝镁金属机械加工中除尘系统存在哪些较大危险因素[J]. 劳动保护, 2016, (09): 107.

[7]刘伟. 高分散Pt/介孔Al2O3催化剂的制备、成型及异丁烷脱氢性能研究[D]. 大连: 大连理工大学, 2021.

[8]申立苗. Ru/Al2O3催化剂用于富氢气体中CO优先氧化反应[D]. 天津: 天津大学, 2012.

[9]孙正健. 镍铬基电催化剂的设计、合成及制氢性能研究[D]. 南宁: 广西大学, 2023.

[10]Peng H, Li Q, Hu M. Alkaline polymer electrolyte fuel cells stably working at 80 °C[J]. Journal of Power Sources, 2018, 390: 165-167.

[11]Ren H, Wang Y, Tang X. Highly efficient Fe/N/C catalyst using adenosine as C/N-source for APEFC[J]. Journal of Energy Chemistry, 2017, 26(4): 616-621.

[12]Li QH, Peng HQ, Wang YM. The Comparability of Pt to Pt-Ru in Catalyzing the Hydrogen Oxidation Reaction for Alkaline Polymer Electrolyte Fuel Cells Operated at 80°C[J]. Angewandte Chemie-International Edition, 2019, 58(5): 1442-1446.

[13]Tan LS, Pan J, LI Y. Influence of Electrode Hydrophobicity on Performance of Alkaline Polymer Electrolyte Fuel Cells[J]. Journal of Electrochemistry, 2013, 19(3): 199-203.

[14]Pan Y, Hu G, Lu J. Ni(OH)2-Ni/C for hydrogen oxidation reaction in alkaline media[J]. Journal of Energy Chemistry, 2019, 29: 111-115.

[15]Zheng JZ. Anode catalyst development for low-temperature fuel cells: Fundamentals and synthesis[M]. University of Delaware, 2016.

[16]Mccrum I, Meduri P, Hickner M. Effects of Alkali Metal and Organic Cations on the Hydrogen Oxidation Reaction in Alkaline Electrolytes[J]. Chinese Agricultural Science Bulletin, 2015, 32: 1805-1805.

[17]张海艳. 质子交换膜燃料电池用Pt基催化剂的制备与性能研究[D]. 上海: 华东理工大学, 2012.

[18]高孝麟, 王昱飞, 谢和平. 在氢气氧化反应中具有高催化活性的Pt修饰的Ni/C纳米催化剂(英文)[J]. 催化学报, 2017, 38(02): 396-403.

[19]Weber P. Carbon Supported Pt-Co Alloy Nanoparticles As HOR and ORR Catalyst for PEM Fuel Cells[J]. American Chemical Society, 2018, 44: 1483-1483.

[20]Dlamini SN. Effects of TiO2 and CS supports on hydrogen spillover in Co and Ru supported catalysts[D]. University of the Witwatersrand, Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, 2018.

[21]Paraskevi, Panagiotopoulou, Xenophon. Mechanistic Study of the Selective Methanation of CO over Ru/TiO2 Catalysts: Effect of Metal Crystallite Size on the Nature of Active Surface Species and Reaction Pathways[J]. Jphyschemc, 2017, 121(9): 5058-5068.

[22]Takimoto D, Ayato Y, Mochizuki D. Enhanced CO Tolerance and Durability of PtRu/C By the Modification with Metallic Ruthenium Nanosheets[J]. The Electrochemical Society, 2015, 37: 1298-1298.

[23]王继元, 许建文, 陈韶辉. 粗对苯二甲酸加氢精制Pd-Ru/TiO2双金属催化剂的表征及活性评价[J]. 石油学报(石油加工), 2011, 27(06): 866-870.

[24]杨滟均. 金属-金属氧化物复合催化剂析氢/氢氧化活性的DFT计算[D]. 重庆: 重庆大学, 2018.

[25]Yuan W, Wang J, Jie L. The effects of mechanically mixed Ir/γ-Al2O3 on the reforming catalysts[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1988.

[26]Chen R, Guo J. Effects of Pb in Electrocatalysis of Ethanol Oxidation Reaction on Pd/C and Pdru/C Catalysts in Alkaline Media[J]. Electrochemical Society Meeting Abstracts 229. The Electrochemical Society, Inc., 2016 (35): 1746-1746.

