- 无标题文档
查看论文信息

题名:

 超临界CO2作用下煤分子结构演变及吸附性能研究    

作者:

 李银艳    

学号:

 18113079005    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 081902    

学科:

 工学 - 矿业工程 - 矿物加工工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 矿物加工工程    

研究方向:

 煤炭洁净利用    

导师姓名:

 杨志远    

导师单位:

 西安科技大学    

提交日期:

 2023-06-27    

答辩日期:

 2023-06-01    

外文题名:

 Structure evolution and adsorption properties of coal molecules under supercritical CO2    

关键词:

  ; 超临界CO2 ; 分子模拟 ; 孔结构 ; 吸附 ; 微观机理    

外文关键词:

 Coal ; Supercritical CO2 ; Molecular simulation ; Pore structure ; Adsorption ; Micromechanism    

摘要:

超临界CO2(ScCO2)注入深部煤层可增强煤层气开采(CO2-ECBM)、实现碳封存,成为目前国内外众多学者的研究热点。但微观角度研究不同变质程度煤与ScCO2作用演变规律、探讨煤分子结构变化对吸附作用机制较少。本文选取不同变质程度的煤——来自新疆(XY)的褐煤、淮北(HY)的烟煤、赵庄(ZY)的无烟煤,采用实验模拟相结合的方法开展研究,旨在揭示ScCO2作用下煤分子结构的演变规律和气体吸附特征,研究结果如下:

运用系列表征方法,分析不同变质程度煤的表面结构、微观结构和芳香条纹的变化,构建了不同变质程度煤的大分子结构模型。新疆原煤(XY)的结构模型分子式为C121H107NO39,淮北原煤(HY)的结构模型分子式为C111H78N2O22S,赵庄原煤(ZY)的结构模型分子式为C116H66N2O14

ScCO2、水与煤发生物理化学反应,其表面和微观结构发生一系列的变化。其中低阶煤(XY)芳碳率增加,微晶尺寸增大,桥碳周碳比增大;中高阶煤(HY和ZY)芳碳率降低,微晶尺寸减小,桥碳周碳比减小。但中低阶煤(XY和HY)晶片堆砌层数增多,芳香条纹的有序性增强;高阶煤(ZY)堆砌层数减少,芳香条纹有序性变差。萃取的物质以环烷烃和正构烷烃的比例最大。而高阶煤(ZY)的溶胀作用破坏芳香层片的交联键,减弱层面间的作用力,达到降低芳香性的效果,萃取物中出现萘系化合物。依据煤的演化规律,构建并优化了ScCO2作用后的煤大分子结构模型。ScCO2作用后新疆煤(XC)的结构模型分子式为C103H93NO32,淮北煤(HC)的结构模型分子式为C160H110N2O34S,赵庄煤(ZC)的结构模型分子式为C130H66N2O16

不同变质程度煤吸附曲线均为Ⅱ型曲线,且均为H3型滞后环,孔形状为狭缝型孔。XY的滞后环明显大于HY,则说明其存在的开放性孔的数量更多。ScCO2作用后XC存在拐点,说明其存在一定数量的墨水瓶形孔。XY和HY的微孔体积变小,ZY微孔体积增大。

不同变质程度煤ScCO2作用后对温度的敏感程度不同,低阶煤对温度的敏感性更强。三种煤样在ScCO2作用前后CH4吸附量均降低,而HC的降低幅度最大。ScCO2作用后,XY和XC吸附CH4和CO2呈现相反的变化,XY和HY的吸附热随着吸附量的增加而增加,ZY则随着吸附量的增加而减少,与ScCO2反应后,XC、HC和ZC吸附热均随着吸附量的增加而降低。建立不同变质程度煤吸附气体模型。煤吸附CH4的模型为微孔的Dubinin-Astahov-1(D-A-1)和中大孔Langmuir-Freundlich(L-F)模型的结合;而煤吸附CO2的吸附模型为微孔的D-A-2或者D-A-3模型,而介大孔的拟合模型则为3参数BET(T-BET)-2或T-BET-3模型。

构建煤孔结构的分子模型,分析了ScCO2作用对煤孔结构中孤立孔和连通孔的影响。ScCO2作用后一部分孤立孔变为连通孔,结合球棍模型揭示了煤中孤立孔和连通孔的配位数的变化。研究孤立孔和连通孔中不同压强、气体类型和含水量对气体吸附性能的影响,采用分子动力学方法分析气体微观自扩散系数(Ds)、校正扩散系数(Dc)和宏观传输扩散系数(Dt)之间的关系,即:Dsct,同时结合径向分布函数(RDF),查明了煤与气体的吸附主要与煤大分子骨架中碳原子和气体分子之间作用强度相关。

本文的研究对CO2-ECBM技术和煤层CO2长期安全封存提供基础理论数据。

外文摘要:

The introduction of supercritical CO2 (ScCO2) into deep coal seams can enhance coalbed methane recovery (CO2-ECBM) and achieve carbon sequestration, garnering significant attention from researchers globally. However, limited studies have been conducted on the interaction evolution between coal with varying metamorphic degrees and ScCO2, as well as the coal molecular structure's changes during adsorption from a microscopic perspective. In this study, the lignite coal from Xinjiang (XY), bituminous coal in Huaibei (HY), and anthracite coal in Zhaozhuang (ZY) with different metamorphic degrees were investigated using experimental and simulation approaches. The aim is to reveal the evolution of coal molecular structure and gas adsorption characteristics under the action of ScCO2. The findings are as follows:

(1) A range of characterization methods was employed to analyze the alterations in surface structure, microstructure, and aromatic fringes of coals with differing metamorphic levels. Macromolecular structure models is constructed, and the structural model of molecular formula from Xinjiang coal (XY) is C121H107NO39, Huaibei coal (HY) is C111H78N2O22S, and Zhaozhuang coal (ZY) is C116H66N2O14.

