- 无标题文档
查看论文信息

论文中文题名:

 细菌和真菌降解新疆大南湖低阶煤的机理研究    

姓名:

 杨杰    

学号:

 18113079003    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 081902    

学科名称:

 工学 - 矿业工程 - 矿物加工工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿物加工工程    

研究方向:

 煤炭微生物转化    

第一导师姓名:

 刘向荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-27    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Study on the mechanisms of Xinjiang Dananhu low-rank coal degradations by bacteria and fungi    

论文中文关键词:

 新疆大南湖低阶煤 ; 细菌 ; 真菌 ; 螯合剂 ; 降解机理    

论文外文关键词:

 Xinjiang Dananhu low-rank coal ; Bacteria ; Fungi ; Chelating agent ; Degradation mechanism    

论文中文摘要:

我国低阶煤储量十分丰富,但低阶煤热值低、水分高、挥发分高、易自燃,直接燃烧效率低,污染严重。目前的深加工方法主要有热转化法和微生物降解转化法,其中热解、气化和液化等热转化方法存在能耗高、设备复杂的缺点。煤的微生物降解则是利用微生物的生化作用将煤炭转化为液体燃料或高附加值的化学品的一种新途径,具有反应条件温和、设备要求简单、能耗低等优点。煤的微生物降解转化研究至今已开展了四十余年,也取得了不少成果,但仍存在降解率低,降解时间长,降解机理不明晰等问题,还需进行大量的研究工作。

本文选用了花土沟游动微菌、多噬香鞘氨醇单胞菌、恶臭假单胞菌和枯草芽孢杆菌枯草亚种四种细菌,以及硬毛栓孔菌、新硬毛革耳、疣孢漆斑菌和黄孢原毛平革菌四种真菌对新疆大南湖低阶煤进行降解实验。通过单因素和正交试验确定了大南湖煤微生物降解的最佳工艺条件,利用多种方法表征了降解液相产物和固相产物。探究了六种螯合剂作用下细菌降解大南湖煤的降解过程。借助代谢组学的方法揭示了优势细菌花土沟游动微菌对大南湖煤的降解机理。同时,还通过蛋白组学技术和煤的模型化合物研究了优势真菌硬毛栓孔菌对大南湖煤的降解机理。本论文的具体工作如下:

(1) 四种细菌和四种真菌降解大南湖低阶煤的条件及产物分布研究

通过单因素和正交试验确定了四种细菌降解大南湖煤的最佳工艺条件为:煤浆浓度均为0.5 g/50 mL、菌液接种量在5-7 mL/50 mL之间、培养温度均为30 °C,降解时间均为15 天。花土沟游动微菌、多噬香鞘氨醇单胞菌、恶臭假单胞菌和枯草芽孢杆菌枯草亚种四种细菌在各自最佳工艺条件下对大南湖低阶煤的降解率分别为46.85%、41.62%、35.61%和37.12%。通过单因素和正交试验确定了四种真菌降解大南湖低阶煤的最佳工艺条件为:煤浆浓度均为0.6 g/50 mL、菌液接种量在8-10 mL/50 mL之间、培养温度均为30 °C,降解时间均为18天。硬毛栓孔菌、新硬毛革耳、疣孢漆斑菌和黄孢原毛平革菌四种真菌在各自最佳工艺条件下对大南湖低阶煤的降解率分别为75.05%、39.69%、70.54%和50.94%。四种细菌和四种真菌降解大南湖低阶煤的液相产物中含有大量的小分子有机物,分子量在85.05-546.79之间,主要有醇类、羧酸类、醛类、酮类、芳香烃和脂肪烃。细菌和真菌的作用使得大南湖低阶煤碳和硫含量降低,羧基和醚键被降解。细菌使煤样碳结构的石墨化程度增加,微晶结构的有序度增加而真菌能破坏煤的芳香结构和芳香层之间的连接。同时,细菌和真菌作用使煤的比表面积增大,煤结构中出现新的小孔和微孔。热重结果说明细菌和真菌确实对大南湖低阶煤的大分子结构产生了破坏作用,Cal-O、Cal-Cal、Car-O和Car-Cal等化学键被降解。

(2) 六种螯合剂对四种细菌降解大南湖低阶煤的促进作用研究

探究了六种螯合剂 (AO、EDTA、CA、IDS、GLDA和MGDA) 对四种细菌 (花土沟游动微菌、多噬香鞘氨醇单胞菌、恶臭假单胞菌和枯草芽孢杆菌枯草亚种) 降解大南湖低阶煤的影响。AO、IDS、GLDA和MGDA这四种螯合剂的添加都能促进四种细菌对大南湖低阶煤的降解。在六种螯合剂中,GLDA对恶臭假单胞菌降解大南湖低阶煤的促进作用最为显著,在最佳工艺条件下,添加3 mM的GLDA能使降解率从39.66%提高到了81.46%,降解时间从14天缩短为2天。在大南湖低阶煤降解过程中,添加的螯合剂与金属离子结合,破坏煤中的配位键,碱性物质和四种细菌分泌的其它活性物质主要作用于羧基和醚键等。因此,螯合剂的加入使其能够与微生物分泌的其它活性物质协同降解大南湖低阶煤,极大提高降解率和缩短降解时间。

(3) 利用代谢组学方法研究优势细菌花土沟游动微菌对大南湖低阶煤的降解机理

花土沟游动微菌所分泌的代谢产物是降解大南湖低阶煤的主要物质。采用代谢组学方法对添加大南湖低阶煤后的花土沟游动微菌的代谢产物进行了鉴定。结果表明,与花土沟游动微菌的代谢产物相比,共鉴定出43种上调和38种下调的代谢产物。发现花土沟游动微菌分泌的6种目标代谢产物,即碱性物质 (氨、酪胺、N-(5-氨基戊基)乙酰胺、L-左旋肉碱、甜菜碱) 和螯合剂 (柠檬酸盐) 对大南湖低阶煤具有降解特性。因此,花土沟游动微菌对大南湖低阶煤的降解过程中存在碱降解途径和螯合剂降解途径。这6种目标代谢产物作用于大南湖低阶煤中的酯键、醚键和配位键,将大南湖低阶煤的大分子结构解聚为醇、醛和酮等液体有机分子。

