- 无标题文档
查看论文信息

论文中文题名:

 面向突发错误的空间耦合广义LDPC码研究    

姓名:

 何幸    

学号:

 20207223096    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 信息论与编码理论    

第一导师姓名:

 刘洋    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Research on Spatially Coupled Generalized LDPC Codes for Combating Burst Errors    

论文中文关键词:

 空间耦合广义LDPC码 ; 空间耦合LDPC码 ; 密度进化 ; 突发错误 ; 脉冲噪声    

论文外文关键词:

 Spatially coupled generalized LDPC codes ; SC-LDPC codes ; Density evolution ; Burst errors ; Impulsive noise    

论文中文摘要:

突发错误是一种广泛存在于磁存储系统、深度衰落信道、电力线系统以及浅海水声等通信系统中的错误类型。空间耦合低密度奇偶校验码(Spatially Coupled Low Density Parity Check,SC-LDPC)码因其优异的“阈值饱和”特性而引起广泛关注,但在面临突发错误时会出现译码中断而导致译码性能恶化的情况。空间耦合广义LDPC(Spatially Coupled Generalized LDPC,SC-GLDPC)码通过在空间耦合结构中引入具有纠错能力的线性分组码替代单奇偶码,而呈现出空间耦合结构的阈值提升优势和广义约束带来的性能提升优势,但SC-GLDPC码在突发错误下的研究尚未展开。本文针对SC-GLDPC码,研究面向突发错误的SC-GLDPC码设计与性能分析,为存在突发错误的通信系统编码方案设计提供新思路。主要研究内容如下:

(1)针对一般突发删除信道,通过引入具有纠错能力的Hamming码替代无纠错能力的单奇偶校验码,提出了一种可对抗突发错误的基于Hamming码的SC-GLDPC码。为了评估SC-GLDPC码在一般突发删除信道下的渐进性能,推导了密度进化算法用于计算所提出的SC-GLDPC码的单个可纠最大突发删除长度。并利用该密度进化算法,以最大化可纠突发删除长度为目标,优化分量码列替换顺序,构造最优的抗突发删除错误的SC-GLDPC码。阈值结果表明,SC-GLDPC码的最大可纠突发删除长度远大于SC-LDPC码。所构造的有限长SC-GLDPC码在突发删除信道下的译码性能与阈值分析结果一致,优于传统的SC-LDPC码。

(2)脉冲噪声是一种广泛存在于电力线通信,水声通信及车载通信系统中的典型突发错误,会极大降低通信系统的可靠性。针对Class-A脉冲噪声信道,通过空间耦合结构中分别引入Hamming码和BCH码作为分量码,提出能够应对脉冲噪声的SC-GLDPC码。为了分析脉冲噪声信道下所构造的SC-GLDPC码的渐进性能,提出了一种基于外信息转移函数的阈值分析方法,推导了脉冲噪声信道下SC-GLDPC码变量节点和超级校验节点消息更新公式,计算了SC-GLDPC码的译码阈值。阈值结果表明,SC-GLDPC码的译码阈值较GLDPC码和SC-LDPC码具有显著提升。最后仿真了SC-GLDPC码在脉冲噪声信道下的译码性能,仿真结果表明所构造的SC-GLDPC码能有效对抗脉冲噪声。

论文外文摘要:

Burst errors occur in a variety of communication systems, including magnetic storage systems, deep fading channels, power line systems, and underwater acoustic communication systems. Spatially coupled Low Density Parity Check (SC-LDPC) codes have attracted much attention due to their excellent "threshold saturation". However, when facing burst errors, the decoding chain of SC-LDPC codes will break up and the decoding performances will be dramatically degraded. By introducing error-correcting linear block codes into the spatial coupling structure instead of single parity check codes, spatially coupled generalized LDPC (SC-GLDPC) codes demonstrate the threshold improvements of the spatial coupling structure and the performance improvements due to the generalized constraints. However, no research on the performance of SC-GLDPC codes over burst error has been conducted. This paper studies the code design and performance analysis of SC-GLDPC code for burst errors, which provides a new viewpoint for the coding scheme design of communication systems with burst errors.

(1)For the general burst erasure channel, spatially coupled generalized LDPC code based on Hamming code with error correction instead of a single parity check code without error correction is proposed. To evaluate the asymptotic performance of SC-GLDPC code over the burst erasure channel, the density evolution algorithm is derived to calculate the maximum length of a single correctable burst. Moreover, the optimal sequence replacement order of the component code is obtained by maximizing the correctable burst erasure length using the proposed density evolution algorithm. Threshold analysis results show that the maximum correctable burst erasure length of SC-GLDPC codes is much larger than that of SC-LDPC codes. The finite length decoding performances of SC-GLDPC codes over the burst erasure channel are consistent with the threshold analysis results, which are superior to SC-LDPC codes.