(2) The interaction between ScCO2, water, and coal involved numerous physical and chemical reactions, particularly in surface and microstructure. For low-rank coal (XY), the aromatic carbon ratio, microcrystalline size, and bridge carbon ratio increase, while these parameters decrease for medium and high-rank coals (HY and ZY). The stacking layer number for medium and low-rank coals (XY and HY) increases, as do the orderliness of aromatic stripes. Conversely, the stacking layer number for high-rank coal (ZY) reduces, and the order of aromatic stripes deteriorates. Among the extracted substances, cycloalkanes and n-alkanes constitute the largest proportions. The swelling of high-rank coal (ZY) disrupts the cross-linking bond of aromatic layers, weakens interlayer forces, and diminishes aromaticity effects. Naphthalene compounds are present in ZY extractions. Based on the evolution law, macromolecular structure models of coal are constructed and optimized after reacting with ScCO2. The structural model of molecular formulas for Xinjiang supercritical coal (XC), Huaibei supercritical coal (HC), and Zhaozhuang supercritical coal (ZC) are determined as C103H93NO32, C160H110N2O34S, and C130H66N2O16, respectively.

(3) The adsorption curves for the three coal samples are classified as type II curves, with all exhibiting H3 hysteresis loops and slit pore shapes. The hysteresis loop of XY is significantly larger than that of HY, indicating the presence of more open pores. An inflection point is observed in XC, suggesting a specific number of ink bottle pores. The micropore volume of XY and HY decrease, while the micropore volume of ZY increases.

(4) After reacting with ScCO2, the temperature sensitivity of coal with different metamorphic degrees varies, with low-rank coal exhibiting greater sensitivity. The CH4 adsorption capacity of the three coal samples decrease before and after reacting with ScCO2, with HC experiencing the largest decrease. Upon reacting with ScCO2, the adsorption of CH4 and CO2 by XY and XC demonstrate inverse changes. The adsorption heat of XY and HY increase alongside the growth of adsorption capacity, whereas ZY decreases with the rising adsorption capacity. After reacting with ScCO2, the adsorption heat of XC, HC, and ZC diminish as adsorption capacity increases. The model for CH4 adsorption on coal with varying metamorphic degrees is a combination of the Dubinin-Astahov-1 (D-A-1) and Langmuir-Freundlich (L-F) models. The CO2 adsorption model is the D-A-2 or D-A-3 model for micropore fitting, while the fitting model for medium and large pores is the 3-parameter BET (T-BET)-2 or T-BET-3 model.

(5) A molecular model of coal pore structure was constructed, and the effects of coal's reaction with ScCO2 on isolated and connected pores within the coal pore structure were analyzed. After reacting with ScCO2, some isolated pores became connected pores. The changes in the coordination number of isolated and connected pores in coal were analyzed using the ball-stick model. The impact of varying pressure, gas type, and water content on adsorption in isolated and connected pores was investigated. Microscopic pore structure alterations are integrated with macroscopic ones. The relationship between gas microscopic self-diffusion coefficient (Ds), correction diffusion coefficient (Dc), and macroscopic transport diffusion coefficient (Dt) was analyzed, with Ds < Dc < Dt. In conjunction with the radial distribution function (RDF), coal and gas adsorption primarily depends on the interaction between carbon and gas.

In this study, it can provide basic theoretical data for CO2-ECBM technology and long-term safe storage of CO2 in coal seams.

参考文献:

[1] IEA (2022), CO2 emissions in 2022, IEA, Paris.

https://www.iea.org/reports/CO2-emissions-in-2022.

[2] Haszeldine R S. Carbon capture and storage: how green can black be? [J]. Science, 2009, 325: 1647-1652.

[3] Orr Jr. F M. CO2 capture and storage are we ready [J]. Energy & Environmental Science, 2009, 2: 449-458.

[4] 苏现波, 黄津, 王乾, 等. CO2 强化煤层气产出与其同步封存实验研究[J]. 煤田地质与勘探, 2023, 51(1): 176−184.

[5] 张守仁, 桑树勋, 吴见, 等. CO2驱煤层气关键技术研发及应用[J]. 煤炭学报, 2022, 47(11): 3952-3964.

[6] Anderson S T. Cost implications of uncertainty in CO2 storage resource estimates: A review[J]. Natural Resources Research, 2017, 26(2): 137-159.

[7] Anderson S T. Risk, liability, and economic issues with long-term CO2 storage-A review[J]. Natural Resources Research, 2017, 26(1): 89-112.

[8] 魏风清, 程沛栋, 张钧祥, 等. 煤层钻孔有效抽采半径数值模拟研究[J]. 工矿自动化, 2016, 42(7): 25-29.

[9] White C M, Smith D H, Jones K L, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-a review[J]. Energy & Fuels, 2005, 19: 659-724.

[10] Mazumder S, Wolf K H A A, Hemert P, et al. Laboratory experiments on environmental friendly means to improve coalbed methane production by carbon dioxide/flue gas injection [J]. Transport in Porous Media, 2008, 75: 63-92.

[11] 刘延锋, 李小春, 白冰. 中国CO2煤层储存容量初步评价[J]. 岩石力学与工程学报, 2005, 24(16): 2947-2952.

[12] Yu H, Zhou G, Fan W, et al. Predicted CO2 enhanced coalbed methane recovery and CO2 sequestration in China[J]. International Journal of Coal Geology, 2007, 71(2): 345-357.

[13] 叶建平, 冯三利, 范志强, 等. 沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J]. 石油学报, 2007(4): 77-80.

[14] Massarotto P, Golding S D, Bae J S, et al. Changes in reservoir properties from injection of supercritical CO2 into coal seams: A laboratory study[J]. International Journal of Coal Geology, 2010, 82(3/4): 269–279.

[15] 叶建平, 张兵, 韩学婷, 等. 深煤层井组CO2注入提高采收率关键参数模拟和试验[J]. 煤炭学报, 2016, 41(1): 149-155.

[16] Yang Y, Liu S M. Laboratory study of cryogenic treatment induced pore-scale structural alterations of Illinois coal and their implications on gas sorption and diffusion behaviors[J]. Journal of petroleum science and engineering, 2020, 194: 107507.

[17] 张洪涛, 文冬光, 李义连, 等. 中国CO2地质埋存条件分析及有关建议[J]. 地质通报, 2005, 24(12): 1107-1110.

[18] 唐书恒, 马彩霞, 叶建平, 等. 注二氧化碳提高煤层甲烷采收率的实验模拟[J]. 中国矿业大学学报, 2006, 35(5): 607-611.

