题名: | 大倾角煤层综放采场煤岩时空运动及空隙演化规律研究 |
作者: | |
学号: | 21203077018 |
保密级别: | 保密(2年后开放) |
语种: | chi |
学科代码: | 081901 |
学科: | 工学 - 矿业工程 - 采矿工程 |
学生类型: | 硕士 |
学位: | 工学硕士 |
学位年度: | 2024 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山压力与岩层控制 |
导师姓名: | |
导师单位: | |
提交日期: | 2024-06-19 |
答辩日期: | 2024-06-05 |
外文题名: | Study on space-time movement and void evolution law of coal rock in fully mechanized caving face of steeply dipping coal seam |
关键词: | |
外文关键词: | steeply dipping fully mechanized caving stope ; extra-thick coal seam ; the evolution of voids ; coal rock migration ; coal fire disaster prevention |
摘要: |
大倾角厚及特厚煤层是难采煤层的主体煤层之一,其储量占全国大倾角煤层储量的45%,采用长壁综放开采时,采场空间煤岩运动剧烈致使空隙演化十分复杂,大倾角工作面不同区域煤岩与空隙分布特征有较强的差异,极易造成采空区漏风和遗煤自然发火,存在一定安全隐患。因此,深入研究大倾角特厚煤层综放采场煤岩运动与围岩空隙演化规律对现场安全高效生产具有重要的理论指导意义。 以甘肃靖远王家山煤矿大倾角长壁综放工作面为研究对象,采用煤岩力学测试、数值模拟分析、物理相似模拟实验以及现场实测相结合的研究方法,对大倾角特厚煤层综放采场煤岩运动与围岩空隙发育规律进行分析研究,研究内容与结论如下: (1)研究了煤层倾角对采场不同层位煤岩应力演化规律的影响。工作面开采过程中煤岩应力沿走向呈非对称分布,工作面侧煤岩应力释放区范围与释放程度均大于开切眼侧。随着煤层倾角从35°增大至55°,煤岩应力释放区不断向倾斜上部迁移,直接顶应力集中区范围与应力集中程度不断减小,而二煤下端头处最大应力值先增大后减小,在煤层倾角为45°时达到最大。沿工作面倾向应力集中区域位于工作面上端头底板处及下端头顶板处,放煤导致工作面煤岩应力集中程度降低,降低幅度分别为4.95%、3.19%、3.11%、1.79%和0.36%。 (2)分析了大倾角综放采场煤岩空间破坏堆积特征。沿采场走向方向采空区呈“煤体—矸石—煤体”交替堆积形态,支架后方采空区充填程度大于开切眼侧采空区充填程度。沿采场倾斜方向采空区呈现出“上部空洞区大、中部大块体充满、下部小块体充实”的非均匀充填特征,倾斜下部高位顶板破断堆积呈拱形态。 (3)基于大倾角工作面的放煤特点,研究了倾角影响下采场煤岩三维运移破坏特征、不同区域空隙演化特征以及煤岩堆积规律。随着煤层倾角增大,采场倾斜下部区域充填程度逐步增加,采场破坏最大高度逐渐减小,煤层倾角45°时,采场倾斜上部破坏运移影响范围达到最大,表明采场倾斜上部破坏范围并未随倾角增大而单调增大。采场煤岩层裂隙发育随倾角增大沿倾向向上部迁移,倾斜上部裂隙发育高度不断增大,倾斜下部裂隙发育高度则不断降低。随着煤层倾角增大,工作面倾斜上部区域遗煤量逐渐减少,中下部遗煤量增多,在煤层倾角达到矸石自然安息角时尤为显著。 (4)分析了大倾角综放工作面采空区自燃“三带”与采场顶板运移和空隙分布特征的关系。结合工作面不同区域裂隙发育特征、遗煤与空隙率分布特征以及工作面氧气浓度分布规律,揭示了综放采空区自燃危险区域及自然发火诱因,提出大倾角煤层采空区“上部注浆、中部注水、下部注氮”的分区防灭火防治技术,保证现场煤矿安全高效开采。 |
外文摘要: |
Thick and extra-thick coal seams with steeply dipping are the main coal seams of difficult-to-mine coal seams, and their reserves account for 45 % of the reserves of steeply dipping coal seams in China. When long-wall fully-mechanized caving mining is adopted, the violent movement of coal and rock in the stope space makes the void evolution very complicated. There are strong differences in the distribution characteristics of coal and rock and voids in different areas of large dip angle working face, which can easily cause air leakage in gob and spontaneous combustion of residual coal, and there are certain safety hazards. Therefore, it is of great theoretical guiding significance