(4) 利用蛋白组学技术和煤的模型化合物探究优势真菌硬毛栓孔菌对大南湖低阶煤的降解机理

硬毛栓孔菌分泌的胞外酶是降解大南湖低阶煤的主要物质。硬毛栓孔菌分泌的3种木质素降解酶的酶活由强到弱为锰过氧化物酶>漆酶>木质素过氧化物酶。利用蛋白组学对添加大南湖低阶煤后的硬毛栓孔菌分泌的蛋白质进行了鉴定,检测结果表明,与硬毛栓孔菌分泌的蛋白质相比,共有110种上调和81种下调的蛋白质。所有差异蛋白中,芳醇脱氢酶和草酸氧化酶证明了硬毛栓孔菌所分泌的三种胞外木质素降解酶参与到了大南湖低阶煤的降解过程中。同时,羧酸酯水解酶、醛酮还原酶、(4-O-甲基)-D-葡萄糖醛酸-木质素酯酶和β-木聚糖酶也可能与大南湖低阶煤的降解有关。硬毛栓孔菌对6种煤的模型化合物的作用强度从大到小依次为二苯醚>苯甲酸乙酯>萘>吡啶>喹啉>苯甲酸。这说明醚键、酯键和稠环芳烃更易受到硬毛栓孔菌的攻击。6种煤的模型化合物与木质素过氧化物酶、锰过氧化物酶和漆酶的结合能均为负值,说明分子间的作用以及对接过程可以自发进行。

论文外文摘要:

China has rich reserves of low-rank coal, but low-rank coal has the characteristics of low calorific value, high moisture content, high volatile content, and easy spontaneous combustion resulting in low combustion efficiency and severe pollution. Currently, the main deep processing methods are thermal conversion and microbiological degradation. Among them, thermal conversion methods such as pyrolysis, gasification, and liquefaction have the disadvantages of high energy consumption and complex equipment. Microbiological degradation of coal is a new way to utilize low-rank coal at normal temperature and pressure, and the degradation process is green and pollution-free. The research on microbiological degradation and conversion of coal has been carried out for more than 40 years, and has achieved certain results, but there are still problems such as low degradation rate, long degradation time, and unclear degradation mechanism. Therefore, a lot of research work is still needed.

In this paper, four kinds of bacteria, P. huatugouensis, S. polyaromaticivorans, P. putida and B. subtilis subsp. subtilis, and four kinds of fungi, T. trogii, P. neostrigosus, M. verrucaria and P. chrysosporium, were selected for the degradation of Xinjiang Dananhu low-rank coal. The optimal process conditions for microbial degradation of Dananhu low-rank coal were determined through single-factor and orthogonal experiments, and multiple methods were used to characterize liquid phase and solid phase degradation products. The degradation process of Dananhu low-rank coal by bacteria under the action of six chelating agents was explored. The degradation mechanism of predominant bacterium, P. huatugouensis, for Dananhu low-rank coal was revealed by using metabolomics. At the same time, the degradation mechanism of predominant fungus, T. trogii, for Dananhu low-rank coal was studied by using proteomics technology and model compounds of coal. The specific work of this thesis is as follows:

(1) Study on conditions and product distributions of Dananhu low-rank coal degraded by four bacteria and four fungi

The optimal process conditions for the degradation of Dananhu low-rank coal by four bacteria were determined through single-factor and orthogonal experiments and the optimal process conditions are: the pulp density of 0.5 g/50 mL, the bacterial inoculation quantity in the range of 5-7 mL/50 mL, the incubation temperature of 30 °C, the degradation time of 15 days. The degradation rates of Dananhu low-rank coal by four bacteria including P. huatugouensis, S. polyaromaticivorans, P. putida and B. subtilis subsp. subtilis, under their corresponding optimal conditions were 46.85%, 41.62%, 35.61%, and 37.12%. The optimal process conditions for the degradation of Dananhu low-rank coal by four fungi were determined through single-factor and orthogonal experiments and the optimal process conditions are: the pulp density of 0.6 g/50 mL, the fungal inoculation quantity in the range of 8-10 mL/50 mL, the incubation temperature of 30 °C, the degradation time of 18 days. The degradation rates of Dananhu low-rank coal by four fungi including T. trogii, P. neostrigosus, M. verrucaria and P. chrysosporium, under their corresponding optimal conditions were 75.05%, 39.69%, 70.54% and 50.94%. The liquid-phase products of Dananhu low-rank coal degraded by the four bacteria and four fungi contained a large amount of small organic molecules with a molecular weight between 85.05-546.79, mainly including alcohols, carboxylic acids, aldehydes, ketones, aromatic hydrocarbons, and fatty hydrocarbons. The actions of bacteria and fungi reduced the carbon and sulphur content of Dananhu low-rank coal and degraded the carboxyl and ether bonds. Bacteria increased the degree of graphitization of coal carbon structure and the order degree of microcrystalline structure, while fungi could disrupt the connection between the aromatic structure and the aromatic layer of coal. At the same time, the action of bacteria and fungi increased the specific surface area of coal and created new small and micro pores in the coal structure. The TG results showed that the four bacteria and four fungi did indeed damage the macromolecular structure of Dananhu low-rank coal, and chemical bonds such as Cal-O, Cal-Cal, Car-O and Car-Cal were degraded, promoting the thermal decomposition reaction of coal.