[19] 何立国, 杨栋. 超临界CO2对煤体力学特性劣化影响研究[J]. 矿业研究与开发, 2021, 41(2): 94-99.

[20] Kolak J J, Burruss R C. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds[J]. Energy & Fuels, 2006, 20: 566-574.

[21] Zhang K Z, Cheng Y P, Wang L. Experimental study on the interactions of supercritical CO2 and H2O with anthracite[J]. Energy Sources Part A: Recovery, Utilization & Environmental Effects, 2018, 2(40): 214-219.

[22] Zhang K Z, Cheng Y P, Jin K, et al. Effects of supercritical CO2 fluids on pore morphology of coal: implications for CO2 geological sequestration[J]. Energy & Fuels, 2017, 31(5): 4731-4741.

[23] Perera M S A, Ranjith P G, Viete D R. Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin[J]. Applied Energy, 2013, 110(1): 73-81.

[24] Ranathunga A S, Perera M S A, Ranjith P G. Influence of CO2 adsorption on the strength and elastic modulus of low rank Australian coal under confining pressure[J]. International Journal of Coal Geology, 2016, 167: 148-156.

[25] Zhang K, Sang S X, Liu C J, et al. Experimental study the influences of geochemical reaction on coal structure during the CO2 geological storage in deep coal seam[J]. Journal of Petroleum Science and Engineering, 2019, 178: 1006-1017.

[26] Zhang B N, Liang W G, Ranjith P G, et al. Coupling effects of supercritical CO2 sequestration in deep coal seam[J]. Energy & Fuels, 2019, 33 (1): 460-473.

[27] Zhang H, Hu Z C, Xu Y, et al. Impacts of long-term exposure to supercritical carbon dioxide on physicochemical properties and adsorption and desorption capabilities of moisture-equilibrated coals[J]. Energy & Fuels, 2021, 35(15): 12270-12287.

[28] 刘长江. CO2地质储存煤储层结构演化与元素迁移的模拟实验研究[D]. 中国矿业大学, 2010.

[29] Perera M S A, Ranjith P G, Peter M. Effects of saturation medium and pressure on strength parameters of Latrobe Valley brown coal: Carbon dioxide, water and nitrogen saturations[J]. Energy, 2011, 36(12): 6941–6947.

[30] Perera M S A, Ranjith P G, Airey D, et al. Sub-and super-critical carbon dioxide flow behavior in naturally fractured black coal: An experimental study[J]. Fuel, 2011, 90(11): 3390–3397.

[31] Zhang K Z, Cheng Y P, Li W, et al. Influence of supercritical CO2 on pore structure and functional groups of coal: Implications for CO2 sequestration[J]. Journal of Natural Gas Science and Engineering, 2017, 40: 288-298.

[32] 王小令. 曹村2号煤的大分子模型构建及HRTEM分析[D]. 太原理工大学, 2019.

[33] 李二虎. 柳林3~#煤超分子结构模型构建与吸附性能研究[D]. 太原理工大学, 2018.

[34] Meng J Q, Zhong R Q, Li S C, et al. Molecular model construction and study of gas adsorption of Zhaozhuang coal [J], Energy & Fuels, 2018, 32 (9): 9727-9737.

[35] Zhang Y, Hu S R, Zhong Q F, et al. A large-scale molecular model of Fenghuangshan anthracite coal[J]. Fuel, 2021, 295: 120616.

[36] Song Y, Jiang B, Li M, et al. Macromolecular transformations for tectonically-deformed high volatile bituminous via HRTEM and XRD analyses[J]. Fuel, 2020, 263: 116756.

[37] 秦志宏. 煤嵌布结构模型理论[J]. 中国矿业大学学报, 2017, 46(5): 939-958.

[38] Robert A M. Coal structure [M]. New York-London-Paris-Toronto: Academic Press, 1982.

[39] Sharma A, Kytani T, Tomita A. Direct observation of raw coals in lattice fringe mode using High-Resolution Transmission Electron Microscopy[J]. Energy & Fuels, 2000 (14): 1219-1225.

[40] Kelemen S R, Fang H L. Maturity trends in Raman spectra from kerogen and coal[J]. Energy & Fuels, 2001, (15): 653-658.

[41] Niekerk D V, Mathews J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010 (89): 73-82.

[42] Ulyanova E V, Molchanoy A N, Prokhorov I Y, et al. Fine structure of Raman spectra in coals of different rank[J]. International Journal of Coal Geology, 2014, 121: 37-43.

[43] Roberts M J, Everson R C, Neomagus H W J P, et al. Influence of maceral composition on the structure, properties and behaviour of chars derived from South African coals[J]. Fuel, 2015, 142: 9-20.

[44] 曾凡桂, 谢克昌. 煤结构化学的理论体系与方法论[J]. 煤炭学报, 2004, 29: 443-447.

[45] 胡思佳. ScCO2-H2O作用下煤体微观结构及吸附特性演化规律研究[D]. 中国矿业大学, 2021.

[46] Wang L, Cheng Y, Li W. Migration of metamorphic CO2 into a coal seam a natural analog study to assess the long-term fate of CO2 in Coal Bed Carbon Capture, Utilization, and Storage Projects[J]. Geofluids, 2014, 14(4): 379-390.

[47] 王立国. 注气驱替深部煤层CH4实验及驱替后特征痕迹研究[D]. 中国矿业大学, 2013.

[48] 李超. 模拟地层条件下CO2流体对煤体理化性质及吸附性能的作用规律[D]. 昆明理工大学, 2020.

[49] 李伟. CO2-ECBM中煤储层结构对CH4和CO2吸附/解吸影响的研究[D]. 太原理工大学, 2018.

[50] 冯婷婷. 煤的超临界 CO2混合溶剂萃取过程及萃余煤气化特性研究[D]. 华东理工大学, 2013.

[51] Goodman A L, Campus L A, Schroeder K T. Direct evidence of carbon dioxide sorption on argonne premium coals using attenuated total reflectance-fourier transform infrared spectroscopy [J]. Energy & Fuels, 2005, 19(2): 471-476.

[52] Pan J N, Lv M M, Hou Q L,et al.Coal microcrystalline structural changes related to methane adsorption/desorption[J]. Fuel, 2019, 239: 13-23.