for safe and efficient production to study the evolution law of coal rock movement and surrounding rock gap in fully mechanized caving face with steeply dipping and extra-thick coal seam. Taking the longwall fully-mechanized caving face with steeply dipping in Wangjiashan Coal Mine of Jingyuan, Gansu Province as the research object, the coal-rock mechanics test, numerical simulation analysis, physical similarity simulation experiment and field measurement are combined to analyze and study the coal-rock movement and surrounding rock void development law of fully-mechanized caving face with steeply dipping and extra-thick coal seam. The research contents and conclusions are as follows : (1) The influence of coal seam dip angle on the stress evolution law of coal and rock in different layers of stope is studied. During the mining process of the working face, the stress of coal and rock is asymmetrically distributed along the strike, and the range and degree of stress release area of coal and rock on the side of the working face are greater than those on the side of the open-off cut. As the dip angle of the coal seam increases from 35 ° to 55 °, the stress release zone of the coal rock continues to migrate to the upper part of the inclination, and the range of the direct roof stress concentration area and the degree of stress concentration continue to decrease, while the maximum stress value at the lower end of the 2 coal increases first and then decreases, reaching the maximum when the dip angle of the coal seam is 45 °. The stress concentration area along the tendency of the working face is located at the bottom plate of the upper end of the working face and the top plate of the lower end. The stress concentration of coal and rock in the working face is reduced by 4.95 %, 3.19 %, 3.11 %, 1.79 % and 0.36 % respectively. (2) The spatial failure accumulation characteristics of coal rock in fully mechanized caving face with steeply dipping are analyzed. Along the strike direction of the stope, the gob is in the form of ' coal-gangue-coal ' alternating accumulation, and the filling degree of the gob behind the support is greater than that of the gob on the open-off cut side. Along the dip direction of the stope, the gob presents the non-uniform filling characteristics of ' more empty areas in the upper part, full of large blocks in the middle and full of small