(2) Study on the promoting effects of six chelating agents on the degradations of Dananhu low-rank coal by four bacteria

The effects of six chelating agents (AO, EDTA, CA, IDS, GLDA and MGDA) on the degradation of Dananhu low-rank coal by four species of bacteria (P. huatugouensis, S. polyaromaticivorans, P. putida and B. subtilis subsp. subtilis) were investigated. The addition of chelating agents AO, IDS, GLDA, and MGDA could promote the degradation of Dananhu low-rank coal by the four bacteria. Among the six chelating agents, GLDA showed the most significant promotion effect on the degradation of Dananhu low-rank coal by P. putida, and under the optimal process conditions, the addition of 3 mM GLDA increased the degradation rate from 39.66% to 81.46%, and shortened the degradation time from 14 days to 2 days. During the degradation of Dananhu low-rank coal, the added chelating agent combined with metal ions, breaks the coordination bonds in coal, and the alkaline substances and other active substances secreted by the four bacteria mainly act on carboxyl and ether bonds. Therefore, the addition of chelating agents enables them to synergistically degrade Dananhu low-rank coal with other active substances secreted by microorganisms, greatly improving the degradation rate and shortening the degradation time.

(3) The degradation mechanism of Dananhu low-rank coal by predominant bacterium, P. huatugouensis used by metabolomics method

The metabolites secreted by the P. huatugouensis were the main substances for the degradation of Dananhu coal. The metabolomics approach was used to identify the metabolites of P. huatugouensis after addition of Dananhu low-rank coal. The results indicated that 43 upregulated and 38 downregulated metabolites were identified compared to the metabolites of P. huatugouensis alone. 6 target metabolites secreted by P. huatugouensis, which were alkaline substances (Ammonia, Tyramine, N-acetylcadaverine, L-carnitine, Betaine) and chelator (Citrate), were found to have biodegradation activities on Dananhu low-rank coal. Hence, there were alkali pathway and chelator pathway in the degradation process of Dananhu low-rank coal. The above 6 target metabolites could act on the ester, ether, and metal linkages of Dananhu low-rank coal to depolymerize macromolecular structure into liquid organic molecules such as alcohols, aldehydes and ketones.

(4) The degradation mechanism of Dananhu low-rank coal by predominant fungus, T. trogii used by proteomic method and model compounds of coal

The extracellular enzymes secreted by T. trogii were the main substances for the degradation of the Dananhu low-rank coal. The enzymatic activities of the three lignin-degrading enzymes secreted by T. trogii were manganese peroxidase > laccase > lignin peroxidase. The proteomic method was used to identify the proteins secreted by T. trogii after addition of Dananhu low-rank coal. The results showed that 110 upregulated and 81 downregulated proteins were identified compared to the proteins of T. trogii alone. Among all differentially expressed proteins, aryl-alcohol dehydrogenase and bicupin oxalate oxidase demonstrated that the three extracellular lignin degrading enzymes secreted by T. trogii were involved in the degradation process of Dananhu low-rank coal. Meanwhile, carboxylic ester hydrolase, aldo/keto reductase, (4-O-methyl)-D-glucuronate-lignin esterase, and β-xylanase may also be related to the degradation of Dananhu low-rank coal. The degradation abilities of T. trogii to six model compounds, in descending order, were: diphenyl ether > ethyl benzoate > naphthalene > pyridine > quinoline > benzoic acid. This indicated that ether bond, ester bond and thick-ringed aromatic hydrocarbons were more susceptible to attack by T. trogii. The binding energy of the six model compounds of coal with lignin peroxidase, manganese peroxidase and laccase were all negative, indicating that the intermolecular interaction and docking process could proceed spontaneously.

参考文献:

[1] 谢克昌. 面向2035年我国能源发展的思考与建议[J]. 中国工程科学, 2022, 24(6): 1-7.

[2] 中国工程院“能源中长期发展战略研究”项目组. 中国能源中长期 (2030, 2050) 发展战略研究:节能·煤炭卷[M]. 科学出版社, 2011.

[3] 中华人民共和国自然资源部. 2022中国矿产资源报告[M]. 北京: 地质出版社, 2022.

[4] 霍超. 新疆煤炭资源分布特征与勘查开发布局研究[J]. 中国煤炭, 2020, 46(10): 16-21.

[5] 孙海勇, 杨芊, 樊金璐. 新疆煤炭及煤化工产业发展现状与趋势分析[J]. 煤炭经济研究, 2020, 40(2): 57-61.

[6] 葛栋锋, 刘学良. 新疆煤炭资源种类分布特征[J]. 内蒙古煤炭经济, 2021(20): 61-63.

[7] Xu C, Xin T T, Xu G, et al. Thermodynamic analysis of a novel solar-hybrid system for low-rank coal upgrading and power generation[J]. Energy, 2017, 141: 1737-1749.

[8] Yang Z R, Huang J J, Song S S, et al. Insight into the effects of additive water on caking and coking behaviors of coal blends with low-rank coal[J]. Fuel, 2019, 238: 10-17.

[9] Zhang D X, Liu P, Lu X L, et al. Upgrading of low rank coal by hydrothermal treatment, coal tar yield during pyrolysis[J]. Fuel Processing Technology, 2016, 141: 117-122.

[10] Xing Y W, Gui X H, Cao Y J, et al. Clean low-rank-coal purification technique combining cyclonic-static microbubble flotation column with collector emulsification[J]. Journal of Cleaner Production, 2017, 153: 657-672.

[11] 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊, 2012, 27(3): 382-388.

[12] Wu Z Q, Li Y W, Zhang B, et al. Co-pyrolysis behavior of microalgae biomass and low-rank coal, kinetic analysis of the main volatile products[J]. Bioresource Technology, 2019, 271: 202-209.