[53] Cao X Y, Mastalerz M, Chappell M,et al. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state13C nuclear magnetic resonance spectroscopy[J]. International Journal of Coal Geology, 2011, 88(1): 67-74.

[54] Day S, Rry R, Sakurovs R. Swelling of australian coals in supercritical CO2[J]. International Journal of Coal Geology, 2008, 74(1): 41-52.

[55] 刘世奇, 王恬, 杜艺, 等. 超临界CO2对烟煤和无烟煤化学结构的影响[J].煤田地质与勘探, 2018, 46(5): 19-25.

[56] 周军平, 鲜学福, 李晓红, 等. CO2/ CH4 在狭缝型孔内竞争吸附的分子模拟[J]. 煤炭学报, 2010, 35(9): 1512-1517.

[57] Gathitu B B, Chen W Y, Mc Clure M. Effects of coal interaction with supercritical CO2 Physical structure [J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 5024-5034.

[58] Larsen J W. The effects of dissolved CO2 on coal structure and properties[J]. International Journal of Coal Geology, 2004, 57(1), 63-70.

[59] Masoudian M S, Airey D W, El-Zein A. Experimental investigations on the effect of CO2 on mechanics of coal[J]. International Journal of Coal Geology, 2014, 128-129: 12-23.

[60] Goodman A L, Favors R N, Hill M M, et al.Structure changes in Pittsburgh No.8 coal caused by sorption of CO2 gas[J]. Energy & Fuels, 2005, 19(4): 1759-1760.

[61] 相建华, 曾凡桂 ,梁虎珍, 等. CH4/CO2/H2O在煤分子结构中吸附的分子模拟[J]. 中国科学:地球科学, 2014, 44(7): 1418-1428.

[62] 张玉贵, 张子敏, 张小兵, 等. 构造煤演化的力化学作用机制[J]. 中国煤炭地质, 2008, 20(10): 11-13+21.

[63] 张小东, 孔令菲, 夏春鹏, 等. 山西寺河不同煤体结构煤萃取后的族组成特征[J].煤炭转化, 2012, 35(2): 6-11.

[64] 秦志宏, 江春, 孙昊, 等. 童亭亮煤CS2溶剂分次萃取物的GC/MS分析[J].中国矿业大学学报, 2005, 34(6): 707-711.

[65] 李波, 任永婕, 张路路, 等. 超临界CO2作用下煤的孔隙结构变化规律试验研究[J].河南理工大学学报(自然科学版), 2018, 37(5): 33-39.

[66] Jüntgen H. Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal[J]. Fuel, 1984, 63(6): 731-737.

[67] 薛丁丁, 刘振学, 于洪观. 煤的超临界流体萃取研究进展[J]. 应用化工, 2013, 42(8): 1501-1504.

[68] Zhang D F, Gu L L, Li S G, et al. Interactions of supercritical CO2 with coal[J]. Energy & Fuels, 2013, 27: 387-393.

[69] Kolak J J, Burruss R C. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds[J]. Energy & Fuels, 2006, 20: 566-574.

[70] 岳立新, 孙可明, 张风嘉, 等. 超临界CO2作用下有效应力对煤体渗透性影响[J]. 辽宁工程技术大学学报, 2013, 32(9): 1157-1160.

[71] Zhong L, Cantrell K, Mitroshkov A, et al. Mobilization and transport of organic compounds from reservoir rock and caprock in geological carbon sequestration sites [J]. Environmental Earth Sciences, 2014, 71(9): 4261-4272.

[72] Hedges S W, Soong Y, Mccarthy Jones J R, et al. Exploratory study of some potential environmental impacts of CO2 sequestration in unmineable coal seams [J]. International Journal of Environment and Pollution, 2007, 29(4): 457-473.

[73] Zhang K Z, Cheng Y P, Jin K, et al. Effects of supercritical CO2 fluids on pore morphology of coal: Implications for CO2 geological sequestration[J]. Energy & Fuels, 2017, 31: 4731-4741.

[74] Mirzaeian M, Hall P J, Jirandehi H F. Study of structural change in Wyodak coal in high-pressure CO2 by small angle neutron scattering[J]. Journal of Materials Science, 2010, 45(19): 5271-5281.

[75] Liu G, Mirnov A V. Carbon sequestration in coal-beds with structural deformation effects[J]. Energy Conversion and Management, 2009, 50(6): 1586-1594.

[76] Mastalerz M, Drobniak A, Walker R, et al. Coal lithotypes before and after saturation with CO2; insights from micro- and mesoporosity, fluidity, and functional group distribution[J]. International Journal of Coal Geology, 2010, 83(4): 467-474.

[77] Kolak J J, Hackley P C, Ruppert L F, et al. Using ground and intact coal samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: Effects of particle size and coal moisture[J]. Energy & Fuels, 2015, 29(8): 5187-5203.

[78] Mazumder S, Van Hemert P, Bruining J, et al. In situ CO2-coal reactions in view of carbon dioxide storage in deep unminable coal seams[J]. Fuel, 2006, 85(12): 1904-1912.

[79] Wigand M, Carey J, Schu ¨tt H, et al. Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers[J]. Applied Geochemistry, 2008, 23(9): 2735-2745.

[80] Yu Z, Liu L, Yang S, et al. An experimental study of CO2–brine–rock interaction at in situ pressure–temperature reservoir conditions[J]. Chemical Geology, 2012, 326: 88-101.

[81] Farquhar S, Pearce J, Dawson G, et al. A fresh approach to investigating CO2 storage: Experimental CO2-water-rock interactions in a low-salinity reservoir system[J]. Chemical Geology, 2015, 399: 98-122.

[82] Wang K, Xu T, Wang F, et al. Experimental study of CO2–brine–rock interaction during CO2 sequestration in deep coal seams[J]. International Journal of Coal Geology, 2016, 154: 265-274.

[83] Kiyama T, Nishimoto S, Fujioka M, et al. Coal swelling strain and permeability change with injecting liquid/supercritical CO2 and N2 at stress-constrained conditions[J]. International Journal of Coal Geology, 2011, 85(1): 56-64.

[84] Mavhengere P, Maphala T, Wanger N. Physical and structural effects of carbon dioxide storage on vitrinite-rich coal particles under subcritical and supercritical conditions[J]. International Journal of Coal Geology, 2015, 150/151: 1-6.