(2)Impulsive noise, a typical type of burst error, is widely exhibited in power line communication, underwater acoustics communication, and vehicular communication systems, which can dramatically affect communication reliability. For Class-A impulse noise channels, SC-GLDPC codes are proposed to combat impulse noise by introducing error-correcting Hamming codes and BCH codes as component codes in the spatial coupling structure. To evaluate the asymptotic performance of the proposed SC-GLDPC codes over impulsive noise channels, a threshold analysis method based on the extrinsic information transfer functions was proposed. The message updates for variable nodes and super check nodes of SC-GLDPC codes over impulsive noise channels are derived, and the decoding thresholds of SC-GLDPC codes are calculated. The threshold results show that the decoding threshold of SC-GLDPC code is significantly improved compared to GLDPC codes and SC-LDPC codes. Finally, the decoding performance of SC-GLDPC code over impulsive noise channels is also simulated and the simulation results are consistent with the threshold results, which indicates that the proposed SC-GLDPC codes can effectively combat impulsive noise.

参考文献:

[1] Khan L U, Saad W, Niyato D, et al. Digital-twin-enabled 6G: Vision, architectural trends, and future directions[J]. IEEE Communications Magazine, 2022, 60(1): 74-80.

[2] Zhu W, Luo L, Sun J, et al. A New Variable Step Size Algorithm Based Hybrid Active Noise Control System for Gaussian Noise with Impulsive Interference[C]// 2020 IEEE 6th International Conference on Computer and Communications (ICCC). IEEE, 2020: 1072-1076.

[3] 马啸, 吉眉颖, 陈声晓. 分组马尔可夫叠加传输在非高斯脉冲信道上的性能研究[J]. 通信学报, 2019, 40(03): 109-115.

[4] Jing L, Nassar M, Evans B L. Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(7): 1172-1183.

[5] Wang S, He Z, Niu K, et al. New results on joint channel and impulsive noise estimation and tracking in underwater acoustic OFDM systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2601-2612.

[6] Chen P, Rong Y, Nordholm S, et al. Joint channel estimation and impulsive noise mitigation in underwater acoustic OFDM communication systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(9): 6165-6178.

[7] Liu S, Fang Y, Wang X, et al. Structured-Compressed-Sensing-Based Impulsive Noise Cancellation for MIMO Systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6921-6931.

[8] Fieve S, Portala P, Bertel L. A new VLF/LF atmospheric noise model[J]. Radio Science, 2007, 42(3): 210-215.

[9] Sharma S, Bhatia V, Gupta A. Sparsity based UWB receiver design in additive impulse noise Channels[C]// Proceedings of IEEE International Workshop on Signal Processing Advances in Wireless Communications, 2016: 1-5.

[10] Schnell M, Epple U, Shutin D, et al. LDACS: Future Aeronautical Communications for Air-Traffic Management[J]. IEEE Communications Magazine, 2014, 52(5): 104-110.

[11] Hareedy A, Amiri B, Galbraith R, et al. Non-binary LDPC codes for magnetic recording channels: Error floor analysis and optimized code design[J]. IEEE Transactions on Communications, 2016, 64(8): 3194-3207.

[12] Liu S,Yang F, Wang X, et al. Structured-compressed-sensing-based impulsive noise cancelation for MIMO systems. IEEE Transactions on Vehicular Technology. 2017, 66(8): 6921–6931.

[13] Ozcan G, Gursoy M C, Gezici S. Error rate analysis of cognitive radio transmissions with imperfect channel sensing[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1642-1655.

[14] Gu W, Clavier L. Decoding metric study for turbo codes in very impulsive environment[J]. IEEE Communications Letters, 2012, 16(2): 256-258.

[15] Anam M, Anwar A. Performance Analysis of FS-FBMC/OQAM System Using Turbo and LDPC Codes[J]. Journal of Communications, 2022, 17(8): 661-667.

[16] Chong L, Weibo D, Lingjie D. Performance analysis of Turbo-Codes in communication channels with impulsive noise[J]. Journal of Systems Engineering and Electronics, 2009, 20(1): 27-31.

[17] Wei Z, Jin L, Shi J, et al. Performance of polar coding for the power line communications in the presence of impulsive noise[J]. IET Communications, 2015, 9(17): 2101-2106.

[18] Zhang P W, Lau F C M, Sham C W. Protograph-based LDPC Hadamard codes[J]. IEEE Transactions on Communications, 2021, 69(8): 4998-5013.

[19] Kudekar S, Richardson T J, Urbanke R L. Threshold saturation via spatial coupling: why convolutional LDPC ensembles perform so well over the BEC[J]. IEEE Transactions on Information Theory, 2011, 57(2): 803-834.

[20] Kudekar S, Richardson T, Urbanke R. Spatially coupled ensembles universally achieve capacity under belief propagation[J]. IEEE Transactions on Information Theory, 2013, 59(12): 7761-7813.

[21] Juane Li, Shu Lin, Ghaffar K A. LDPC Code Designs, Constructions, and Unification[C]// Cambridge University Press, 2016: 94-96.

