- 无标题文档
查看论文信息

论文中文题名:

 基于机电阻抗法的自密实混凝土凝结硬化过程监测试验研究    

姓名:

 李箫霆    

学号:

 19204209082    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 智能材料与结构力学行为    

第一导师姓名:

 刘群峰    

第一导师单位:

  西安科技大学    

论文提交日期:

 2022-06-14    

论文答辩日期:

 2022-05-28    

论文外文题名:

 Experimental Study on the Monitoring of the Setting and Hardening Process of Self-compacting Concrete Based on Electromechanical Impedance Method    

论文中文关键词:

 自密实混凝土 ; 机电阻抗法 ; 早期水化特性 ; 强度发展 ; 电导信号    

论文外文关键词:

 Self-compacting concrete ; Electromechanical impedance method ; Early hydration characteristics ; Strength development ; Conductivity signal    

论文中文摘要:

自密实混凝土(SCC)是由水泥、集料、水(可含外加剂)和粉煤灰等掺合料按照一定比例搅拌而成的多相复合材料,在浆体凝结硬化前,能够依靠自重作用流动并充满模板空间。但是SCC的凝结硬化过程受到粉煤灰掺量的显著影响,粉煤灰掺量不仅影响SCC的填充性能和早期水化特性,还影响其强度的发展。机电阻抗法(EMI)是一种灵敏度高、应用广泛的无损检测方法,能够通过压电陶瓷(PZT)阻抗特性间接分析结构固有属性的变化。本文通过智能骨料对不同粉煤灰掺量的SCC在凝结硬化过程的电导信号进行了监测,研究了粉煤灰掺量对SCC早期水化特性和强度特性的影响。主要研究内容如下:

(1)不同封装材料对PZT压电性能和监测灵敏度的影响。本文制作了水泥浆、环氧树脂和大理石封装层智能骨料,通过分析内部PZT在封装前后电阻、电容的变化量和混凝土水化期间电导信号的峰值频率偏移量(∆f),对其压电性能和监测灵敏度进行了研究。结果表明:环氧树脂封装层对PZT的电阻和电容影响最小,水化过程的电导信号峰值频率偏移量最大,相应的环氧树脂封装层智能骨料监测灵敏度最高。

(2)基于机电阻抗法研究了不同粉煤灰掺量的SCC在凝结过程的水化特性。本文制备了不同粉煤灰掺量的SCC试块,利用智能骨料对凝结过程(0~24 h)的电导信号进行了监测。通过电导信号共振频率、幅值和相关系数(CC)随龄期的变化规律,对SCC的早期水化特性进行了研究,并与贯入阻力试验结果进行了对比。结果表明:机电阻抗法可准确捕捉不同粉煤灰掺量的SCC初凝和终凝状态,且随着粉煤灰掺量的增加,SCC的初凝和终凝时间均有所延长。

(3)基于机电阻抗法研究了不同粉煤灰掺量的SCC在硬化过程的强度发展和加载过程的刚度退化。利用智能骨料对硬化过程(1~28 d)和加载过程的电导信号进行监测,通过谐振频移指数(RFS)、均方根偏差值(RMSD)和1-CC等量化指标随龄期的变化规律,对SCC试块在硬化过程的强度发展和加载过程的刚度退化进行了研究。结果表明:随着粉煤灰掺量的增加,SCC的强度先增加后减小。上述量化指标与SCC早期强度的发展趋势基本一致,与强度值有很好的相关性。在单轴压缩荷载作用下,电导信号变化与混凝土试块刚度退化过程基本相符,可以反映混凝土试块的刚度退化。

论文外文摘要:

Self-compacting concrete (SCC) is a multi-phase composite material made of cement, aggregates, water (which can contain admixtures) and fly ash and other admixtures mixed in a certain proportion, which can flow and fill the formwork space by self-weight before the slurry sets and hardens. However, the setting and hardening process of SCC is significantly influenced by the amount of fly ash admixture, which affects not only the filling properties and early hydration characteristics of SCC, but also the development of its strength. Electromechanical impedance (EMI) is a sensitive and widely used non-destructive testing method that can indirectly analyse changes in the inherent properties of a structure through the impedance characteristics of piezoelectric ceramics (PZT). In this paper, the influence of fly ash dosing on the early hydration properties and strength properties of SCC was investigated by monitoring the conductivity signal of SCC with different fly ash dosing during the setting and hardening process by means of smart aggregates. The main studies are as follows.

(1) The effect of different encapsulation materials on the piezoelectric properties and monitoring sensitivity of PZT. In this paper, smart aggregates of cement paste, epoxy resin and marble encapsulation layers were produced, and the piezoelectric properties and monitoring sensitivity of the internal PZT were investigated by analysing the amount of change in resistance and capacitance before and after encapsulation and the peak frequency shift of the conductivity signal (∆f) during the hydration of the concrete. The results show that the epoxy encapsulation layer has the least effect on the resistance and capacitance of PZT, the peak frequency shift of the conductivity signal during hydration is the largest, and the corresponding smart aggregate monitoring sensitivity of the epoxy encapsulation layer is the highest.