[85] 杜艺. ScCO2注入煤层矿物地球化学及其储层结构响应的实验研究[D]. 中国矿业大学, 2018.

[86] 张开仲, 吴冬梅, 谢懂. 超临界CO2对无烟煤孔隙结构影响的实验研究[J]. 科学技术与工程, 2016, 16(5): 37-40.

[87] Rogala A, Ksiezniak K, Krzysiek J, et al. Carbon dioxide sequestration during shale gas recovery[J]. Physicochemical Problems of Mineral Processing, 2014, 50(2): 681-692.

[88] Mazumder S, Wolf K H. Differential swelling and permeability change of coal in response to CO2 injection for ECBM[J]. International Journal of Coal Geology, 2008, 74(2): 123–138.

[89] 文虎, 刘名阳 ,樊世星,等. 液态CO2溶浸煤体孔裂隙演化特征的实验研究[J]. 西安科技大学学报, 2020, 40(6): 935-944.

[90] 傅雪海, 秦勇, 李贵中, 等. 山西沁水盆地中、南部煤储层渗透率影响因素[J]. 地质力学学报, 2001, 7(1): 45-52.

[91] Karacan C Ö, Okandan E. Fracture/cleat analysis of coals from Zonguldak basin (northwestern Turkey) relative to the potential of coalbed methane production[J]. International Journal of Coal Geology, 2000, 44(2): 109-125.

[92] Roslin A, Pokraiac D, Wu K, et al. 3D pore system reconstruction using nano-scale 2D SEM images and pore size distribution analysis for intermediate rank coal matrix[J]. Fuel, 2020, 275: 117934.

[93] Zhao Y, Sun Y, Liu S, et al.Pore structure characterization of coal by synchrotron radiation nano-CT[J]. Fuel, 2018, 215: 102-110.

[94] 宋晓夏, 唐跃刚, 李伟, 等. 基于小角X射线散射构造煤孔隙结构的研究[J]. 煤炭学报, 2014, 39(4): 719-724.

[95] Ni H, Liu J, Huang B, et al. Quantitative analysis of pore structure and permeability characteristics of sandstone using SEM and CT images[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103861.

[96] Zhang Y H, Xu X M, Lebedev M, et al. Iglauer S. Multi-scale x-ray computed tomography analysis of coal microstructure and permeability changes as a function of effective stress[J]. International Journal of Coal Geology, 2016, 165: 149-156.

[97] Zhang Y H, Lebedev M, Sarmadivaleh M, et al. Swelling-induced changes in coal microstructure due to supercritical CO2 injection[J]. Geophysical Research Letters, 2016, 43(17): 9077-9083.

[98] 周刚, 邱磊, 王家远. 基于显微CT技术的低压瓦斯渗流特性模拟分析[J]. 煤炭科学技术, 2018, 46(1): 120-126.

[99] 贾小宝, 牛海萍, 刘鸿福, 等. 基于微焦点显微CT技术的不同煤体结构煤的孔裂隙定量表征[J]. 煤矿安全, 2018, 49(11): 24-28.

[100] 张文政, 邱磊. 基于CT三维重构的煤孔隙结构表征及分析[J]. 煤炭技术, 2018, 37(12): 327-329.

[101] 白若男. 压力条件对煤体微观孔隙模型水渗流的影响[J]. 煤矿安全, 2016, 47(12): 180-183.

[102] 王刚, 沈俊男, 褚翔宇, 等. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J]. 煤炭学报, 2017, 42(8): 2074-2080.

[103] 孟巧荣, 赵阳升, 胡耀青, 等. 焦煤孔隙结构形态的实验研究[J]. 煤炭学报, 2011, 36(3): 487-490.

[104] 郭威, 姚艳斌, 刘大锰, 等. 基于核磁冻融技术的煤的孔隙测试研究[J]. 石油与天然气地质, 2016, 37(1): 141-148.

[105] 李阳, 张玉贵, 张浪, 等. 基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J]. 煤炭学报, 2019, 44(4): 1188-1196.

[106] 张召召, 潘结南, 李猛, 等. 基于压汞和低温液氮吸附联合实验的不同变质程度煤全孔隙结构特征研究[J]. 煤矿安全, 2018, 49(4): 25-29.

[107] Alexeev A D, Vasilenko T A, Ulyanova E V. Closed porosity in fossil coals[J]. Fuel, 1999, 78(6): 635-638.

[108] Chen Y, Qin Y, Wei C, et al. Porosity changes in progressively pulverized anthracite subsamples: Implications for the study of closed pore distribution in coals[J]. Fuel 2018, 225: 612-622.

[109] Pan J N, Niu Q H, Wang K, et al. The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption[J]. Microporous Mesoporous Mater. 2016, 224: 245-252.

[110] Jiang B, Qu Z H, Wang G G X, et al. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield, China [J]. International Journal of Coal Geology, 2010, 82: 175-183.

[111] Si L L , Li Z H, Yang Y L, et al. Experimental Investigation for Pore Structure and CH4 Release Characteristics of Coal during Pulverization Process[J]. Energy & Fuels, 2017, 31(12): 14357-14366.

[112] Si L L, Li Z H, Kizil M, et al. The influence of closed pores on the gas transport and its application in coal mine gas extraction[J]. Fuel, 2019, 254: 115605.

[113] Liu S Q, Ma J S, Sang S X, et al. The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal [J]. Fuel, 2018, 223: 32-43.

[114] Liu S Q, Sang S X, Wang G, et al. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism[J]. Journal of Petroleum Science and Engineering, 2017, 148: 21-31.

[115] Liu S Q, Sang S X, Liu H H, et al. Growth characteristics and genetic types of pores and fractures in a high-rank coal reservoir of the southern Qinshui basin[J]. Ore Geology Reviews, 2015, 64: 140-151.

[116] Majewska Z, Majewski S, Zietek J. Swelling of coal induced by cyclic sorption/desorption of gas: experimental observations indicating changes in coal structure due to sorption of CO2 and CH4[J]. International Journal of Coal Geology, 2010, 83: 475-483.

[117] Kolak J J, Burruss R C. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system[J]. Organic Geochemistry, 2014, 73: 56-69.