[13] Minchener A J. Coal gasification for advanced power generation[J]. Fuel, 2005, 84: 2222-2235.

[14] Larson E D, Ren T J. Synthetic fuel production by indirect coal liquefaction[J]. Energy for Sustainable Development, 2003, 7: 79-102.

[15] Sabar M A, Ali M I, Fatima N, et al. Degradation of low rank coal by Rhizopus oryzae isolated from a Pakistani coal mine and its enhanced releases of organic substances[J]. Fuel, 2019, 253: 257-265.

[16] Saha P, Sarkar S. Microbial degradation of coal into a value added product[J]. Journal of Coal Preparation and Utilization, 2019, 39: 1-19.

[17] Lloyd M K, Trembath-Reichert E, Dawson K S, et al. Methoxyl stable isotopic constraints on the origins and limits of coal-bed methane[J]. Science, 2021, 374: 894-897.

[18] Zhao W, Su X, Zhang Y, et al. Microbial electrolysis enhanced bioconversion of coal to methane compared with anaerobic digestion: Insights into differences in metabolic pathways[J]. Energy Conversion and Management, 2022, 59: 115553.

[19] Fakoussa R M. Coal as a substrate for microorganisms. Investigations of the microbial decomposition of untreated bituminous coal[D]. Germany: Rhein Friedrich-Wilhelms University-Bonn, 1981.

[20] Cohen M S, Gabriele P D. Degradation of coal by the fungi Polyporus versicolor and Poria monticola[J]. Applied and Environmental Microbiology, 1982, 44(1): 23-27.

[21] Hatcher P G, Breger I A, Szeverenyi N, et al. Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal[J]. Organic Geochemistry, 1982, 4(1): 9-18.

[22] Fakoussa R M, Hofrichter M. Biotechnology and microbiology of coal degradation[J]. Applied Microbiology and Biotechnology, 1999, 52(1): 25-40.

[23] Stout S A, Boon J J, Spackman W. Molecular aspects of the peatification and early coalification of angiosperm and gymnosperm woods[J]. Geochimica Et Cosmochimica Acta, 1988, 52(2): 405-414.

[24] Río J C D, González-Vila F J, Martín F, et al. Characterization of humic acids from low-rank coals by 13C-NMR and pyrolysis-methylation. Formation of benzenecarboxylic acid moieties during the coalification process[J]. Organic Geochemistry, 1994, 22(6): 885-891.

[25] Catcheside D E A, Ralph J P. Biological processing of coal[J]. Applied Microbiology and Biotechnology, 1999, 52: 16-24.

[26] 安茂燕. 脂肪酸-烃类油浮选低阶煤协同作用机理研究[D]. 中国矿业大学, 2019.

[27] Machnikowska H, Kamila P, Anna P. Microbial degradation of low rank coals[J]. Fuel Processing Technology, 2002, 77-78: 17-23.

[28] Reiss J. Studies on the solubilization of German coal by fungi[J]. Applied Microbiology and Biotechnology, 1992, 37: 830-832.

[29] 苏现波, 陈鑫, 夏大平, 等. 白腐真菌对不同煤阶煤的降解作用研究[J]. 河南理工大学学报, 2013, 32(3): 281-284.

[30] Priyanka S, Supriya S. Microbial degradation of coal into a value added product[J]. International Journal of Coal Preparation and Utilization, 2019, 39: 1-19.

[31] Hongyu G, Shufeng Z, Daping X, et al. Efficient utilization of coal slime using anaerobic fermentation technology[J]. Bioresource Technology, 2021, 332: 125072.

[32] Schumacher J D. Untersuchungen zur Oxidation kohlere-levanter Strukturanaloga durch bakterielle Monooxygenasen[D]. Germany: Rhein Friedrich-Wilhelms University-Bonn, 1997.

[33] Wender I. Catalytic synthesis of chemicals from coal[J]. Catalysis Reviews: Science and Engineering, 1976, 14: 97-129.

[34] Mallya N, Zingaro R A. The chemistry of the low rank coal[J]. American Chemical Society Symposium Series, 1984, 264: 133-144.

[35] 李俊旺, 张明旭. 煤样预处理对义马煤生物降解的影响[J]. 煤炭科学技术, 2009, 37(01): 125-127.

[36] 俞乔尼, 张越, 杨帆, 等. 褐煤氧化前后的特性分析[J]. 化工进展, 2017, 36: 175-179.

[37] Machnikowska H, Pawelec K, Podgorska A. Microbial degradation of low rank coals[J]. Fuel Processing Technology. 2002, 77-78: 17-23.

[38] Gupta R K, Deobald L A, Crawford D L. Depolymerization and chemical modification of lignite coal by Pseudomonas cepacia strain DLC-07[J]. Applied Biochemistry and Biotechnology, 1990, 24-25(1): 899-911.

[39] Laborda F, Fernandez M, Luna N, et al. Study of the mechanisms by which microorganisms solubilize and/or liquefy Spanish coals[J]. Fuel Processing Technology. 1997, 52(1-3): 95-107.

[40] Wang B, Wang Y, Xiaoyong C, et al. Bioconversion of coal to methane by microbial communities from soil and from an opencast mine in the Xilingol grassland of northeast China[J]. Biotechnology for biofuels, 2019, 12(1): 1-15.

[41] F€uchtenbusch B, Steinb€uchel A. Biosynthesis of polyhydroxyal-kanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus ruber[J]. Applied Microbiology and Biotechnology, 1999, 52(1): 91-95.

[42] Jiang F, Li Z, Lv Z, et al. The biosolubilization of lignite by Bacillus sp. Y7 and characterization of the soluble products[J]. Fuel, 2013, 103: 639-645.

[43] Pokorny R, Olejnikova P, Balog M, et al. Characterization of microorganisms isolated from lignite excavated from the Zahorie coal mine (southwestern Slovakia)[J]. Research in Microbiology, 2005, 156(9): 932-943.