(2) The hydration characteristics of SCC with different fly ash admixtures in the setting process were investigated based on the electromechanical impedance method. In this paper, SCC specimens with different fly ash admixtures were prepared and the conductivity signals of the setting process (0~24 h) were monitored using smart aggregates. The early hydration characteristics of SCC were investigated by the variation pattern of resonance frequency, amplitude and correlation coefficient (CC) of conductivity signal with age and compared with the results of penetration resistance test. The results show that the electromechanical impedance method can accurately capture the initial and final setting states of SCC with different fly ash admixtures, and the initial and final setting times of SCC are prolonged with the increase of fly ash admixture.

(3) The strength development and stiffness degradation during the hardening process and loading process of SCC with different fly ash admixtures were investigated based on the electromechanical impedance method. The conductivity signals of the hardening process (1~28 d) and the loading process were monitored using smart aggregates, and the strength development of SCC specimens during the hardening process and the stiffness degradation during the loading process were investigated by the variation patterns of quantitative indicators such as resonance frequency shift index (RFS), root mean square deviation value (RMSD) and 1-CC with age. The results show that the strength of SCC increases and then decreases with the increase of fly ash admixture. The above quantitative indicators are basically consistent with the development trend of the early strength of SCC and correlate well with the strength values. Under uniaxial compression load, the change of conductivity signal is basically consistent with the degradation process of concrete specimen stiffness, which can reflect the degradation of concrete specimen stiffness.

参考文献:

[1] 严琳. 自密实混凝土的配制及其性能研究[D]. 重庆大学, 2008.

[2] 杨欢, 牛季收. 自密实高性能混凝土的研究现状[J]. 硅酸盐通报, 2015, 34(S1): 207-210.

[3] 李海卿. 自密实混凝土(SCC)应用与发展前景[C]. 2018第五届海洋材料与腐蚀防护大会暨海洋新材料及防护新技术展览会论文集, 2018: 214-219.

[4] 李鹏飞. 基于压电陶瓷传感器的混凝土早期强度及裂缝监测试验研究[D]. 长沙: 长沙理工大学, 2019.

[5] 李林香, 谢永江, 冯仲伟, 等. 水泥水化机理及其研究方法[J]. 混凝土, 2011(06): 76-80.

[6] Weerdt K D , Haha M B , Saout G L , et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J]. Cement & Concrete Research, 2011, 41(3): 279-291.

[7] GB/T 50081-2019, 混凝土物理力学性能试验方法标准[S]. 中国建筑工业出版社, 2019.

[8] Helal J, Sofi M, Mendis P. Non-destructive testing of concrete: A review of methods[J]. Electronic Journal of Structural Engineering, 2015, 14(1): 97-105.

[9] JGJ/T 152008早期推定混凝土强度试验方法标准[M]. 中国建筑工业出版社, 2008.

[10] 陆林军, 余海帆, 乔丕忠. 基于应力波传播机理的混凝土无损检测研究综述[J]. 力学季刊, 2021, 42(02): 197-216.

[11] Liang C, Sun F P, Rogers C A. Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer[J]. Journal of intelligent material systems and structures, 1997, 8(4): 335-343.

[12] Zhou S , Liang C , Rogers C A . Integration and Design of Piezoceramic Elements in Intelligent Structures[J]. Journal of Intelligent Material Systems & Structures, 1995, 8(4): 363-373.

[13] Zuo C , Feng X , Zhou J . A Three-Dimensional Model of the Effective Electromechanical Impedance for an Embedded PZT Transducer[J]. Mathematical Problems in Engineering, 2013, (2013-12-31), 2013, 2013(pt.17): 708-715.

[14] Sun F P , Chaudhry Z A , Rogers C A , et al. Automated real-time structure health monitoring via signature pattern recognition[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1995, 2443.

[15] Giurgiutiu V , Zagrai A . Damage Detection In Simulated Aging-Aircraft Panels Using The Electro-Mechanical Impedance Technique[J]. asme, 2000.

[16] 王炜, 严蔚, 李万春. 基于高频压电阻抗谱的钢框架损伤识别研究[J]. 宁波大学学报: 理工版, 2013(2): 5.

[17] 蔡金标, 李忠良, 楼旦丰, 等. 基于压电阻抗的混凝土裂缝深度发展定量研究[J]. 压电与声光, 2014, 36(01): 79-84.

[18] 王丹生, 朱宏平, 金柯, 等. 压电智能梁的阻抗分析与损伤识别[J]. 固体力学学报, 2008, 29(4): 6.