[118] Liu C J, Wang G X, Sang S X, et al. Changes in pore structure of anthracite coal associated with CO2 sequestration process[J]. Fuel, 2015, 139: 125-132.

[119] Hu H X, Li X C, Fang Z M. Small-molecule gas sorption and diffusion in coal: molecular simulation [J]. Energy, 2010, 35(7): 2939-2944.

[120] 周尚文, 王红岩, 薛华庆, 等. 页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J]. 天然气工业, 2016, 36(11): 12-20.

[121] 张烨毓, 曹茜, 黄毅, 等. 应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力[J]. 岩矿测试, 2020, 39(2): 188-198

[122] 王曦蒙, 刘洛夫, 汪洋, 等. 川南地区龙马溪组页岩高压甲烷等温吸附特征[J]. 天然气工业, 2019, 39(12): 32-39.

[123] 赵玉龙, 刘香禺, 张烈辉, 等. 深层高压页岩气藏吸附气含量评价新方法[J]. 天然气工业, 2021, 41(10): 69-82.

[124] 熊健, 刘向君, 梁利喜, 等.页岩气超临界吸附的Dubibin-Astakhov改进模型[J].石油学报, 2015, 36(7): 849-857.

[125] 盛茂, 李根生, 陈立强, 等. 页岩气超临界吸附机理分析及等温吸附模型的建立[J]. 煤炭学报, 2014, 39(S1): 179-183.

[126] 李英杰, 左建平, 姚茂宏, 等. 页岩气超临界等温吸附模型及储量计算优化[J]. 中国矿业大学学报, 2019, 48(2): 322-332.

[127] 侯晓伟, 王猛, 刘宇, 等. 页岩气超临界状态吸附模型及其地质意义[J]. 中国矿业大学学报, 2016, 45(1): 111-118.

[128] 周尚文, 王红岩, 薛华庆, 等. 页岩气超临界吸附机理及模型[J]. 科学通报, 2017, 62(35): 4189-4200.

[129] Xia Y, Zhang R, Cao Y, et al. Role of molecular simulation in understanding the mechanism of low-rank coal flotation: A review[J]. Fuel, 2019, 262: 116535.

[130] Li W, Zhu Y M, Chen S B, et al. Research on the structural characteristics of vitrinite in different coal ranks [J]. Fuel, 2013, 107(9): 647-652.

[131] Yan G C, Zhang Z Q, Yan K F. Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures [J]. Molecular Physics, 2013, 111(1): 147-156.

[132] Liu Y Y, Wilcox J. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons [J]. Environmental Science & Technology, 2012, 46(3): 1940-1947.

[133] 李鹏飞. 基于分子模拟研究深部煤储层孔隙结构和吸附特征[D]. 太原理工大学, 2019.

[134] Tenney C M, Lastoskie C M. Molecular simulation of carbon dioxide adsorption in chemically and structurally heterogeneous porous carbons[J]. Environmental Progress, 2006, 25 (4): 343-354.

[135] Zeng K C, Jiang P X, Lun Z M, et al. Molecular Simulation of Carbon Dioxide and Methane Adsorption in Shale Organic Nanopores[J]. Energ & Fuel, 2019, 33(3): 1785-1796.

[136] Bai Y, Lin H F, Li S G, et al. Molecular simulation of N2 and CO2 injection into a coal model containing adsorbed methane at different temperatures[J]. Energy, 2021, 219: 119686.

[137] Long H, Lin H F, Yan M, et al. Adsorption and diffusion characteristics of CH4, CO2, and N2 in micropores and mesopores of bituminous coal: Molecular dynamics[J]. Fuel, 2021, 292: 120268.

[138] Yin T T, Liu D M, Cai Y D, et al. A new constructed macromolecule-pore structure of anthracite and its related gas adsorption: A molecular simulation study[J]. International Journal of Coal Geology, 2020, 220: 103415.

[139] Sui H G, Yao J. Effect of surface chemistry for CH4/CO2 adsorption in kerogen: A molecular simulation study[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 738-746.

[140] Chen Z R, Qiu H X, Hong Z X, et al. Molecular dynamics simulation of a lignite structure simplified model absorbing water[J]. Molecular Simulation, 2020, 1(46): 71-81.

[141] 刘长江, 桑树勋, Wang G. X. 模拟CO2埋藏不同煤级煤孔隙结构变化实验研究 [J]. 中国矿业大学学报, 2010, 39(4): 496-503.

[142] Yan Y X, Qi Y, Marshall M, et al. Separation and analysis of maceral concentrates from Victorian brown coal[J]. Fuel, 2019, 242: 232-242.

[143] Zhou B, Shi L, Liu Q Y, et al. Examination of structural models and bonding characteristics of coals[J]. Fuel, 2016, 184:799-807.

[144] Jonathan P M, Alan L C. The molecular representations of coal - A review[J]. Fuel, 2012, 96: 1-14.

[145] 宋昱, 朱炎铭, 李伍. 东胜长焰煤热解含氧官能团结构演化的13C-NMR和FTIR分析[J]. 燃料化学学报, 2015, 43(5): 519-529.

[146] Sun X G. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microspectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 62: 557-564.

[147] 陈彪. 蒙东褐煤的结构及其分子模拟研究[D]. 武汉科技大学, 2016.

[148] 马亚亚. 新疆和丰次烟煤有机质温和解离及其组成与分子结构特征研究[D]. 新疆大学, 2021.

[149] 曾梦茹. 不同温度超临界CO2条件下煤微观结构特征及改造机理研究[D]. 重庆大学, 2020.

[150] 张璐, 王传格, 曾凡桂, 等. 不同变质程度煤的FTIR和HRTEM及TG分析[J]. 煤炭转化, 2020, 43(5): 10-17.

[151] 李霞, 曾凡桂, 王威, 等. 低中煤级煤结构演化的FTIR表征[J]. 煤炭学报, 2015, 40(12): 2900-2908.

[152] 彭超. 低品质煤粉爆炸特征及微观机理[D]. 中国矿业大学(北京), 2021.

[153] 沈华建. 二氧化碳作用后页岩化学结构与润湿特性实验研究[D]. 重庆大学, 2019.

[154] 李鹏鹏. 杜儿坪2号煤结构模型构建及其分子模拟[D]. 太原理工大学, 2014.