[44] Yokimiko D, Mary G B, Sudheer D V N P, et al. Screening of microorganisms able to degrade low-rank coal in aerobic conditions: Potential coal biosolubilization mediators from coal to biochemicals[J]. Biotechnology and Bioprocess Engineering, 2017, 22: 178-185.

[45] Strandberg G W, Lewis S N. Solubilization of coal by an extracellular product Streptomyces setonii 75Vi2[J]. Journal of Industrial Microbiology, 1987, 1: 371-375.

[46] Quigley D R, Wey J E, Breckenridge C R, et al. The influence of pH on biological solubulization of oxidized, low-rank coal[J]. Resources, conservation and recycling, 1988, 1(3-4): 163-174.

[47] Quigley D R, Ward B, Crawford D L, et al. Evidence that microbially produced alkaline materials are involved in coal biosolubilization[J]. Applied Biochemistry and Biotechnology, 1989, 20: 753-763.

[48] Hofrichter M, Bublitz F, Fritsche W. Fungal attack on coal II. Solubilization of low-rank coal by filamentous fungi[J]. Fuel Processing Technology, 1997, 52: 55-64.

[49] Glenn J K, Morgan M A, Mayfeld M B, et al. An extracellular H2O2-requiring enzyme preparaton involved in lignin biodegradaton by the white rot basidiomycete, Phanerochaete chrysosporium[J]. Biochemical and Biophysical Research Communicatons, 1983, 114: 1077-1083.

[50] Tien M, Kirk K. Lignin-degrading enzyme from the Hymenomycete Phanerochaete chrysosporium Burds[J]. Science, 1983, 221: 661-663.

[51] Piontek K, Glumoff T, Winterhater K. Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium[J]. FEBS Leters, 1993, 315: 119-124.

[52] Glumoff T, Harvey P, Molinari S, et al. Lignin peroxidase from Phanerochaete chrysosporium molecular and kinetc characterizaton of isozymes[J]. European Journal of Biochemistry, 1990, 187: 515-520.

[53] Kirk T K, Tien M, Kersten P J. Ligninase of Phanerochaete chrysosporium. Mechanism of its degradaton of the non-phenolic arylglycerol β-aryl ether substructure of lignin[J]. Biochemical Journal, 1986, 236: 279-287.

[54] Abdel-Hamid A M, Solbiat J O, Cann I K O. Insights into lignin degradaton and its potental industrial applicatons[J]. Advances in Applied Microbiology, 2013, 82: 1-28.

[55] Kuwahara M, Glenn J K, Morgan M A, et al. Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium[J]. FEBS Letters, 1984, 169: 247-250.

[56] Hofrichter M. Review: lignin conversion by manganese peroxidase(MnP)[J]. Enzyme and Microbial Technology, 2002, 30: 454-466.

[57] Hofrichter M, Scheibner K, Bublitz F, et al. Depolymerization of straw lignin by manganese peroxidase from Nematoloma frowardii is accompanied by release of carbon dioxide[J]. Holzforschung, 1999, 53(2): 161-166.

[58] Hikorokuro Y. Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio[J]. Journal of the Chemical Society, Transactions, 1883, 43: 472-486.

[59] Rodrı’guez E, Pickard M A, Vazquez-Duhalt R. Industrial dye decolorization by Laccases from Ligninolytic Fungi[J]. Current Mirobiology, 1999, 38: 27-32.

[60] Dittmer J K, Patel N J, Dhawale S W, et al. Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency[J]. FEMS Microbiology Letters, 1997, 149(1): 65-70.

[61] Kau L S, SpiraSolomon D J, Penner-Hahn J E, et al. X-ray absorption edge determination of the oxidation stateand coordination number of copper: application to the Type3 site in Rhus vernicifera laccase and its reaction with oxygen[J]. Journal of the American Chemical Society, 1987, 109: 6433-6442.

[62] Witayakran S, Ragauskas A J. Synthetic applications of laccase in green chemistry[J]. Advanced Synthesis and Catalysis, 2009, 351: 1187-1209.

[63] Pyne J W, Stewart D L, Fredrickson J, et al. Solubilization of leonardite by an extracellular fraction from Coriolus versicolor[J]. Applied and Environmental Microbiology, 1987, 53: 2844-2848.

[64] Cohen M S, Bowers W C, Aronson H, et al. Cell-free solubilization of coal by Polyporus versicolor[J]. Applied and Environmental Microbiology, 1987, 53: 2840-2846.

[65] Wondrack L, Szanto M, Wood W A. Depolymerization of water soluble coal polymer from subbitumious coal and lignite by lignin peroxidase[J]. Applied Biochemistry and Biotechnology, 1989, 20/21: 765-780.

[66] Hofrichter M, Fritsche W. Depolymerization of low-rank coal by extracellular fungal enzyme systems. I. Screening for low-rank-coal-depolymerizing activities[J]. Applied Microbiology and Biotechnology, 1996, 46: 220-225.

[67] Feng X, Sun J, Xie Y. Degradation of Shanxi lignite by Trichoderma citrinoviride[J]. Fuel, 2021, 291: 120204.

[68] Cohen M S, Feldman K A, Brown C S, et al. Isolation and identification of the coal-solubilizing agent produced by Trametes versicolor[J]. Applied and environmental microbiology, 1990, 56(11): 3285-3291.

[69] Fredrickson J K, Stewart D L, Campbell J A, et al. Biosolubilization of low-rank coal by a Trametes versicolor siderophore-like product and other complexing agents[J]. Journal of Industrial Microbiology, 1990, 5(6): 401-406.

[70] Runnion K, Combie J D. Thermophilic microorganisms for coal biosolubilization[J]. Applied Biochemistry and Biotechnology, 1990, 24-25(1): 817-829.