[19] Chalioris C E , Papadopoulos N A , Angeli G M , et al. Damage Evaluation in Shear-Critical Reinforced Concrete Beam using Piezoelectric Transducers as Smart Aggregates[J]. Open Engineering, 2015, Volume 5(Issue 1): 373-384.

[20] Peng L , Wang W , Ying C , et al. Concrete damage diagnosis using electromechanical impedance technique[J]. Construction and Building Materials, 2017, 136: 450-455.

[21] 许斌, 陈梦琦, 余地华, 等. 基于压电阻抗的钢管混凝土柱界面缺陷检测研究[J]. 施工技术, 2015(11): 5.

[22] 蒋田勇, 彭中, 罗舟滔, 等. 基于机电阻抗法的预应力波纹管密实性试验研究[J]. 实验力学, 2017, 32(4): 11.

[23] Taha H, Ball R J, Paine K. Sensing of Damage and Repair of Cement Mortar Using Electromechanical Impedance[J]. Materials, 2019, 12(23).

[24] 李俊华, 何思聪, 陈文龙, 等. 基于压电阻抗效应的套筒灌浆饱满度识别与应用[J]. 土木工程学报, 2020, v.53(05): 69-81+121.

[25] Zhao S , Fan S , Yang J , et al. Numerical and experimental investigation of electro-mechanical impedance based concrete quantitative damage assessment[J]. Smart Materials and Structures, 2020, 29(5): 055025 (12pp).

[26] Soh C K , Bhalla S . Calibration of piezo-impedance transducers for strength prediction and damage assessment of concrete[J]. Smart Materials & Structures, 2005, 14(4): 671.

[27] Shin S W, Qureshi A R, Lee J Y, et al. Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete[J]. Smart Materials and Structures, 2008, 17(5): 055002.

[28] Song G, Gu H, Mo Y L. Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review[J]. Smart Materials & Structures, 2008, 17(3): 033001.

[29] R, Tawie, and, et al. Piezoelectric-based non-destructive monitoring of hydration of reinforced concrete as an indicator of bond development at the steel–concrete interface[J]. Cement and Concrete Research, 2010.

[30] Wang D, Zhu H. Monitoring of the strength gain of concrete using embedded PZT impedance transducer[J]. Construction and Building Materials, 2011, 25(9): 3703-3708.

[31] Xu D Y , Qin L , Huang S F , et al. An Exploration of 1-3 Cement/Epoxy Resin Based Piezoelectric Composite in Cement Hydration Reaction Process Monitoring[J]. Advanced Materials Research, 2011, 306-307: 839-843.

[32] 蔡金标, 吴涛, 陈勇. 基于压电阻抗技术监测混凝土强度发展的实验研究[J]. 振动与冲击, 2013, 32(2): 5.

[33] Kim J W , Lee C , Park S , et al. Real-time strength development monitoring for concrete structures using wired and wireless electro-mechanical impedance techniques[J]. Ksce Journal of Civil Engineering, 2013, 17(6): 1432-1436.

[34] Saravanan T J , Balamonica K , Priya C B , et al. Comparative performance of various smart aggregates during strength gain and damage states of concrete[J]. Smart Materials and Structures, 2015, 24(8).

[35] 郭智刚, 孙智. 基于压电阻抗测试的混凝土试块弹性模量监测研究[J]. 混凝土, 2015(3): 4.

[36] Narayanan A , Subramaniam K . Early age monitoring of cement mortar using embedded piezoelectric sensors[C] SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. Health Monitoring of Structural and Biological Systems 2016, 2016.

[37] Lu X , Lim Y Y , Soh C K . A novel electromechanical impedance–based model for strength development monitoring of cementitious materials[J]. Structural Health Monitoring, 2017.

[38] Oh T K , Kim J , Lee C , et al. Nondestructive Concrete Strength Estimation based on Electro-Mechanical Impedance with Artificial Neural Network[J]. Journal of Advanced Concrete Technology, 2017, 15(3): 94-102.

[39] Wang Z , Chen D , Zheng L , et al. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete[J]. Sensors, 2018, 18(6): 1782.

[40] Ghafari E, Yuan Y, Wu C, et al. Evaluation the compressive strength of the cement paste blended with supplementary cementitious materials using a piezoelectric-based sensor[J]. Construction and Building Materials, 2018, 171: 504-510.

[41] Su Y F, Han G, Amran A, et al. Instantaneous monitoring the early age properties of cementitious materials using PZT-based electromechanical impedance (EMI) technique[J]. Construction and Building Materials, 2019, 225: 340-347.

[42] Zhang C, Panda G P, Yan Q, et al. Monitoring early-age hydration and setting of portland cement paste by piezoelectric transducers via electromechanical impedance method[J]. Construction and Building Materials, 2020, 258: 120348.