[27]Shi QJ, Lei JX, Zhang N. Modification of Ni-B/TiO2/-Al2O3(S) amorphous alloy catalyst by Mo for liquid-phase furfural hydrogenation[J]. Acta Physico-Chimica Sinica, 2007, 23(1): 98-102.

[28]Long TR ,You X, Lin YL. Preparation of Ni/Fe/Zr Catalyst and Its Microwave Catalytic Oxidation Performance[J]. China Water & Wastewater, 2011, 27(13): 83-85.

[29]Zhong SH, Wang XT, Xin LM. Catalytic Performance of ZrO2-SiO2 Supported Ni-Cu Alloy Catalysts for CO2 Hydrogenation[J]. Journal of Molecular Catalysis, 2001, 15(3): 170-176.

[30]Sato T, Saitoh KI, Shinke N. Molecular dynamics study on microscopic mechanism for phase transformation of Ni–Ti alloy[J]. Modelling & Simulation in Materials Science & Engineering, 2006, 14(5): S39.

[31]Rongrong M, Fang W. Supported Ni-Cr-B amorphous alloy catalyst for catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline[J]. Industrial Catalysis, 2016, 24(11): 7577.

[32]Novytska N, Zaverach I. Composition, topography and electrocatalytic properties of Ni-TiO2/ composite coatings[Z]. Materials Today-Proceedings. 2022: 442-447.

[33]Xie T, Zhang ZY, Zheng HY. Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst[J]. Chemical Engineering Journal, 2022, 429: 132507.

[34]Zhao X, Xie W, Shao X. An effective Ni/C co-catalyst for promoting photocatalytic hydrogen evolution over TiO2 nanospheres[J]. Materials Science in Semiconductor Processing, 2022, 148: 106775.

[35]刘扬, 张靖佳, 王红霞. M(M=Fe,Co,Mn)-N-C催化剂用于燃料电池的氧化还原反应[J]. 电池工业, 2021, 25(06): 308-316.

[36]钱仲杰. 过渡金属(Fe、Co)、氮共掺杂纳米碳催化剂的制备及其氧还原催化性能研究[D]. 北京: 北京化工大学, 2016.

[37]赵思琪. 过渡金属(Fe、Cu、Ni)/掺氮碳纳米管复合催化剂的制备及其ORR/OER性能研究[D]. 郑州: 郑州大学, 2020.

[38]Wang B, Tang J, Zhang X. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries[J]. Chemical Engineering Journal, 2022, 437: 135295.

[39]高书燕, 位港亚, 刘旭坡. 一种高效合成H2O2的Zn-N-C电催化剂的制备方法及其应用[P]. 中国专利: 202210318319, 2022-03-29.

[40]陈林燕. 燃料电池用贵金属(Pt、Au、Pd)催化剂的制备及性能研究[D]. 昆明: 昆明理工大学, 2013.

[41]王昭文, 陈明树, 万惠霖. 高分散负载Pd催化剂上CO氧化性能[J]. 厦门大学学报(自然科学版), 2011, 50(01): 65-69.

[42]Zhou C, Yang Z, Chen G. Study on leakage and explosion consequence for hydrogen blended natural gas in urban distribution networks[J]. International Journal of Hydrogen Energy, 2022, 47(63): 27096-27115.

[43]Mao X, Ying R, Yuan Y. Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6857-6872.

[44]Fei J, Wang ZR, Zhen YY. Experimental research on the Characteristics of Hydrogen-Air Explosion Pressure in Spherical Vessel—Pipe[J]. Procedia Engineering, 2018, 211: 306-314.

[45]Xu J, Chen X, Jiang H. Vented hydrogen-air explosions at elevated static activation pressures[J]. Process Safety and Environmental Protection, 2022, 168: 474-486.

[46]Li R, Malalasekera W, Ibrahim S. Numerical study of vented hydrogen explosions in a small scale obstructed chamber[J]. International Journal of Hydrogen Energy, 2018, 43(34): 16667-16683.

[47]韩森. 立方舱中浓度梯度氢气爆炸特性研究[D]. 合肥: 合肥工业大学, 2019.

[48]周宁, 徐莹莹, 陈兵. 泄爆条件对预混H2/空气燃爆特性影响的数值模拟[J]. 化工进展, 2021, 40(07): 3656-3663.