[71] Fakoussa R M. The influence of different chelators on the solubilization/liquefaction of different pretreated and natural lignites[J]. Fuel Processing Technology, 1994, 40(2-3): 183-192.

[72] Romanowska I, Strzelecki B, Bielecki S. Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020[J]. Fuel Processing Technology, 2015, 131: 430-436.

[73] Yin S, Tao X, Shi K. The role of surfactants in coal bio-solubilisation[J]. Fuel Processing Technology, 2011, 92(8): 1554-1559.

[74] Singh D N, Tripathi A K. Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed[J]. Bioresource Technology, 2013, 128: 215-221.

[75] 冯晓霄. 新疆低价煤微生物液化研究[D]. 新疆: 新疆大学, 2014.

[76] 韩娇娇, 张涛, 林青, 等. 新疆低阶煤溶煤菌的分离与鉴定[J]. 新疆农业科学, 2017, 54(06): 1130-1136.

[77] Fiehn O. Metabolomics-the link between genotypes and phenotypes[J]. Plant Molecular Biology, 2002, 48(1): 155-171.

[78] Cortina N S, Krug D, Plaza A, et al. Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome[J]. Angewandte Chemie, International Edition, 2012, 51: 811-816.

[79] Krug D, Zurek G, Schneider B, et al. Efficient mining of myxobacterial metabolite profiles enabled by liquid chromatography-electrospray ionisation-time-of-flight mass spectrometry and compound-based principal component analysis[J]. Analytica Chimica Acta, 2008, 624: 97-106.

[80] Zhao Y, Li Q, Gu D, et al. The synergistic effects of gamma-aminobutyric acid and salinity during the enhancement of microalgal lipid production in photobioreactors[J]. Energy Conversion and Management, 2022, 267: 115928.

[81] Brisson V L, Zhuang W Q, Alvarez-Cohen L. Metabolomic analysis reveals contributions of citric and citramalic acids to rare earth bioleaching by a Paecilomyces fungus[J]. Frontiers in microbiology, 2020, 10: 3008.

[82] Xia C, Tian Q, Kong L, et al. Metabolomics analysis for nitrite degradation by the metabolites of Limosilactobacillus fermentum RC4[J]. Foods, 2022, 11(7): 1009.

[83] Feng W, Wei Z, Song J, et al. Hydrolysis of nicosulfuron under acidic environment caused by oxalate secretion of a novel Penicillium oxalicum strain YC-WM1[J]. Scientific Reports, 2017, 7(1): 1-11.

[84] Nicholson J K, Lindon J C. Metabonomics[J]. Nature, 2008, 455(7216): 1054-1056.

[85] Defossez E, Bourquin J, von Reuss S, et al. Eight key rules for successful data-dependent acquisition in mass spectrometrybased-metabolomics[J]. Mass Spectrometry Reviews, 2023, 42(1): 131-143.

[86] Wilkins M R, Sanchez J C, Gooley A A, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it[J]. Biotechnology and genetic engineering reviews, 1996, 13(1): 19-50.

[87] Domon B, Aebersold R. Mass spectrometry and protein analysis[J]. Science, 2006, 312(5771): 212-217.

[88] 89. Niu X, Zhang J, Suo Y, et al. Proteomic analysis of Fusarium sp. NF01 revealed a multi-level regulatory machinery for lignite biodegradation[J]. Energy 2022, 250: 123763.

[89] Peralta H, Aguilar A, Cancino-Díaz J C, et al. Determination of the metabolic pathways for degradation of naphthalene and pyrene in Amycolatopsis sp. Poz14[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2022, 254: 109268.

[90] Wei M, Dhanasekaran S, Godana E A, et al. Whole-genome sequencing of Cryptococcus podzolicus Y3 and data-independent acquisition-based proteomic analysis during OTA degradation[J]. Food Control, 2022, 136: 108862.

[91] Baylon M G, David Y, Pamidimarri S D V N, et al. Bio-solubilization of the untreated low rank coal by alkali-producing bacteria isolated from soil[J]. Korean Journal of Chemical Engineering, 2017, 34(1): 105-109.

[92] Acharya C, Kar R N, Sukla L B, Bacterial removal of sulphur from three different coals[J], Fuel, 2001, 80: 2207-2216.

[93] Esener A A, Roels J A, Kossen N W F. The influence of temperature on the maximum specific growth rate of Klebsiella pneumonia[J]. Biotechnology and Bioengineering, 1981, 1401-1405.

[94] Fegade S L, Tande B M, Cho H, et al. Aromatization of propylene over Hzsm-5: A design of experiments (DOE) approach[J]. Chemical Engineering Communications, 2013, 200(8): 1039-1056.

[95] Shi K Y, Yin S D, Tao X X, et al. Quantitative measurement of coal Bio-solubilization by ultraviolet-visible spectroscopy[J]. Energy Sources Part A, 2013, 35: 1456-1462.

[96] Shi K, Gui X, Tao X, et al. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy and Fuels, 2015, 29: 3566-3572.

[97] Alvarez R, Clemente C, Gómez-Limón D. The influence of nitric acid oxidation of low rank coal and its impact on coal structure[J]. Fuel, 2003, 82: 2007-2015.

[98] Quigley D R. Biotransformations of low rank coals[M]. Florida: CRC, Boca Raton, 1992.

[99] Madiha J G, Kalsoom A, Shazia K, et al. Characterization of humic acids produced from fungal liquefaction of low-grade Thar coal[J]. Process Biochemistry, 2021, 107: 1-12.

[100] Yin S, Tao X, Shi K, et al. Biosolubilisation of Chinese lignite[J]. Energy, 2009, 34(6): 775-781.