[155] Kozłowski M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83 (3): 259-265.

[156] 李哲. 不同煤阶煤大分子建模及竞争吸附模拟[D]. 中国地质大学(北京), 2021.

[157] 葛涛, 李洋, Meng W, 等. 山西高硫气肥煤结构表征与分子模型构建[J]. 光谱学与光谱分析, 2020, 40(11): 3373-3378.

[158] Hajj I E, Speyer L, Cahen S, et al. Crystal structure of first stage strontium-graphite intercalation compound[J]. Carbon, 2020, 168:732-736.

[159] 梁丽彤. 低阶煤催化解聚研究[D]. 太原理工大学, 2016.

[160] 王超, 赵友男, 王震威, 等. 用XRD表征煤变质程度的改进方法[J]. 煤田地质与勘探, 2019, 47(6): 39-44.

[161] 周贺, 潘结南, 李猛, 等. 不同变质变形煤微晶结构的XRD试验研究[J].河南理工大学学报(自然科学版), 2019, 38(1): 26-35.

[162] 王恬. ScCO2与煤中有机质作用及其孔隙结构响应的实验研究[D]. 中国矿业大学, 2018.

[163] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002.

[164] 邵燕, 陈小珍, 李晔熙, 等. 中煤阶煤结构演化的Raman光谱表征[J/OL]. 煤炭科学技术: 1-9[2023-04-11].

https://doi.org/10.13199/j.cnki.cst.2022-0718.

[165] 苏现波, 司青, 宋金星. 煤的拉曼光谱特征[J]. 煤炭学报, 2016, 41(5): 1197-1202.

[166] 宋昱. 低中阶构造煤纳米孔及大分子结构演化机理[D]. 中国矿业大学, 2019.

[167] Li X J, Hayashi J I, Li C Z, et al. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12): 1700-1707.

[168] 陈小珍, 李美芬, 曾凡桂. 中煤级煤Micro-Raman结构对甲烷吸附的响应[J]. 煤炭学报, 2022, 47(7): 2678-2686.

[169] 李霞, 曾凡桂, 王威, 等. 低中煤级煤结构演化的拉曼光谱表征[J]. 煤炭学报, 2016, 41(9): 2298-2304.

[170] 张连昆. 微波循环作用改变煤结构及煤甲烷吸附性能的研究[D]. 太原理工大学, 2022.

[171] 谢周伟. 淖毛湖煤热解产物中芳核大小分布及变化规律[D]. 大连理工大学, 2021.

[172] Mathews J P, Fernandez-Also V, Daniel Jones A, et al. Determining the molecular weight distribution of Pocahontas No. 3 low-volatile bituminous coal utilizing HRTEM and laser desorption ionization mass spectra data[J]. Fuel, 2010, 89: 1461-1469.

[173] Xu Y H, Liu X W, Zhang P H, et al. Role of chlorine in ultrafine particulate matter formation during the combustion of a blend of high-Cl coal and low-Cl coal[J]. Fuel, 2016, 184: 185-191.

[174] Arami-Niya A, Rufford T E, Zhu Z H. Activated carbon monoliths with hierarchical pore structure from tar pitch and coal powder for the adsorption of CO2, CH4 and N2[J]. Carbon, 2016, 103: 115-124.

[175] Wang Q, Ye J B, Yang H Y, et al. Chemical Composition and Structural Characteristics of Oil Shales and Their Kerogens Using Fourier Transform Infrared (FTIR) Spectroscopy and Solid-State 13C Nuclear Mgnetic Ronance (NMR)[J]. Energy &Fuels, 2016, 30(8): 6271-6280.

[176] 李海杰, 李晓红, 冯杰, 等. 预热处理对褐煤热解过程氧元素迁移的影响[J]. 燃料化学学报, 2019, 47(1): 1-7.

[177] 张妮. 不同变质程度煤热解甲烷生成特征及反应机制[D]. 太原理工大学, 2005.

[178] 王传格. 煤显微组分热解甲烷、氢气生成动力学及机理[D]. 太原理工大学, 2006.

[179] 刘琬玥, 刘钦甫, 刘霖松, 等. 沁水盆地北部中)高煤阶煤结构的FTIR特征研究[J]. 煤炭科学技术, 2019, 47(2): 181-187.

[180] 李振, 赵凯, 朱张磊, 等. 大保当煤不同显微组分含量与分子结构参数关系研究[J/OL]. 洁净煤技术: 1-13[2023-03-12].

http://kns.cnki.net/kcms/detail/11.3676.TD.20220506.2021.002.html.

[181] 朱路路. 大柳塔煤/溶胀煤催化热解特性研究[D]. 西北大学, 2021.

[182] 李安琪. 褐煤CO2气化机理的研究[D]. 华北理工大学, 2018.

[183] 孔令涌, 余永龙, 尚伟丽, 等. 酸化处理对碳纳米管电化学性能的影响[J]. 电池, 2019, 49(2): 113-115.

[184] 赵亚莹, 王卓智, 封硕, 等. O2/H2O预氧化对高阶煤中N元素迁移路径的影响[J].煤炭学报, 2021, 46(S1): 328-336.

[185] 冯志忠. 无烟煤煤尘体相分子模型构建及其润湿性研究[D]. 太原理工大学, 2021.

[186] Pels J R, WÓjtowicz M A, Moulijn J A. Rank dependence of N2O emission in fluidized-bed combustion of coal[J]. Fuel, 1993, 72: 373-379.

[187] Castro-Marcano F, Lobodin V V, Rodgers R P, et al. A molecular model for Illinois No. 6 Argonne Premium coal: Moving toward capturing the continuum structure[J]. Fuel, 2012, 95(1): 35-49.

[188] Mathews J P, Chaffee A L. The molecular representations of coal- A review[J]. Fuels, 2012, 96(1): 1-14.

[189] Grzybek T, Pietrzak R, Wachowska H, et al. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content[J]. Fuel Processing Technology, 2002, 77-78(SI): 1-7.

[190] Mathews J P, Van Duin A C T, Chaffee A L, et al. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92(4): 718-728.

[191] Lifshits S K, Chalaya O N, Kashirtsev V A. Extraction of brown coal with carbon dioxideat supercritical parameters[J]. Solid Fuel Chemistry, 2012, 46(2): 85-89.