[43] Pan H H, Huang M W. Piezoelectric cement sensor-based electromechanical impedance technique for the strength monitoring of cement mortar[J]. Construction and Building Materials, 2020, 254: 119307.

[44] Zhang C, Yan Q, Wang X, et al. Measurement and evaluation of soft soil strength development during freeze-thaw process based on electromechanical impedance technique[J]. Measurement Science and Technology, 2021, 32(2): 025113 (14pp).

[45] Ai D, Lin C, Zhu H. Embedded piezoelectric transducers based early-age hydration monitoring of cement concrete added with accelerator/retarder admixtures[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(8): 847-866.

[46] Li Y , Ma Y. Early-age strength monitoring of the recycled aggregate concrete using the EMI method[J]. Smart Materials and Structures, 2021, 30(5): 055017 (14pp).

[47] 胡向东, 李锐, 徐洋, 等. 传感器与检测技术[M]. 北京: 工业技术出版社. 2018.

[48] 赵晓燕, 基于压电陶瓷的结构健康监测与损伤诊断[D]. 大连: 大连理工大学, 2008.

[49] 宋宏远. 基于嵌入式阻抗模型和谱元法的压电结构健康监测[D]. 武汉: 华中科技大学, 2014.

[50] 艾德米. 基于压电传感机械阻抗的结构损伤识别方法研究[D]. 武汉: 华中科技大学, 2017.

[51] 杜彦良, 孙宝臣, 张光磊. 智能材料与结构健康监测[M]. 华中科技大学出版社, 2011.

[52] 徐茂华. 结构损伤检测PZT机电阻抗法的理论与试验研究[D]. 武汉: 华中科技大学, 2005.

[53] 焦莉, 李宏男. PZT的EMI技术在土木工程健康监测中的研究进展[J]. 防灾减灾工程学报, 2006, 26(1):7.

[54] YY Lim, Smith S T, Padilla R V, et al. Monitoring of concrete curing using the electromechanical impedance technique: review and path forward[J]. Structural Health Monitoring, 2019, 20(2):147592171989306.

[55] 齐宝欣, 张雨, 贾连光. 保护层材料对智能骨料性能影响的试验研究[J]. 压电与声光, 2018, 40(4): 7.

[56] Elvin N, Elvin A, Senderos B Z. Capacitance changes in thin piezoelectric transducers embedded in isotropic host materials[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(5): 816-829.

[57] Krishnamurthy K, Lalande F, Rogers C A. Effects of temperature on the electrical impedance of piezoelectric sensors[C]. Smart structures and materials 1996: smart structures and integrated systems. SPIE, 1996, 2717: 302-310.

[58] 李继承, 林莉, 孟丽娟, 等. 千赫及兆赫级频带EMI技术检测灵敏度实验研究[J]. 压电与声光, 2012, 34(05): 776-781.

[59] CECS 203-2006, 自密实混凝土应用技术规程[S]. 中国建筑工业出版社, 2006.

[60] 赵志钦. 自密实混凝土性能及流变研究[D]. 济南: 山东大学, 2014.

[61] GB/T 50080-2016, 普通混凝土拌合物性能试验方法标准[S]. 中国建筑工业出版社, 2016.

[62] 余高. 混凝土凝结硬化过程的声波特性研究[D]. 湘潭: 湘潭大学, 2019.

[63] 王辉, 刘旭辉, 蔡升宇, 等. 粉煤灰掺量对高性能自密实混凝土抗压强度发展影响分析[J]. 硅酸盐通报, 2021, 40(5): 6.

[64] 魏江涛, 谢帮华, 李秋香, 等 . 粉煤灰掺量对C45自密实混凝土强度的影响[J]. 南昌工程学院学报, 2021, 40(03): 33-36+101.

[65] GB 50010-2010, 混凝土结构设计规范[S]. 中国建筑工业出版社, 2010.

[66] Shin S W, Oh T K. Application of electro-mechanical impedance sensing technique for online monitoring of strength development in concrete using smart PZT patches[J]. Construction and Building Materials, 2009, 23(2): 1185-1188.

[67] Junkyeong, Kim, Chaggil, et al. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals[J]. Sensors, 2017, 17(6): 1319.

[68] Liu P, Wang W, Chen Y, et al. Concrete damage diagnosis using electromechanical impedance technique[J]. Construction and Building Materials, 2017, 136: 450-455

[69] 蔡金标, 李忠良, 楼旦丰, 等. 基于压电阻抗的混凝土裂缝深度发展定量研究[J]. 压电与声光, 2014,3 6(01): 79-84.

[70] 颜伟华. 自密实混凝土梁正截面受弯性能试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

中图分类号:

 TU528    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式