[101] He H, Cheng J, Song D, et al. Impacts of surfactant on bituminous coal biosolubilization by white-rot fungi Hypocrea lixii HN-1[J]. Geomicrobiology Journal, 2022, 39: 750-756.

[102] Wang J, He Y, Li H, et al. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques[J]. Fuel, 2017, 203: 764-73.

[103] Mathews J P, Fernandez-Also V, Daniel Jones A, et al. Determining the molecular weight distribution of Pocahontas No. 3 low-volatile bituminous coal utilizing HRTEM and laser desorption ionization mass spectra data[J]. Fuel, 2010, 89(7): 1461-1469.

[104] Castro-Marcano F, Winans R E, Chupas P, et al. Fine structure evaluation of the pair distribution function with molecular models of the argonne premium coals[J]. Energy and Fuels 2012, 26(7): 4336-4344.

[105] Okolo G N, Neomagus H W J P, Everson R C, et al. Chemical-structural properties of South African bituminous coals: insights from wide angle XRD-carbon fraction analysis, ATR-FTIR, solid state 13C NMR, and HRTEM techniques[J]. Fuel, 2015, 158: 779-792.

[106] Trejo F, Ancheyta J, Morgan T J, et al. Characterization of asphaltenes from hydrotreated products by SEC, LDMS, MALDI, NMR and XRD[J]. Energy and Fuels, 2007, 21(4): 2121-2138.

[107] Lu L M, Sahajwalla V, Kong C, et al. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon, 2001, 39(12): 1821-1833.

[108] Lu L M, Sahajwalla V, Harris D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace[J]. Energy and Fuels, 2000, 14(4): 869-876.

[109] 周三栋, 刘大锰, 蔡益栋, 等. 低阶煤吸附孔特征及分形表征[J]. 石油与天然气地质, 2018, 39(02): 373-383.

[110] Song H, Liu G, Zhang J, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 2017, 156: 454-460.

[111] Yousef S, Eimontas J, N Striūgas, et al. Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC-MS system under N2 and CO2 atmospheres[J]. Renewable Energy, 2021, 173: 733-749.

[112] Liu Q, Wang S, Zheng Y, et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 170-177.

[113] Van Heek K H, Hodek W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel, 1994, 73(6): 886-896.

[114] McMillen D F, Malhotra R, Nigenda S E. The case for induced bond scission during coal pyrolysis[J]. Fuel, 1989, 68(3): 380-386.

[115] Shi L, Liu Q, Guo X, et al. Pyrolysis behavior and bonding information of coal-A TGA study[J]. Fuel Processing Technology, 2013, 108: 125-132.

[116] He Q, Wan K, Hoadley A, et al. TG-GC-MS study of volatile products from Shengli lignite pyrolysis[J]. Fuel, 2015, 156: 121-128.

[117] Kubovský I, Kačíková D, Kačík F. Structural changes of oak wood main components caused by thermal modification[J]. Polymers, 2020, 12(2): 485.

[118] Müsellim E, Tahir M H, Ahmad M S, et al. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis[J]. Applied Thermal Engineering, 2018, 137: 54-61.

[119] Scaccia S. TG-FTIR and kinetics of devolatilization of Sulcis coal[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 95-102.

[120] Shen J, Liu J, Xing Y, et al. Application of TG-FTIR analysis to superfine pulverized coal[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 154-161.

[121] Gao J, Chu R Z, Meng X L, et al. Synergistic mechanism of CO2 and active functional groups during low temperature oxidation of lignite[J]. Fuel, 2020, 278: 118407.

[122] Niksa S. Flashchain theory for rapid coal devolatilization kinetics. 7. predicting the release of oxygen species from various coals[J]. Energy and Fuels, 1996, 10(1): 173-87.

[123] Arenillas A, Rubiera F, Pis J J. Simultaneous thermogravimetric–mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. Journal of Analytical and Applied Pyrolysis, 1999, 50(1): 31-46.

[124] Xiao L A, Lu H A, Peng W B, et al. Structural changes and sodium species redistribution of a typical sodium-rich coal during thermal dissolution with aromatic solvents[J]. Fuel, 286: 119410.

[125] Liu J, Jiang X, Shen J, et al. Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation[J]. Energy conversion and management, 2014, 87: 1027-1038.

[126] Wang S, Tang Y, Schobert H H, et al. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from southern China[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 75-80.

[127] 乔玲. 煤中金属化合物对煤自燃的催化机理及其惰化改性研究[D]. 辽宁: 辽宁工程技术大学, 2020.

[128] 范玉强. 我国部分煤中重金属含量、赋存及排放控制研究[D]. 辽宁: 辽宁科技大学, 2016.

[129] Hölker U, Höfer M. Solid substrate fermentation of lignite by the coal-solubilizing mould, Trichoderma atroviride, in a new type of bioreactor[J]. Biotechnology Letters, 2002, 24: 1643-1645.

[130] Tao X, Pan L, Shi K, et al. Bio-solubilization of Chinese lignite I, extra-cellular protein analysis[J]. Mining Science and Technology, 2009, 19: 358-362.

[131] 邓连学. ICP-OES测定煤中锰、铜、铅、锌、铬[J]. 广州化工, 2017, 45(6): 102-106.

[132] Quigley D R, Breckenridge C R, Dugan P R, et al. Effects of multivalent cations on low-rank coal solubilities in alkaline solutions and microbial cultures[J]. Energy and Fuels, 1989, 3(5): 571-574.

[133] Klaus J H, Alexander W. M. Molecular structure of a brown coal[J]. Fuel, 1987, 66: 1164.

[134] Worley B, Powers R. PCA as a practical indicator of OPLS-DA model reliability[J]. Current Metabolomics, 2016, 4(2): 97-103.

[135] Thevenot E A. ropls: PCA, PLS (-DA) and OPLS (-DA) for multivariate analysis and feature selection of omics data[J]. R package version, 2016, 1: 1-25.

