论文中文题名: | 光伏组件表面积灰预测及功率影响研究 |
姓名: | |
学号: | 21206227106 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085207 |
学科名称: | 工学 - 工程 - 电气工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 新能源发电 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-14 |
论文答辩日期: | 2024-06-04 |
论文外文题名: | Research on Prediction of PV Module Surface Area Ash and Power Influence |
论文中文关键词: | |
论文外文关键词: | support vector machine ; sparrow search algorithm ; prediction of ash deposition ; ash density ; power attenuation rate |
论文中文摘要: |
随着社会的高速发展和对能源需求量的急速上升,国家能源结构从传统能源向新 能源的方向转变。光伏发电作为国家大力推崇的新能源项目,其主要是通过光伏组件 吸收太阳光照产生电能,实现对能量的转化。光伏组件表面积灰的产生会影响光伏组 件工作效率,因此开展光伏组件表面积灰的研究与积灰对光伏组件的影响研究,将对 大力发展光伏发电具有很重要的研究意义和价值。论文就以实现对光伏组件表面积灰 预测和分析积灰密度与组件功率之间的影响关系为研究目的,通过进行建立积灰预测 模型和搭建积灰状态下光伏组件功率监测平台来开展论文的研究工作,研究工作如下: 首先,对光伏组件表面积灰成因进行分析,确定影响光伏组件产生积灰因素为搭 建预测模型输入量选取提供理论依据;与此同时,分析光伏组件表面产生灰尘堆积后 对其产生的影响,进一步展开分析了积灰对组件产生遮挡效应、温度效应和腐蚀效应 的原因;经过综合对比分析后,选定支持向量机(Support Vector Machine,SVM)作 为进行光伏组件积灰预测的模型并对 SVM 模型进行搭建。 其次,为了提高 SVM 模型的预测精度提出采用麻雀算法(Sparrow Search Algorithm,SSA)对 SVM 中关键参数惩罚因子和核函数宽度进行寻优。针对标准 SSA 算法的种群初始化过程中个体集聚现象、麻雀种群比例固定和容易陷入局部收敛的问 题,通过引入 Logistic-tent混沌映射、发现者-加入者自适应调整策略和差分变异算子进 行针对性的改进,得到改进算法 GSSA。为了验证改进后的 GSSA 算法的寻优效果,使 用 2 种类别的 6 个不同函数进行算法求解性能的测试,并与常用的粒子群算法、灰狼算 法以及标准麻雀算法进行对比。最终的测试结果显示,改进的 GSSA 算法在对函数的 求解速度和求解精度上均优于另外3种算法,证明了改进后算法的优越性,并将改进算 法 GSSA 与 SVM 模型进行结合后搭建 GSSA-SVM 积灰预测模型。 最后,通过实测采集的积灰数据和使用 LabVIEW 软件搭建上位机监测平台获取的 不同积灰状态下光伏组件的功率输出数据,分别进行对搭建的 GSSA-SVM 积灰模型的 预测效果检验与不同积灰密度与光伏组件功率衰减率之间影响关系的分析。测试结果 表明,在所提 3 种评价指标的表现上提出的 GSSA-SVM 实测效果最好,其平均绝对百 分比误差、均方根误差、平均绝对误差分别为 4.643、0.011、0.0064;此外,通过对积灰组件的功率进行分析后,发现在工作环境一致的情况下,两者之间为非线性的正相 关关系,光伏组件功率衰减率伴随着积灰密度的增大出现增高。 |
论文外文摘要: |
With the rapid development of society and the rapid increase in energy demand, the national energy structure has changed from traditional energy to new energy. As a new energy project highly praised by the country, photovoltaic power generation mainly absorbs solar light through photovoltaic modules to generate electric energy and realize energy conversion. The generation of ash on the surface area of photovoltaic modules will affect the working efficiency of photovoltaic modules. Therefore, the research on the ash on the surface area of photovoltaic modules and the influence of ash deposition on photovoltaic modules will be of great significance and value for the development of photovoltaic power generation. The purpose of this paper is to realize the prediction of ash deposition on the surface area of photovoltaic modules and analyze the influence relationship between ash deposition density and module power. The research work of this paper is carried out by establishing the ash deposition prediction model and building the power