blocks in the lower part ', and the broken accumulation of the high roof in the inclined lower part presents an arch shape. (3) Based on the characteristics of coal caving in the working face with steeply dipping, the three-dimensional migration and failure characteristics of coal and rock in the stope under the influence of dip angle, the evolution characteristics of voids in different regions and the accumulation law of coal and rock are studied. With the increase of the dip angle of the coal seam, the filling degree of the lower part of the inclined stope increases gradually, and the maximum height of the stope damage decreases gradually. When the dip angle of the coal seam is 45 °, the influence range of the upper part of the inclined stope reaches the maximum, indicating that the upper part of the inclined stope does not increase monotonously with the increase of the dip angle. With the increase of dip angle, the fracture development of coal and rock strata in the stope migrates to the upper part along the dip direction, and the development height of the upper fracture increases continuously, while the development height of the lower fracture decreases continuously. With the increase of coal seam dip angle, the amount of residual coal in the upper part of the inclined working face gradually decreases, and the amount of residual coal in the middle and lower part increases, especially when the coal seam dip angle reaches the natural angle of repose of gangue. (4) The relationship between the spontaneous combustion ' three zones ' in the gob of the fully mechanized caving face with steeply dipping and the roof migration and void distribution characteristics of the stope is analyzed. Combined with the characteristics of fracture development in different regions of the working face, the distribution characteristics of residual coal and porosity, and the distribution law of oxygen concentration in the working face, the spontaneous combustion dangerous area and the cause of spontaneous combustion in the fully mechanized caving gob are revealed, and the fire prevention and control technology of ' upper grouting, middle water injection and lower nitrogen injection ' in the gob of steeply dipping coal seam is put forward to ensure the safe and efficient mining of the coal mine. |
参考文献: |