[49]Xu Q, Chen G, Zhang Q. Numerical simulation study and dimensional analysis of hydrogen explosion characteristics in a closed rectangular duct with obstacles[J]. International Journal of Hydrogen Energy, 2022, 47(92): 39288-39301.

[50]Wang LQ, Ma HH, Shen ZW. Explosion characteristics of hydrogen-air mixtures diluted with inert gases at sub-atmospheric pressures[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22527-22536.

[51]Yu M, Luan P, Zheng K. Experimental study on explosion characteristics of syngas with different ignition positions and hydrogen fraction[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15553-15564.

[52]Sun ZY, Li GX. Turbulence influence on explosion characteristics of stoichiometric and rich hydrogen/air mixtures in a spherical closed vessel[J]. Energy Conversion and Management, 2017, 149: 526-535.

[53]王超. 富燃氢气—空气湍流预混燃烧特性实验研究[D]. 北京: 北京交通大学, 2017.

[54]Chen P, Shen Ta, Xie Y. Initial flame propagation characteristics of the hydrogen spherical premixed flame[J]. International Journal of Hydrogen Energy, 2023, 48(92): 36112-36121.

[55]Cao W, Li W, Zhang L. Flame characteristics of premixed H2-air mixtures explosion venting in a spherical container through a duct[J]. International Journal of Hydrogen Energy, 2021, 46(52): 26693-26707.

[56]Elyanov A, Golub V, Volodin V. Premixed hydrogen-air flame front dynamics in channels with central and peripheral ignition[J]. International Journal of Hydrogen Energy, 2022, 47(53): 22602-22615.

[57]Mei Y, Shuai J, Zhou N, et al. Flame propagation of premixed hydrogen-air explosions in bend pipes[J]. Journal of Loss Prevention in the Process Industries, 2022, 77: 104790.

[58]Qin Y, Chen X. Study on the dynamic process of in-duct hydrogen-air explosion flame propagation under different blocking rates[J]. International Journal of Hydrogen Energy, 2022, 47(43): 18857-18876.

[59]Song Y, Zhang Y, Chen Y. Numerical investigation of effects on premixed hydrogen/air flame propagation in pipes with different contraction or expansion angles[J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104201.

[60]Han H, Ma Q, Qin Z. Experimental study on combustion and explosion characteristics of hydrogen-air premixed gas in rectangular channels with large aspect ratio[J]. International Journal of Hydrogen Energy, 2024, 57: 1041-1050.

[61]宋晓婷. 甲烷球罐爆炸传播过程的数值模拟研究[D]. 廊坊: 华北科技学院, 2018.

[62]Zhang GP, Li GX, Li HM. Experimental study of laminar and turbulent spherical flame propagation characteristics of hydrogen-rich syngas[J]. International Journal of Hydrogen Energy, 2023, 48(94): 36955-36971.

[63]Kim W, Namba T, Johzaki T. Self-similar propagation of spherically expanding flames in lean hydrogen-air mixtures[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25608-25614.

[64]Boettler H, Chen X, Xie S. Flamelet modeling of forced ignition and flame propagation in hydrogen-air mixtures[J]. Combustion and Flame, 2022, 243: 112125.

[65]Maxwell B, Mevel R, Melguizo-Gavilanes J. Spherically expanding flame simulations using Cantera coupled to an unsteady Lagrangian formulation[J]. International Journal of Hydrogen Energy, 2024, 51: 948-960.

[66]曹利, 黄学敏, 冯燕. 掺杂CeO2的CuMnOx复合氧化物催化剂的制备及对甲苯催化燃烧性能研究[J]. 西安建筑科技大学学报(自然科学版), 2010, 42(05): 729-733.

[67]王京. 不同金属离子掺杂MnOx催化剂的制备及CO氧化活性研究[D]. 新乡: 河南师范大学 2014.

[68]岑丙横, 赵培培, 陈建. 助剂Ba对Pd/Al2O3和Pt/Al2O3催化剂的C1-C3烷烃催化燃烧性能的影响[J]. 工业催化, 2020, 28(04): 89-94.

[69]雷静. 不同形貌Al2O3负载Pt基催化剂的热稳定性及对丙烷脱氢催化性能的影响[D]. 上海: 华东理工大学, 2016.