[192] 张子中. 超临界CO2与生物联合作用对煤结构的影响机制[D]. 太原理工大学, 2022.

[193] 张松航, 张守仁, 唐书恒, 等. 无烟煤中甲烷和二氧化碳混合气吸附运移规律[J]. 煤炭学报, 2021, 46(2): 544-555.

[194] 伦嘉云. 煤体纳米孔隙结构气体吸附特性研究[D]. 中国矿业大学(北京), 2020.

[195] 郭晓洁. 构造煤的变形变质特征及其对瓦斯吸附的影响[D]. 中国矿业大学(北京), 2020.

[196] De Boer J H. In: Everett D H, Stone F S. ed. The Structure and Properties of Porous Materials. London: Butterworths, 1958, 68.

[197] 陈萍, 唐修义. 低温氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报, 2001, 26(5): 552-556.

[198] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry, 1985, 57: 603-619.

[199] 蔺亚兵, 贾雪梅, 马东民. 基于液氮吸附法对煤的孔隙特征研究与应用[J]. 煤炭科学技术, 2016, 44(3): 135–140.

[200] 刘宇. 煤镜质组结构演化对甲烷吸附的分子级作用机理[D]. 中国矿业大学, 2019.

[201] 马东民, 张遂安, 王鹏刚, 等. 煤层气解吸的温度效应[J]. 煤田地质与勘探, 2011, 39(1): 20-23.

[202] 解晨, 郑青榕. 甲烷在活性炭上的超临界温度吸附实验及理论分析[J]. 天然气化工(C1化学与化工), 2012, 37(1): 40-44.

[203] 刘珊珊, 孟召平. 等温吸附过程中不同煤体结构煤能量变化规律[J]. 煤炭学报, 2015, 40(6): 1422-1427.

[204] 姜兆华. 应用表面化学与技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2000.

[205] Ozawa S, Kusumi S, Ogino Y. Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin—Astakhov adsorption equation[J]. Journal of Colloid and Interface Science, 1976, 56(1): 83-91.

[206] 高然超. 基于吸附势理论的构造煤甲烷吸附/解吸规律研究[D]. 河南理工大学, 2012.

[207] 马东民, 李来新, 李小平, 等. 大佛寺井田4号煤CH4与CO2吸附解吸实验比较[J]. 煤炭学报, 2014, 39(9): 1938-1944.

[208]《化学工程手册》编辑委员会, 化学工程手册[M]. 北京: 化学工业出版社, 1989.

[209] Dubinin M M. The potential theory of adsorption of gases and vapors for adsorption with energetically nonuniform surfaces[J]. Chemical Reviews, 1960, 60(2): 235-241.

[210] Reich R, Ziegler W R, Rogers K A. Adsorption of methane, ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212-301K and pressures to 35 atmospheres[J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(3): 336-344.

[211] 陈晓春, 孙巍. 化学工程师实用数据手册[M]. 北京: 化学工业出版社, 2005.

[212] Zhou L, Zhang J S, Zhou Y P.A simple isotherm equation for modeling the adsorption equilibria on porous solids over wide temperature ranges[J]. Langmuir, 2001, 17 (18): 5503-5507.

[213] 王宜辰. Freundlich吸附等温式的理论推导[J]. 烟台师范学院学报(自然科学版), 1993, 9(4): 76-78.

[214] 郭晓华, 蔡卫, 马尚权, 等. 甲烷吸附模型在不同压力区间的适用性研究[J]. 煤炭技术, 2010, 29(6): 179-182.

[215] 于洪观, 范维唐, 孙茂远, 等. 煤中甲烷等温吸附模型的研究[J]. 煤炭学报, 2004, 4: 463-467.

[216] 张力, 何学秋, 王恩元, 等. 煤吸附特性的研究[J]. 太原理工大学学报, 2001(5): 449-451.

[217] 陈润. 镜煤逐级抽提超临界吸附响应及其机理[D]. 中国矿业大学, 2010.

[218] 武腾飞, 都喜东, 郝宇, 等.无烟煤基质表面CO2和CH4的吸附热力学分析[J]. 煤矿安全, 2020, 51(7): 189-194+199.

[219] 姚艳斌, 孙晓晓, 万磊. 煤层CO2地质封存的微观机理研究[J/OL]. 煤田地质与勘探: 1-13[2023-03-25].

http://kns.cnki.net/kcms/detail/61.1155.P.20230217.1553.010.html.

[220] Rieder M, Crelling J C, Šustai O, et al. Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic[J]. International Journal of Coal Geology, 2007, 71(2): 115-121.

[221] 孟筠青, 张硕, 曹子豪, 等. 屯留矿煤分子孔隙重构及其表征与分析[J]. 煤炭学报, 2022, 47(S1): 160-170.

[222] 许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1): 84-92.

[223] 袁广玉. 综放工作面混合注水降尘技术研究[D]. 河南理工大学, 2014.

[224] Materials Studio user’s manual. CA: BIOVIA Software Inc., 2017.

[225] Song Y, Jiang B, Li W. Molecular simulation of CH4/CO2/H2O competitive adsorption on low rank coal vitrinite[J]. Physical Chemistry Chemical Physics, 2017, 19(27): 17773.

[226] Liu J, Li S K, Wang Y. Molecular Dynamics Simulation of Diffusion Behavior of CH4, CO2, and N2 in Mid-Rank Coal Vitrinite[J]. Energies, 2019, 12(19): 3744-3744.

[227] Yang Y, Narayanan N K, Sun S. Sorption and Diffusion of Methane, Carbon Dioxide, and Their Mixture in Amorphous Polyethylene at High Pressures and Temperatures[J]. Industrial & Engineering Chemistry Research, 2021, 60(20): 7729-7738.

[228] Song Y, Jiang B, Li J H. Simulations and experimental investigations of the competitive adsorption of CH4 and CO2 on low-rank coal vitrinite[J]. Journal of Molecular Modeling, 2017, 23(10): 280.

[229] 解晨,郑青榕. 甲烷在活性炭上的超临界温度吸附实验及理论分析[J]. 天然气化工(C1化学与化工), 2012, 37(1): 40-44.

[230] Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.

中图分类号:

 TQ536    

开放日期:

 2027-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式