monitoring platform of photovoltaic modules under the condition of ash deposition. The research work is as follows: Firstly, the causes of ash deposition on the surface area of photovoltaic modules are analyzed, and the factors affecting the ash deposition of photovoltaic modules are determined to provide a theoretical basis for the selection of the input amount of the prediction model. At the same time, the influence of dust accumulation on the surface of photovoltaic modules is analyzed, and the causes of shielding effect, temperature effect and corrosion effect of dust accumulation on modules are further analyzed. After comprehensive comparative analysis, Support Vector Machine(SVM) is selected as the model for predicting the ash deposition of photovoltaic modules and the SVM model is built. Secondly, in order to improve the prediction accuracy of the SVM model, Sparrow Search Algorithm (SSA) is proposed to optimize the penalty factor and kernel function width of the key parameters in the SVM. Aiming at the problems of individual agglomeration, fixed proportion of sparrow population and easy to fall into local convergence in the process of population initialization of standard SSA algorithm, the improved algorithm GSSA is obtained by introducing Logistic-tent chaotic mapping, discoverer-joiner adaptive adjustment strategy and differential mutation operator. In order to verify the optimization effect of the improved GSSA algorithm, six different functions of two categories are used to test the performance of the algorithm, and compared with the commonly used particle swarm optimization algorithm, grey wolf algorithm and standard sparrow algorithm. The final test results show that the improved GSSA algorithm is superior to the other three algorithms in the solution speed and accuracy of the function, which proves the superiority of the improved algorithm, and combines the improved algorithm GSSA with the SVM model to build the GSSA-SVM ash accumulation prediction model. Finally, through the measured ash deposition data and the power output data of photovoltaic modules under different ash deposition conditions obtained by using LabVIEW software to build the host computer monitoring platform, the prediction effect test of the built GSSA-SVM ash deposition model and the analysis of the relationship between different ash deposition density and the power attenuation rate of photovoltaic modules are carried out respectively. The test results show that the GSSA-SVM proposed in the performance of the three evaluation indexes is the best, and its average absolute percentage error, root mean square error and average absolute error are 4.643, 0.011 and 0.0064, respectively. In addition, through the analysis of the power of the ash deposition module, it is found that there is a non-linear positive correlation between the two in the case of the same working environment, and the power attenuation rate of the photovoltaic module increases with the increase of the ash deposition density. |