[70]马静, 方子昂, 林静. 耐高温Pt@TiO2催化剂的制备及其催化燃烧丙烷、丙烯性能研究[J]. 现代化工, 2022, 42(09): 120-124.

[71]凌玮. 负载型Cu-Mn-Ce催化剂制备及其催化燃烧性能研究[D]. 杭州: 浙江工业大学, 2012.

[72]李兵, 王志良, 吴海锁. Ce-Ni-Mn-O复合氧化物催化剂催化燃烧苯的性能研究[J]. 功能材料, 2013, 44(10): 1457-1460.

[73]梁川, 李溪, 祝嘉伟. 对CeO2/Cu-Co-O/Al2O3催化剂的表征分析及其催化燃烧甲苯的性能研究[J]. 应用化工, 2021, 50(08): 2071-2075.

[74]欧锐. 过渡金属集成复合催化材料的设计制备及其甲苯催化燃烧研究[D]. 镇江: 江苏科技大学, 2021.

[75]Du Preez SP, Jones DR, Warwick MEA. Thermally stable Pt/Ti mesh catalyst for catalytic hydrogen combustion[J]. International journal of hydrogen energy, 2020, 45(33): 16851-16864.

[76]Varun Y, Sreedhar I, Singh SA. Role of Ni, La impregnation and substitution in Co3O4-ZrO2 catalysts for catalytic hydrogen combustion[J]. Journal of environmental chemical engineering, 2022, 10(5): 108384.

[77]Kim J, Yu J, Lee S. Advances in catalytic hydrogen combustion research: Catalysts, mechanism, kinetics, and reactor designs[J]. International Journal of Hydrogen Energy, 2021, 46(80): 40073-40104.

[78]Fernandes NE, Park YK, Vlachos DG. The autothermal behavior of platinum catalyzed hydrogen oxidation: experiments and modeling[J]. Combustion and Flame. 1999, 118(12): 164-178.

[79]Warnatz J, Allendorf MD, Kee RJ. A model of elementary chemistry and fluid mechanics in the combustion of hydrogen on platinum surfaces[J]. Combustion and Flame, 1994, 96(4): 393-406.

[80]Sui R, Es-Sebbar ET, Mantzaras J. Homogeneous ignition during fuel-rich H2/O2/N2 combustion in platinum-coated channels at elevated pressures[J]. Combustion and Flame, 2017, 180: 184-195.

[81]Yohannes G, John M, Rolf B, Konstantinos B. Homogeneous combustion of fuel-lean H2/O2/N2 mixtures over platinum at elevated pressures and preheats[J]. Combustion and Flame, 2011, 158(8): 1491-1506.

[82]He L, Fan Y, Bellettre J. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs[J]. Renewable & Sustaninable energy reviews, 2020, 119: 109589.

[83]王新宇, 隋志军, 朱贻安. Pd/α-Al2O3催化乙炔选择性加氢微观反应动力学[J]. 化学反应工程与工艺, 2015, 31(04): 322-329.

[84]李庆. Pt催化剂上丙烷脱氢反应与结焦动力学[D]. 上海: 华东理工大学, 2012.

[85]Ji W, Wang Y, Yang J. Explosion overpressure behavior and flame propagation characteristics in hybrid explosions of hydrogen and magnesium dust[J]. Fuel, 2023, 332: 125801.

[86]Yu X, Zhang Z, Yan X. Explosion characteristics and combustion mechanism of hydrogen/tungsten dust hybrid mixtures[J]. Fuel, 2023, 332: 126017.

[87]Wang X, Wang Z, Ni L. Explosion characteristics of aluminum powder in different mixed gas environments[J]. Powder Thchnology, 2020, 369: 53-71.

[88]Schultze M, Mantzaras J, Bombach R. An experimental and numerical investigation of the hetero-/homogeneous combustion of fuel-rich hydrogen/air mixtures over platinum[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2269-2277.

[89]于小哲. 氢气/铝粉混合体系爆炸特性及火焰传播机理研究[D]. 大连: 大连理工大学, 2020.

[90]Liang H, Wang T, Luo Z. Investigation on the lower flammability limit and critical inhibition concentration of hydrogen under the influence of inhibitors[J]. Fuel, 2024, 356: 129595.

中图分类号:

 X932    

开放日期:

 2024-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式