论文中文题名: |
基于卫星重力的青藏高原地壳垂直形变速率及其影响因素研究
|
姓名: |
郭军刚
|
学号: |
19210210082
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085215
|
学科名称: |
工学 - 工程 - 测绘工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘工程
|
研究方向: |
卫星重力
|
第一导师姓名: |
段虎荣
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
梁伟锋
|
论文提交日期: |
2022-06-27
|
论文答辩日期: |
2022-06-09
|
论文外文题名: |
Study on vertical crustal deformation Velocity and its influencing factors over the Qinghai-Tibet Plateau based on satellite gravity
|
论文中文关键词: |
GRACE ; 青藏高原 ; 地壳垂直形变 ; 水文因素 ; 地壳厚度
|
论文外文关键词: |
GRACE ; Qinghai-tibet Plateau ; Vertical crustal deformation ; Hydrological factors ; Crustal thickness
|
论文中文摘要: |
︿
由于印度板块与欧亚板块的碰撞、挤压,导致青藏高原持续隆升,其隆升对区域乃至全球气候变化具有重要的影响,但是该区域地表传统观测数据覆盖率小、获取困难,导致我们对青藏高原地壳垂直形变速率分布的认识不足。GRACE(Gravity Recovery and Climate Experiment)卫星为研究青藏高原垂直形变速率分布提供高精度、大覆盖率的数据。本文利用2003-2020年的GRACE数据计算青藏高原的时变重力场,利用冰川、湖泊、土壤水、剥蚀、冻土以及雪水数据计算水文变化产生的重力场,最后获取地壳垂直运动产生的重力变化;基于直立长方体模型反演了青藏高原的地壳垂直形变速率分布,并讨论了水文、地壳厚度和地形对其反演结果的影响。主要研究成果如下:
(1)在假设GRACE观测的信号主要由地壳垂直运动、水文因素构成的前提下,采用GRACE数据进行P4M6与高斯滤波组合滤波、扣除GIA效应、信号恢复等处理获得重力变化速率分布。扣除冰川、湖泊、土壤水、剥蚀、冻土以及雪水的重力效应,得到地壳垂直运动引起重力变化的空间分布。结果表明:青藏高原的北部、四川盆地以及天山区域附近表现为正重力变化,其量值约为0.00~0.15μGal/a;在青藏高原的南部、塔里木盆地以及华北板块表现为负重力变化,其量值约为-0.40~0.90μGal/a;其他区域的重力变化相对较小,其量值约为-0.20~0.00μGal/a。
(2)在假设地壳垂直形变包括地表抬升(沉降)和莫霍面抬升(沉降)的前提下,我们构建地壳垂直运动引起的重力场变化模型。首先将青藏高原区域(65°E-110°E,20°N-45°N)按照1°× 1°空间分辨率划分成744个地块单元,考虑地壳厚度、地形因素反演了地壳垂直形变速率分布。结果表明:青藏高原整体在空间上呈现分布不均匀的特点,除了四川盆地、青藏高原北部、塔里木盆地西侧区域之外,几乎整个区域的垂直形变均表现为正。在青藏高原南部正的垂直形变现象最为明显,速率约为1.0mm/a;青藏高原东部的垂直形变速率约为0.4mm/a;塔里木盆地的北部与华北板块垂直形变速率约为0.5mm/a;在垂直形变为负的区域,四川盆地最为明显,速率约为-0.4mm/a,青藏高原北部垂直形变速率约为-0.1mm/a。位于祁连海原断裂与昆仑断裂之间的区域垂直形变很小,速率约为0.0mm/a。另外,我们发现本文的结果与地壳形变、逆冲型地震/断层、区域岩石圈活动等分布均有一致性。
(3)从水文、地壳厚度、地形三方面分析其对反演青藏高原地壳垂直形变速率场的影响。水文、地壳厚度以及地形因素不会改变青藏高原垂直形变速率的整体分布形态,仅在数值上存在差异,其中水文因素的数值差异最显著,其最大差异在西北部约为-0.4mm/a,在中部约为1.0mm/a。影响地壳垂直运动速率的水文、地壳厚度、地形因素中,水文因素最明显,地壳厚度次之,地形最小。影响水文重力变化的主要因素为冰川、湖泊、土壤水,共计占水文总比例约为79%。
﹀
|
论文外文摘要: |
︿
Due to the collision and compression of the Indian and Eurasian plates, the Qinghai-Tibet Plateau continues to uplift, and its uplift has important implications for regional and even global climate change, but the small coverage of traditional observations of the surface in this region and the difficulty of obtaining them have led to a lack of understanding of the distribution of vertical deformation rates in the crust of the Qinghai-Tibet Plateau. The GRACE provides highly accurate and large coverage data for studying the vertical crustal deformation velocity distribution on the Qinghai-Tibet Plateau. This paper uses GRACE data from 2003-2020 to calculate the time-varying gravity field of the Qinghai-Tibet Plateau. Gravity fields from hydrological changes are calculated using glacier, lake, soil moisture, denudation, permafrost and snow water equivalent data, and finally the gravity signal of the vertical crustal movement are obtained. The vertical crustal deformation velocity distribution on the Qinghai-Tibet Plateau was inferred based on the upright rectangular model, and the effects of hydrology, crustal thickness and topography on its inversion results were discussed. The main research results are as follows:
(1) Under the assumption that the signal from GRACE observations is mainly composed of hydrological factors and vertical crustal movement, the GRACE data is used to obtain the gravity change rate distribution by combining P4M6 and Gaussian filtering, deducting GIA effects, and signal recovery. The gravity effects of glacier, lake, soil moisture, denudation, permafrost and snow water equivalent are deducted to obtain the spatial distribution of gravity change relating to vertical crustal movement. The results show that the northern part of the Qinghai-Tibet Plateau, the Sichuan Basin and the vicinity of the Tianshan region exhibit positive gravity variations with values ranging from ~0.00 to 0.15 μGal/a; in the southern part of the Qinghai-Tibet Plateau, the Tarim Basin and the North China Plate, they exhibit negative gravity variations with values ranging from ~-0.40 to 0.90 μGal/a; in other regions, the gravity variations are relatively small, with values of ~-0.20 to 0.00 μGal/a.
(2) Under the assumption that the vertical deformation of the crust includes surface uplift (subsidence) and Moho surface uplift (subsidence), we construct a model for the change of gravitational field caused by the vertical motion of the crust. The Qinghai-Tibet Plateau region (65°E-110°E, 20°N-45°N) was first divided into 744 upright cuboids at a spatial resolution of 1°× 1°, and the vertical crustal deformation velocity distribution was inferred by taking into account the crustal thickness and topography. The results show that the Qinghai-Tibet Plateau as a whole is spatially unevenly distributed, with positive vertical deformation in almost the entire region except for the Sichuan Basin, the northern part of the Qinghai-Tibet Plateau and the western part of the Tarim Basin. The positive vertical deformation is most pronounced in the southern part of the Qinghai-Tibet Plateau, with a rate of ~1.0 mm/a; in the eastern part of the Tibetan Plateau, the rate of vertical deformation is ~0.4 mm/a; in the northern part of the Tarim Basin and the North China Plate, the rate of vertical deformation is ~0.5 mm/a; in the regions with negative vertical deformation, the Sichuan Basin is the most pronounced, with a rate of ~-0.4 mm/a, and in the northern part of the Qinghai-Tibet Plateau, the rate of vertical deformation is ~-0.1 mm/a. The rate of vertical deformation in the area between the Qilian Haiyuan Fault and the Kunlun Fault is small, at ~0.0mm/a. In addition, we find that the results of this paper are consistent with the distribution of crustal deformation, thrust earthquakes/faults and regional lithospheric activity.
(3) The influence of hydrology, crustal thickness and topography on the inversion of the vertical deformation rate field of the Tibetan plateau is analyzed. Hydrology, crustal thickness and topographic factors do not change the overall distribution of the vertical deformation rate of the Qinghai-Tibet Plateau, but there are only numerical differences. The numerical differences of hydrology factors are the most significant, with the maximum difference of -0.4mm/a in the northwest and ~ 1.0mm /a in the middle. Among the hydrology, crustal thickness and topographic factors that affect the vertical crustal movement rate, hydrology is the most obvious, crustal thickness is the second, and topographic is the least. The main factors influencing gravity changes in hydrology are glaciers, lakes and soil moisture, which together account for ~79% of the total hydrology.