参考文献: |
[1] 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5506. [2] 赵万明. 双碳愿景下中国光伏发电发展的困境及破解之策 [J]. 北方经济, 2022, (09):41-44. [3] 魏景东, 赵增海, 郭雁珩, 等. 2021 年中国光伏发电发展现状与展望[J]. 水力发电, 2022,48(10): 4-8. [4] 王树芬, 高冠龙, 李伟, 等. 山西省农业源 PM_(10)排放清单及特征研究[J]. 环境科学与技术, 2022, 45(06): 185-194. [5] 林德菊, 王楠, 李浩帅, 等. 海洋沉积物中铁保护的有机碳埋藏研究进展[J]. 海洋科学,2023, 47(06): 108-123. [6] 陈诚, 杨栋森, 任华荣, 等. 泰州市 2021 年四季大气细颗粒物污染特征及来源解析[J/OL]. 大气与环境光学学报, 2024-03-22. [9] Said S, Walwil H M. Fundamental studies on dust fouling effects on PV module performance[J]. Solar Energy, 2014, 107: 328-337. [10]Javed W, Wubulikasimu Y, Figgis B, et al. Characterization of dust accumulated on photovoltaic panels in Doha, Qatar[J]. Solar Energy, 2017, 142: 123-135. [16]李练兵, 王增喜, 刘斌, 等. 太阳电池积灰对其发电性能影响的研究[J]. 太阳能学报,2016, 37(06): 1418-1422. [19]孟广双, 高德东, 王珊, 等. 荒漠环境中电池板表面灰尘颗粒力学模型建立[J]. 农业工程学报, 2014, 30(16): 221-229. [20]皇甫亚波, 杭鲁滨, 秦伟, 等. 太阳能电池板表面积灰模型仿真研究[J]. 电网与清洁能源, 2016, 32(04):106-111+125. [21]赵伟萍, 吕玉坤, 阎维平. 污秽颗粒在太阳能光伏组件表面的沉积机理及组件积灰特性数值模拟[J]. 动力工程学报, 2022, 42(04): 316-325+340. [22]陈宇翔, 崔凝, 李斌, 等. 积灰性质对光伏组件输出性能影响研究 [J]. 太阳能学报, 2024, 45 (01): 11-19. [33]陈东兵, 李达新, 时剑, 等. 光伏组件表面积尘及立杆阴影对电站发电功率影响的测试分析[J]. 太阳能, 2011 (9): 39-41. [34]宁会峰, 程荣展, 王伟志, 等. 积灰对光伏发电的影响及除尘效果实验研究[J]. 太阳能学报, 2020, 41(11): 120-125. [35]朴在林, 张萌, 丁文龙. 户用型光伏电池板积灰密度对转换效率影响研究[J].中国农机化学报, 2015, 36(4): 238-241. [36]谢毅, 高林朝, 贾兵, 等. 积灰与局部阴影对光伏阵列功率衰减的影响[J]. 河南农业大学学报, 2021, 55(03): 448-452+459. [37]赵明智, 孙浩, 苗一鸣. 沙尘对光伏组件输出特性影响的风洞实验研究[J]. 动力工程学报, 2019, 39(09): 765-769+776. [38]王锋, 张永强, 才深. 西安城区灰尘对分布式光伏电站输出功率的影响分析[J]. 太阳能, 2013 (13): 38-40. [39]牛海明, 崔青汝, 刘厚旭. 积灰对光伏电池板输出特性影响研究[J]. 热力发电, 2021, 50(2): 110-117. [40]范思远, 王煜, 曹生现, 等.积灰对光伏组件输出特性影响建模与分析[J]. 仪器仪表学报, 2021, 42(4): 83-91. [41]曲宏伟, 王靖雯. 积灰对光伏板输出特性影响理论和试验研究[J]. 太阳能学报, 2018, 39(08): 2335-2340. [42]杨亚林, 朱德兰, 李丹, 等. 积灰和光照强度对光伏组件输出功率的影响[J]. 农业工程学报, 2019, 35(05): 203-211. [43]吕玉坤, 魏子安, 魏壮, 等. 不同环境下光伏组件自然积灰特性模拟[J]. 科学技术与工程, 2022, 22(17): 6966-6972. [44]赵伟萍. 太阳能光伏组件表面污染机理及其减缓策略研究[D]. 北京: 华北电力大学, 2022. [45]吴志荣. 光伏组件表面灰尘沉积的三维数值模拟研究[D]. 南昌: 南昌大学, 2022. [46]吕玉坤, 杨宇星, 赵伟萍. 低风速环境下光伏组件积灰特性模拟研究[J]. 电源技术,2021, 45(06): 801-804+827. [48]周欢, 张培颖, 黄晓怡, 等. 事件系统视角下网络舆情态势感知研究[J]. 情报杂志, 2024,43(02): 135-142+117. [49]王腾洲, 李森文, 黄宇轩, 等. 基于 IWOA-SVM 的风电功率预测[J]. 机械与电子, 2022,40(05): 9-12. [54]秦秋霞, 梁仲月, 徐毅. 基于 Logistic-Tent 混沌映射和位平面的图像加密算法[J]. 大连民族大学学报, 2022, 24(03): 245-252. |
中图分类号: | TM615 |
开放日期: | 2024-06-18 |