[1]伍永平,郎丁,贠东风等. 我国大倾角煤层开采技术变革与展望[J]. 煤炭科学技术, 2024, 52(01): 25-51. [2]伍永平,贠东风,解盘石等. 大倾角煤层长壁综采:进展、实践、科学问题[J]. 煤炭学报, 2020, 45(1): 24-34. [3]伍永平,贠东风,解盘石等. 大倾角煤层长壁综采理论与技术[M]. 北京: 科学出版社2017.9. [4]罗生虎,田程阳,伍永平等. 大倾角煤层综放开采顶煤破坏运移规律与支架稳定性分析[J]. 采矿与安全工程学报, 2023, 40(01): 25-35+47. [8]王家臣. 我国综放开采40年及展望[J]. 煤炭学报, 2023, 48(01): 83-99. [9]宋选民,朱德福,王仲伦等. 我国煤矿综放开采40年:理论与技术装备研究进展[J]. 煤炭科学技术, 2021, 49(03): 1-29. [10]李伟. 综放开采智能化控制系统研发与应用[J]. 煤炭科学技术, 2021, 49(10): 128-135. [11]张海鹏. 综放开采覆岩结构稳定性及支架支护阻力分析——以保德煤矿为例[J]. 煤炭科学技术, 2022, 50(S1): 48-53. [12]许永祥,王国法,张传昌等. 特厚坚硬煤层超大采高综放开采合理采高研究与实践[J]. 采矿与安全工程学报, 2020, 37(04): 715-722. [13]范维唐,胡省三,成玉琪. 采煤史上一场深刻的革命-我国综合机械化采煤30年发展述评[J]. 煤矿机电, 2000(5): 6-9. [14]李志伟,杜安良. 浅析综采放顶煤开采工艺及技术经济效益[J]. 煤矿开采, 1995(03): 6-8. [15]李明忠,胡万昌. 淮北矿区三软合并煤层大采高液压支架设计[J]. 煤炭科学技术, 2008(11): 72-75. [16]王中奎,刘连超. 大倾角综放工作面开采技术实践[J]. 煤, 2008(02): 51-52+64. [17]张进安. 王家山矿大倾角特厚煤层长壁综放面“三机”配套研究[D]. 西安科技大学, 2006. [18]李建营,梁文立. “三软”厚煤层大倾角综放工作面设备的防倒防滑技术研究[J]. 淮北职业技术学院学报, 2004(01): 87-89. [19]郎丁. 大倾角软煤综放采场顶煤介态转化机制及转化界面形态研究[D]. 西安科技大学, 2017. [20]新疆焦煤集团2130平硐大倾角硬顶软底软煤走向长壁综放开采技术研究[R]. 乌鲁木齐: 新疆焦煤集团, 西安: 西安科技大学, 2009. [21]王锁锋,董正坤. 综采放顶煤技术在“三软”大倾角厚煤层开采中的应用[J]. 煤炭技术, 2009, 28(02): 63-66. [22]宁廷州,戴华宾,雒军莉等. 厚硬煤层综放开采水压致裂技术及应用研究[J]. 中国煤炭, 2019, 45(04): 52-55. [23]王家臣,张锦旺. 综放开采顶煤放出规律的BBR研究[J]. 煤炭学报, 2015, 40(03): 487-493. [24]王金华,黄乐亭,李首滨等. 综采工作面智能化技术与装备的发展[J]. 煤炭学报, 2014, 39(08): 1418-1423. [25]高玉兵,王琦,杨军等. 特厚煤层综放开采邻空动压巷道围岩变形机理及卸压控制[J].煤炭科学技术, 2023, 51(02): 83-94. [26]赵斌,王寅,赵善坤等. 特厚煤层综放工作面矿震诱发机理及防控技术:以龙王沟煤矿为例[J]. 科学技术与工程, 2023, 23(29): 12451-12457. [27]张磊,王鹏,谷超等. 特厚煤层综放开采覆岩破断与异常性机制特征研究[J]. 矿业研究与开发, 2024, 44(01): 54-59. [28]刘成勇,宋伟,盛奉天等. 强含水层下特厚煤层综放开采导水裂隙带发育高度[J]. 采矿与岩层控制工程学报, 2024, 6(02): 114-124. [29]雷亚军,闫少宏,王锐等. 曹家滩煤矿大采高智能化综放面工艺优化[J]. 煤炭工程, 2022, 54(12): 7-12. [30]王国法,庞义辉,许永祥等.厚煤层智能绿色高效开采技术与装备研发进展[J].采矿与安全工程学报,2023,40(05):882-893. [31]葛世荣,张晞,薛光辉等. 我国煤矿煤机智能技术与装备发展研究[J]. 中国工程科学, 2023, 25(05): 146-156. [37]华道友,平寿康. 大倾角煤层矿压显现立体相似模拟[J]. 矿山压力与顶板管理, 1999, (3-4): 97-100. [38]李维光,黄建功,华道友等. 大倾角薄及中厚煤层俯伪斜走向长壁采煤法矿压显现(下)[J]. 煤矿开采, 1999, 36(3): 28-31. [39]伍永平. 大倾角煤层开采“顶板-支护-底板”系统稳定性及动力学模型[J]. 煤炭学报, 2004(05): 527-531. [40]伍永平. 大倾角煤层开采“顶板-支护-底板”系统的动力学方程[J]. 煤炭学报, 2005(06): 685-689. [41]解盘石,伍永平,王红伟等. 大倾角煤层长壁工作面倾斜砌体结构与支架稳定性分析[J]. 煤炭学报, 2012,37(08): 1275-1280. [42]解盘石,张颖异,张艳丽等. 大倾角大采高煤矸互层顶板失稳规律及对支架的影响[J]. 煤炭学报, 2021,46(02): 344-356. [43]解盘石,伍永平,罗生虎等. 大倾角大采高工作面倾向梯阶结构演化及稳定性分析[J]. 采矿与安全工程学报, 2018, 35(05): 953-959. [45]王红伟,伍永平,解盘石. 大倾角煤层开采覆岩应力场形成及演化特征[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(08): 1022-1026. [46]王红伟,伍永平,解盘石等. 