﹀
|
参考文献: |
︿
[1]宁津生, 陈军, 晁定波. 数字地球与测绘[M]. 数字地球与测绘, 2001. [2]Reigber C, Balmino G, Schwintzer P, et al. A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S)[J]. Geophysical Research Letters, 2002, 29(14): 37-31. [3]J B, J F M. GOCE gravity gradients versus global gravity field models[J]. Geophysical Journal International, 2012, 189(2): 846-850. [4]Http://Podaac.Jpl.Nass.Gov/Grace. [5]Abich K, Bogan C, Braxmaier C, et al. GRACE-Follow on Laser Ranging Interferometer: German contribution[J]. Journal of Physics Conference Series, 2015, 610(1): 012010. [6]Encarnao J, Visser P, Arnold D, et al. Description of the multi-approach gravity field models from Swarm GPS data[J]. Earth System Science Data, 2020, 12(2): 1385-1417. [7]赵娟, 韩延本. 地球重力场时变性的研究进展[J]. 地球物理学进展, 2005, 20(04): 980-985. [8]许才军. 地球重力场和大地水准面精确求定新进展──21届GAI/GGUI大会重力场确定部分简介[J]. 武测科技, 1996(3): 45-47. [9]Tapley B D, Bettadpur S, Ries J C, et al. GRACE Measurements of Mass Variability in the Earth System[J]. Science, 2004, 305(5683): 503-505. [10]Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229. [11]Jekeli C. Alternative methods to smooth the Earth's gravity field[J]. NTRS, 1982. [12]H S C, S C K, Chris.J, et al. Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement[J]. Geophysical Journal International, 2005, 163(1): 18-25. [13]Zhang Z Z, Chao B F, Lu Y, et al. An effective filtering for GRACE time-variable gravity: Fan filter[J]. Geophysical Research Letters, 2009, 36(17): L17311. [14]Chen J L, Wilson C R, Seo K W. Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations[J]. Journal of Geophysical Research, 2006, 111(B6). [15]冯伟, 王长青, 穆大鹏, 等. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 2017, 60(05): 1630-1642. [16]李婉秋, 王伟, 章传银, 等. 利用Forward-Modeling方法反演青藏高原水储量变化[J]. 武汉大学学报•信息科学版, 2020, 45(01): 141-149. [17]Chen J, Wilson C. Low degree gravity changes from GRACE, Earth rotation, geophysical models, and satellite laser ranging [J]. J. Geophys. Res, 2008, 113: B06402. [18]Landerer F, Swenson S. Accuracy of scaled GRACE terrestrial water storage estimates[J]. Water Resources Research, 2012, 48(4): 4531. [19]Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33(8): L08402. [20]Chambers D P. Evaluation of new GRACE Time-Variable Gravity Data over the ocean[J]. Geophysical Research Letters, 2006, 331(17). [21]Duan X J, Guo J Y, Shum C K, et al. On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions[J]. Journal of Geodesy, 2009, 83(11): 1095. [22]李圳, 章传银, 柯宝贵. GRACE时变重力场滤波方法[J]. 测绘科学, 2017, 42(12): 6. [23]Kusche J. Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models[J]. Journal of Geodesy, 2007, 81(11): 733-749. [24]Klees R, Revtova E A, Gunter B C, et al. The design of an optimal filter for monthly GRACE gravity models[J]. Geophysical Journal International, 2008, 175(2): 417-432. [25]Heki K. Can GRACE detect winter snows in Japan?[J]. EGU General Assembly Conference Abstracts, 2010: 3860. [26]Mu D, Sun Z, Guo J. Estimating continental water storage variations in Central Asia area using GRACE data[J]. Iop Conference, 2014, 17(1): 012131. [27]Schumacher M, Kusche J, Dijk A V, et al. Insights about data assimilation frameworks for integrating GRACE with hydrological models[C].EGU General Assembly Conference Abstracts,2016. [28]Schrama E J, Wouters B. Signal and noise in GRACE observed surface mass variations[J]. AGU Fall Meeting Abstracts, 2006. [29]Fengler M J, Freeden W, Kohlhaas A, et al. Wavelet Modeling of Regional and Temporal Variations of the Earth's Gravitational Potential Observed by GRACE[J]. Journal of Geodesy, 2007, 81(1): 5-15. [30]Simons F J, Dahlen F A, Wieczorek M A. Spatiospectral concentration on a sphere[J]. SIAM review, 2006, 48(3): 504-536. [31]崔立鲁, 唐兴友, 邹正波, 等. 