[136] Christopher F. Higgins. ABC transporters: physiology, structure and mechanism-an overview[J]. Research in Microbiology, 2001, 152(3-4): 205-210.

[137] Li C, Kong X, Lan L, et al. Effects of carbon sources on 17 beta-estradiol degradation by Sphingomonas sp. and the involved intracellular metabolomics analysis[J]. Environmental Science: Processes and Impacts, 2020, 22: 197-206.

[138] Szewczyk R, Różalska S, Mironenka J, et al. Atrazine biodegradation by mycoinsecticide Metarhizium robertsii: Insights into its amino acids and lipids profile[J]. Journal of Environmental Management, 2020, 262: 110304.

[139] Manal E, Linda H, RuAngelie E E, et al. Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0[J]. Toxins, 2015, 7: 439-456.

[140] Dyk J S, Sakka M, Sakka K, et al. Characterization of the multi-enzyme complex xylanase activity from Bacillus licheniformis SVD1[J]. Enzyme and Microbial Technology, 2010; 47(4): 174-177.

[141] 李宛伦. 平菇菌对十溴二苯乙烷的降解性能与毒理响应机制[D]. 陕西: 西北工业大学, 2021.

[142] Oh C, Kim T D, Kim K K. Carboxylic ester hydrolases in bacteria: Active site, structure, function and application[J]. Crystals, 2019, 9(11): 597.

[143] Sweeney M D, Xu F. Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: Recent developments[J]. Catalysts, 2012, 2: 244-263.

[144] Yeoman C J, Han Y, Dodd D, et al. Thermostable enzymes as biocatalysts in the biofuel industry[J]. Advances in Applied Microbiology, 2010, 70: 1-55.

[145] Mukherjee J, Gupta M N. Biocatalysis for biomass valorization[J]. Sustainable Chemical Processes, 2015, 3: 1-5.

[146] Singh B. Review on microbial carboxylesterase: general properties and role in organophosphate pesticides degradation[J]. Biochemistry and Molecular Biology, 2014, 2: 1-6.

[147] Yang D D, François J M, de Billerbeck G M. Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767[J]. BMC Microbiology, 2012, 12(1): 1-12.

[148] Muheim A, Waldner R, Sanglard D, et al. Purification and properties of an aryl-alcohol dehydrogenase from the white‐rot fungus Phanerochaete chrysosporium[J]. European Journal of Biochemistry, 1991, 195(2): 369-375.

[149] Penning T M. The aldo-keto reductases (AKRs): Overview[J]. Chemico-Biological Interactions, 2015, 234: 236-246.

[150] He W J, Zhang L, Yi S Y, et al. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain[J]. Scientific Reports, 2017, 7(1): 9549.

[151] Simpson P J, Tantitadapitak C, Reed A M, et al. Characterization of two novel aldo–keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress[J]. Journal of Molecular Biology, 2009, 392(2): 465-480.

[152] Ellis E M. Microbial aldo-keto reductases[J]. FEMS Microbiology Letters, 2002, 216(2): 123-131.

[153] Agrawal C, Sen S, Yadav S, et al. A novel aldo-keto reductase (AKR17A1) of Anabaena sp. PCC 7120 degrades the rice field herbicide butachlor and confers tolerance to abiotic stresses in E. coli[J]. PLOS One, 2015, 10(9): 1-18.

[154] Escutia M R, Bowater L, Edwards A, et al. Cloning and sequencing of two Ceriporiopsis subvermispora bicupin oxalate oxidase allelic isoforms: implications for the reaction specificity of oxalate oxidases and decarboxylases[J]. Applied and Environmental Microbiology, 2005, 71(7): 3608-3616.

[155] Ogunmolu F E, Kaur I, Pasari N, et al. Quantitative multiplexed profiling of Penicillium funiculosum secretome grown on polymeric cellulase inducers and glucose[J]. Journal of Proteomics, 2018, 179: 150-160.

[156] York W S, O’Neill M A. Biochemical control of xylan biosynthesis-which end is up[J]. Current Opinion in Plant Biology, 2008, 11(3): 258-265.

[157] Anna E. Structural diversity and application potential of hemicelluloses[J]. Macromolecular Symposia, 2006, 232: 1-12.

[158] Takahashi N, Koshijima T. Molecular properties of lignin-carbohydrate complexes from beech (Fagus crenata) and pine (Pinus densiflora) woods[J]. Wood Science and Technology, 1988, 22: 177-189.

[159] Watanabe T, Koshijima T. Evidence for an ester linkage between lignin and glucuronic acid in lignin-carbohydrate complexes by DDQ-oxidation[J]. Agricultural and Biological Chemistry, 1988, 52(11): 2953-2955.

[160] Dilokpimol A, Mäkelä M R, Cerullo G, et al. Fungal glucuronoyl esterases: genome mining based enzyme discovery and biochemical characterization[J]. New biotechnology, 2018, 40: 282-287.

[161] Scheller H V, Ulvskov P. Hemicelluloses[J]. Annual review of plant biology, 2010, 61: 263-289.

[162] Hernández V E B, Salas-Montantes C J, Barba-De la Rosa A P, et al. Autodisplay of an endo-1,4-β-xylanase from Clostridium cellulovorans in Escherichia coli for xylans degradation[J]. Enzyme and microbial technology, 2021, 149: 109834.

[163] Dodd D, Cann I K O. Enzymatic deconstruction of xylan for biofuel production[J]. Gcb Bioenergy, 2009, 1(1): 2-17.

[164] Biswas R, Persad A, Bisaria V S. Production of cellulolytic enzymes[J]. Bioprocessing of Renewable Resources to Commodity Bioproducts, 2014: 105-132.

中图分类号:

 TQ536    

开放日期:

 2025-06-29    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式