大倾角煤层开采“关键域”岩体结构稳定性分析[J]. 采矿与安全工程学报, 2017, 34(02): 287-294. [48]伍永平,胡博胜,王红伟等. 大倾角煤层长壁开采工作面飞矸致灾机理研究[J]. 煤炭学报, 2017, 42(09): 2226-2234. [49]伍永平,胡博胜,解盘石等. 大倾角工作面飞矸冲击损害及其控制[J]. 煤炭学报, 2018, 43(10): 2694-2702. [50]罗生虎,王同,田程阳等. 大倾角煤层长壁开采顶板应力传递路径倾角效应[J]. 煤炭学报, 2022, 47(02): 623-633. [51]罗生虎,田程阳,伍永平等. 大倾角煤层长壁开采顶板受载与变形破坏倾角效应[J]. 中国矿业大学学报, 2021, 50(06): 1041-1050. [52]伍永平,解盘石,贠东风等.大倾角层状采动煤岩体重力-倾角效应与岩层控制[J]. 煤炭学报, 2023,48(01): 100-113. [53]罗生虎,王 同,伍永平等. 大倾角煤层群长壁开采承载拱与间隔岩层采动应力演化特征[J]. 煤炭学报, 2023, 48(02): 551-562. [54]解盘石,吴少港,罗生虎等. 大倾角大采高开采支架动载失稳机理及控制[J]. 煤炭科学技术, 2023, 51(02): 58-71. [55]黄建功. 大倾角煤层采场顶板运动结构分析[J]. 中国矿业大学学报, 2002, 31(5) : 411-414. [56]黄建功,楼建国. 大倾角煤层走向长壁采面支架与围岩系统分析[J]. 矿山压力与板控制, 2003(4): 72-74. [57]陶连金,王泳嘉. 大倾角煤层采场上覆岩层的运动与破坏[J]. 煤炭学报, 1996, (06): 23-26. [58]尹光志,李小双,郭文兵. 大倾角煤层工作面采场围岩矿压分布规律光弹性模量拟模型试验及现场实测研究[J]. 岩石力学与工程学报, 2010, 29(S1): 3336-3343. [59]池小楼. 大倾角软煤层分层综采再生顶板力学特性与围岩稳定控制[D]. 安徽理工大学, 2022. [60]杨科,池小楼,刘钦节等. 大倾角煤层综采工作面再生顶板与支架失稳机理[J]. 煤炭学报, 2020, 45(09): 3045-3053. [61]池小楼,杨科,刘文杰等. 大倾角煤层分层综采再生顶板破断规律研究[J]. 岩土力学,2022,43(05):1391-1400. [62]池小楼,杨科,刘文杰等. 大倾角煤层分层综采再生顶板破断规律研究[J]. 岩土力学, 2022, 43(05): 1391-1400. [63]吴 健. 我国放顶煤开采的理论研究与实践[J]. 煤炭学报, 1991, 16(3): 1-11. [64]吴 健,张 勇. 关于长壁放顶煤开采基础理论的研究[J]. 中国矿业大学学报, 1998, 27(4): 331-335. [66]王家臣,李志刚,陈亚军等. 综放开采顶煤放出散体介质流理论的试验研究[J]. 煤炭学报, 2004(03): 260-263. [67]王家臣,张锦旺. 急倾斜厚煤层综放开采顶煤采出率分布规律研究[J]. 煤炭科学技术, 2015, 43(12): 1-7.3 [68]张锦旺,程东亮,王家臣等. 水平分段综放开采顶煤放出体理论计算模型[J]. 煤炭学报, 2023, 48(02): 576-592. [69]于 雷,闫少宏. 特厚煤层综放开采顶板岩层控制基本原理[J]. 煤炭学报, 2020, 45(S1): 31-37. [70]闫少宏,申宇鹏. 综放开采冒落顶煤体堆积状态与放出率定量化研究[J]. 采矿与安全工程学报, 2023, 40(04): 656-667. [73]刘 闯,李化敏,周 英等. 综放工作面多放煤口协同放煤方法[J]. 煤炭学报, 2019, 44(09): 2632-2640. [75]李东印,王耀闯,王 伸等. 特厚煤层综放开采顶煤遗失机理及放煤步距优化数值模拟研究[J]. 河南理工大学学报(自然科学版), 2023, 42(02): 1-10. [76]李树刚,钱鸣高,石平五. 综放开采覆岩离层裂隙变化及空隙渗流特性研究[J]. 岩石力学与工程学报, 2000, 19(05): 604-607. [77]李树刚,徐培耘,赵鹏翔等.采动裂隙椭抛带时效诱导作用及卸压瓦斯抽采技术[J]. 煤炭科学技术, 2018, 46(09): 146-152. [80]徐 超, 曹明月, 李小芳等. 基于三维空隙率模型的采空区瓦斯运移及富集规律[J]. 煤矿安全, 2021, 52(05): 7-13. [81]焦彦锦, 朱建芳, 耿 瑶等. 采空区覆岩“竖三带”孔隙率三维分布研究[J]. 煤矿安全, 2021, 52(11): 159-165. [82]盛锴. 缓倾斜煤层群采动煤岩破坏及瓦斯运移规律研究[D]. 北京: 中国矿业大学(北京), 2019. [83]刘 程. 急倾斜煤层分段开采围岩裂隙场演化及瓦斯运移规律研究[D]. 西安: 西安科技大学, 2018. [84]罗生虎, 田程阳, 伍永平等. 大倾角煤层长壁开采覆岩走向受载与破坏特征[J]. 煤炭学报, 2021, 46(07): 2227-2236. [85]赵鹏翔, 刘李东, 李树刚等. 煤层倾角对仰斜综采工作面覆岩压实区演化规律的影响[J]. 煤炭科学技术, 2021, 50(11): 65-72. |
中图分类号: | TD325 |
开放日期: | 2026-06-20 |