重力卫星时变重力场位系数误差的反向延拓去相关算法[J]. 科学技术与工程, 2019, 19(26): 23-29. [32]何国庆. GRACE时变重力位系数误差处理滤波方法研究[J]. 地球物理学进展, 37(01): 19-29. [33]郭飞霄, 孙中苗, 任飞龙, 等. GRACE时变重力场各向异性高斯组合滤波方法[J]. 测绘学报, 2019, 48(07): 898-907. [34]崔立鲁, 杜安, 高珊, 等. 新一代重力卫星时变重力场滤波方法分析[J]. 科学技术与工程, 2021, 21(08): 3018-3022. [35]王陈燕, 游为, 范东明. 基于经验正交函数分解的GRACE时变地球重力场滤波处理[J]. 大地测量与地球动力学, 2019, 39(04): 366-370. [36]张青松. 现代青藏高原上升速度问题[J]. 科学通报, 1991, 36(07): 529-531. [37]Jackson M, Bilham R. Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B7): 13897-13912. [38]Chen Q Z, Freymueller J T, Yang Z Q, et al. Spatially variable extension in southern Tibet based on GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B9). [39]邢乐林, 孙文科, 李辉, 等. 用拉萨点大地测量资料检测青藏高原地壳的增厚[J]. 测绘学报, 2011, 40(01): 41-44. [40]Devoti R, Pietrantonio G, Pisani A R, et al. Present day kinematics of Italy Present day kinematics of Italy[J]. Journal of the Virtual Explorer, 2010, 36(2). [41]Beavan J, Denys P, Enham M D, et al. Distribution of present-day vertical deformation across the Southern Alps, New Zealand, from 10 years of GPS data[J]. Geophysical Research Letters, 2010, 37(16): n/a-n/a. [42]Shiming.L, Weijun.G, Chuan.Z.S, et al. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements[J]. Journal of Geophysical Research Solid Earth, 2013, 118(10): 5722-5732. [43]Jiao J S, Zhang Y Z, Yin P, et al. Changing Moho beneath the Tibetan plateau revealed by GRACE observations[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5907-5923. [44]郝明. 基于精密水准数据的青藏高原东缘现今地壳垂直运动与典型地震同震及震后垂直形变研究[J]. 国际地震动态, 2013(07): 42-44. [45]张为民, 王勇, 许厚泽, 等. 用FG5绝对重力仪检测青藏高原拉萨点的隆升[J]. 科学通报, 2000, 45(20): 2213-2216. [46]王勇, 张为民, 詹金刚, 等. 重复绝对重力测量观测的滇西地区和拉萨点的重力变化及其意义[J]. 地球物理学报, 2004, 47(01): 95-100. [47]祝意青, 梁伟锋, 郝明, 等. 青藏高原东北缘近期重力与地壳形变综合分析与研究[J]. 地震地质, 2017, 39(04): 768-780. [48]Cazenave A, Chen J. Time-variable gravity from space and present-day mass redistribution in the Earth system[J]. Earth & Planetary Science Letters, 2014, 298(3-4): 263-274. [49]李平恩, 祝爱玉, 韩炜, 等. 地球动力学问题的数值模拟研究——以青藏高原现今隆升研究为例[J]. 地震地磁观测与研究, 2012, 33(5/6): 1-6. [50]邢乐林, 王林海, 胡敏章, 等. 时变重力测量确定青藏高原地壳隆升与增厚速率[J]. 武汉大学学报•信息科学版, 2017, 42(05): 569-574. [51]段虎荣, 康明哲, 吴绍宇, 等. 利用GRACE时变重力场反演青藏高原的隆升速率[J]. 地球物理学报, 2020, 63(12): 4345-4360. [52]朱广彬. 利用GRACE位模型研究陆地水储量的时变特征[D]. 中国测绘科学研究院, 2007. [53]Dahle C, Reißland S, Dobslaw H, et al. GravIS – a new web portal for GRACE/GRACE Follow-On Level-3 Data Products by GFZ[J]. EGU General Assembly Conference Abstracts, 2018. [54]Sean, Swenson. Estimating geocenter variations from a combination of GRACE and ocean model output[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8). [55]Chao B F, Gross R S. Changes in the Earth's rotation and low-degree gravitational field induced by earthquakes[J]. Geophysical Journal International, 1987, 91(3): 569-596. [56]Belikov M. Spherical harmonic analysis and synthesis with the use of column-wise recurrence relations[J]. Manuscripta Geodaetica, 1991, 16(6): 384-410. [57]许才军, 龚正. GRACE时变重力数据的后处理方法研究进展[J]. 武汉大学学报•信息科学版, 2016, 41(4): 503-510. [58]Zhang T Y, Jin S G. Estimate of glacial isostatic adjustment uplift rate in the Tibetan Plateau from GRACE and GIA models[J]. Journal of geodynamics, 2013, 72(Dec.): 59-66. [59]J W, S Z. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada[J]. Geophysical Journal International, 2013, 192(2): 557-572. [60]李军海. 利用GRACE时变重力场模型反演南极冰盖质量变化的方法研究[D]. 辽宁工程技术大学, 2011. [61]Chen J L, Rodell M, Wilson C R, et al. Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates[J]. Geophysical Research Letters, 2005, 32(14). [62]张培震, 邓起东, 张竹琪, 等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学:地球科学, 2013, 43(10): 1607-1620. [63]Dai F C, Xu C, Yao X, et al. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 2011, 40(4): 883-895. [64]Rodell M, Houser P R, Jambor U E A, et al. The Global Land Data Assimilation System[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394. [65]刘丽伟, 魏栋, 王小巍, 等. 多种土壤湿度资料在中国地区的对比分析[J]. 干旱气象, 2019, 37(1): 40-47. [66]Bi H Y, Ma J W, Zheng W J, et al. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 2016, 121(6): 2658-2678. [67]Fan Y, Van Den Dool H. Climate Prediction Center global monthly soil moisture data set at 0.5 resolution for 1948 to present[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D10). [68]Alex S G, Moholdt G, Cogley J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013, 340(6134): 852-857. [69]Zhang G Q, Xie H J, Kang S C, et al. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009)[J]. Remote Sensing of Environment, 2011, 115(7): 1733-1742. [70]Xiang L W, Wang H S, Steffen H, et al. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data[J]. Earth and Planetary Science Letters, 2016, 449: 228-239. [71]Erkan K, Shum C, Wang L, et al. Geodetic constraints on the Qinghai-Tibetan Plateau present-day geophysical processes[J]. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 2011, 22(2): 2. [72]Oelke C, Zhang T. Modeling the active-layer depth over the Tibetan Plateau[J]. Arctic, Antarctic, and Alpine Research, 2007, 39(4): 714-722. [73]Westaway R. Crustal volume balance during the India-Eurasia collision and altitude of the Tibetan Plateau: A working hypothesis[J]. Journal of Geophysical Research Atmospheres, 1995, 100(B8): 15173-15192. [74]Wang H, Wu P, Wang Z. An approach for spherical harmonic analysis of non-smooth data[J]. Computers & Geoences, 2006, 32(10): 1654-1668. [75]刘杰, 方剑, 李红蕾, 等. 青藏高原GRACE卫星重力长期变化[J]. 地球物理学报, 2015, 58(10): 3496-3506. [76]Zhang G Q, Yao T D, Xie H J, et al. Increased mass over the Tibetan Plateau: From lakes or glaciers?[J]. Geophysical Research Letters, 2013, 40(10): 2125-2130. [77]Yi S, Sun W K. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 2504-2517. [78]Sun J, Zhou T C, Liu M, et al. Linkages of the dynamics of glaciers and lakes with the climate elements over the Tibetan Plateau[J]. Earth-Science Reviews, 2018, 185: 308-324. [79]Kääb A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas[J]. Nature, 2012, 488(7412): 495-498. [80]Qiu J. Measuring the meltdown[J]. Nature, 2010, 468(7321): 141-142. [81]Qiu J. Tibetan glaciers shrinking rapidly[J]. Nature, 2012. [82]Zhang G Q, Yao T D, Shum C, et al. Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin[J]. Geophysical Research Letters, 2017, 44(11): 5550-5560. [83]Chamberlain E J, Gow A J: Effect of freezing and thawing on the permeability and structure of soils,Developments in Geotechnical Engineering: Elsevier,1979: 73-92. [84]Rao W L, Sun W K. Moho Interface Changes Beneath the Tibetan Plateau Based on GRACE Data[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(2): e2020JB020605. [85]Sun W, Wang Q, Li H, et al. Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness[J]. Geophysical Research Letters, 2009, 36(2): 206-218. [86]冉有华, 李新, 程国栋, 等. 2005~2015年青藏高原多年冻土稳定性制图[J]. 中国科学:地球科学, 2021, 51(02): 183-200. [87]Wu Q B, Zhang T J. Recent permafrost warming on the Qinghai‐Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D13). [88]叶红, 易桂花, 张廷斌, 等. 2000—2019年青藏高原积雪时空变化[J]. 资源科学, 2020, 42(12): 2434-2450. [89]钱安, 易爽, 孙广通, 等. GLDAS_NOAH_M.2.1水文模型在青藏高原的适定性分析[J]. 大地测量与地球动力学, 2018, 038(003): 254-259. [90]Yao T, Thompson L, Yang W. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667. [91]钱振洁. 区域地下水环境监测与未来发展的思考[J]. 资源节约与环保, 2020(08): 44. [92]Li S L, Mooney W D, Fan J C. Crustal structure of mainland China from deep seismic sounding data[J]. Tectonophysics, 2006, 420(1-2): 239-252. [93]Xiong X S, Gao R, Li Q S, et al. Moho depth of Qinghai-Tibet plateau revealed by seismic probing[J]. Journal of Earth Science, 2009, 20(2): 448-463. [94]Jin Y, Mcnutt M K, Zhu Y S. Evidence from gravity and topography data for folding of Tibet[J]. Nature, 1994, 371(6499): 669-674. [95]Shin Y H, Shum C K, Braitenberg C, et al. Three‐dimensional fold structure of the Tibetan Moho from GRACE gravity data[J]. Geophysical Research Letters, 2009, 36(1). [96]汪汉胜 陈. 深部大尺度单一密度界面重力异常迭代反演[J]. 地球物理学报, 36(05): 643-650. [97]邢乐林, 李建成, 李辉, 等. 青藏高原均衡重力异常的地震构造动力学研究[J]. 大地测量与地球动力学, 2007, 27(6): 33-36. [98]Ch F, Bruinsma S L, Abrikosov O, et al. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse[J]. GFZ Data Services. doi, 2014, 10. [99]史庆斌, 胡双贵, 杨磊. 基于高精度卫星重力数据反演青藏高原莫霍面深度[J]. 工程地球物理学报, 2018, 015(004): 466-474. [100]段虎荣, 张永志, 刘锋, 等. 利用卫星重力数据研究中国及邻域地壳厚度[J]. 地球物理学进展, 2010, 25(02): 494-499. [101]Sjöberg L, Abrehdary M. The uncertainty of CRUST1.0 Moho depth and density contrast models[J]. Journal of Applied Geodesy, 2021. [102]Xu C, Liu Z, Luo Z, et al. Moho topography of the Tibetan Plateau using multi-scale gravity analysis and its tectonic implications[J]. Journal of Asian Earth Sciences, 2017, 138: 378-386. [103]Zhao G, Liu J, Chen B, et al. Moho Beneath Tibet Based on a Joint Analysis of Gravity and Seismic Data[J]. Geochemistry Geophysics Geosystems, 2020, 21(2). [104]Chen, Wenjin, Tenzer, et al. Moho modeling in spatial domain: A case study under Tibet[J]. Advances in Space Research, 2017, 59(12): 2855-2869. [105]Shin Y H, Shum C K, Braitenberg C, et al. Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data[J]. Scientific reports, 2014, 5(1): 1-7. [106]Baranov A, Bagherbandi M, Tenzer R. Combined Gravimetric-Seismic Moho Model of Tibet[J]. Geosciences, 2018, 8(12): 461. [107]Stolk W, Kaban M, Beekman F, et al. High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas[J]. Tectonophysics, 2013, 602: 55-68. [108]Li H O, Xu X W, Jiang M. Deep dynamical processes in the central-southern Qinghai-Tibet Plateau—Receiver functions and travel-time residuals analysis of north Hi-Climb[J]. Science in China: Earth Sciences, 2008, 51(09): 1297-1305. [109]Wang M, Shen Z K. Present‐Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2). [110]Pan Y, Shen W B, Shum C K, et al. Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data[J]. Earth and Planetary Science Letters, 2018, 502: 12-22. [111]Fu J G, Li G M, Wang G H, et al. First field identification of the Cuonadong dome in southern Tibet: implications for EW extension of the North Himalayan gneiss dome[J]. International Journal of Earth Sciences, 2017, 106(5): 1581-1596. [112]Huang F, Bai R, Deng G, et al. Barium isotope evidence for the role of magmatic fluids in the origin of Himalayan leucogranites[J]. Science Bulletin, 2021, 66(22): 2329-2336. [113]Wu F-Y, Liu X-C, Liu Z-C, et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J]. Lithos, 2020, 352-353: 105319. [114]Xu W-C, Zhang H-F, Luo B-J, et al. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, south Tibet[J]. Lithos, 2015, 232: 197-210. [115]Chen M, Niu F L, Tromp J, et al. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nature Communications, 2017, 8: 15659. [116]封志明, 李文君, 李鹏, 等. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372.
﹀
|
中图分类号: |
P227;P228
|
开放日期: |
2022-06-28
|