[22] Xiao X, Vasic B, Lin S, et al. Quasi-Cyclic LDPC Codes With Parity-Check Matrices of Column Weight Two or More for Correcting Phased Bursts of Erasures[J]. IEEE Transactions on Communications, 2021, 69(5): 2812-2823.

[23] Fong S L, Khisti A, Li B, et al. Optimal streaming codes for channels with burst and arbitrary erasures[J]. IEEE Transactions on Information Theory, 2019, 65(7): 4274-4292.

[24] Wang Y, Guo D. Application of LDPC Codes in High Dynamic Satellite Communications[J]. Radio Communications Technology, 2018, 44(01): 43-47.

[25] Paolin E, Chiani M. Construction of near-optimum burst erasure correcting low-density parity-check codes[J]. IEEE Transactions on Communications, 2009, 57(5): 1320-1328.

[26] 张博, 林伟, 刘春元, 等. 突发错误信道下的多元LDPC码设计与性能分析[J]. 通信学报, 2013, 34(7): 7.

[27] Mori H, Wadayama T. Band splitting permutations for spatially coupled LDPC codes enhancing burst erasure immunity[J]. Mathematics, 2015, E100A: 663-669.

[28] 克兢, 卢晓春, 王雪, 等. 城市环境下北斗B-CNAV1电文RS-LDPC级联编码方法[J]. 宇航学报, 2022, 43(8): 1120-1128.

[29] 王令宇, 张为, 刘艳艳. 一种RS码突发错误译码算法的改进算法[J]. 南开大学学报: 自然科学版, 2018, 51(1): 50-53.

[30] Nakamura. Y, Akamatsu. T, Nishikawa.M, et al. Performance Evaluation of Burst Error Correction by LDPC Coding and Iterative Decoding System in Magnetic Tape Drive[J]. IEEE Transactions on Magnetics, 2023, 59(3): 1899-1905.

[31] Mondal A, Garani S. Efficient Parallel Decoding Architecture for Cluster Erasure Correcting 2-D LDPC Codes for 2-D Data Storage[J]. IEEE Transactions on Magnetics, 2021, 57(12): 57-58.

[32] 张昭基, 李颖. 适用于突发删除信道的非对称空间耦合LDPC码[J]. 西安电子科技大学学报, 2017, 44(5): 1-6.

[33] Ohashi R, Kasai K, Takeuchi K, Multi-dimensional spatially-coupled codes[J]. 2013 IEEE International Symposium on Information Theory, 2013, 7(13): 2448-2452.

[34] Inayat Ali, Hyunjae Lee, et al. Protograph-Based Folded Spatially Coupled LDPC Codes for Burst Erasure Channels[J]. IEEE Communications Letters, 2019, 8(2): 516-519.

[35] Jiang Y, Kannan S, Kim H, et al. Deepturbo: Deep turbo decoder[C]// 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2019: 1-5.

[36] 冉婧. 突发错误信道下基于原模图的全局耦合LDPC码设计[D]. 西安: 西安电子科技大学, 2021.

[37] Andreadou N, Pavlidou F N. Mitigation of Impulsive Noise Effect on the PLC Channel With QC–LDPC Codes as the Outer Coding Scheme[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1440-1449.

[38] 陈文楷. 超低码率LDPC构造及其在突发信道中的应用研究[D]. 成都: 电子科技大学, 2022.

[39] Lentmaier M, Fettweis G P. On the thresholds of generalized LDPC convolutional codes based on protographs[C]// Proceedings of 2010 IEEE International Symposium on Information Theory(ISIT), 2010: 709-713.

[40] Mitchell M, Lentmaier M , D. J. Costello. On the minimum distance of generalized spatially coupled LDPC codes[C]// IEEE International Symposium on Information Theory(ISIT), 2013: 1874-1878.

[41] Jian Y Y, Pfister H D, Narayanan K R. Approaching capacity at high rates with iterative hard-decision decoding[J]. IEEE Transactions on Information Theory, 2017, 63(9): 5752-5773.

[42] Costello D J, Mitchell D G, Olmos P M, et al. Spatially Coupled Generalized LDPC Codes: Introduction and Overview[C]// Proceedings of 2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing (ISTC), 2018: 1-6.

[43] Wang P, Gao Y, Wang J, et al. The Universality of Spatially Coupled Generalized LDPC Codes over Memoryless Symmetric Channels[C]// 2020 IEEE 20th International Conference on Communication Technology (ICCT), 2020: 17-21.

[44] Mitchell D, Olmos P M, Lentmaier M , et al. Spatially Coupled Generalized LDPC Codes: Asymptotic Analysis and Finite Length Scaling[J]. IEEE Transactions on Information Theory, 2021, 67(6): 3708-3723.

[45] Liu Y, Olmos P M, Mitchell D G. Generalized LDPC Codes for Ultra Reliable Low Latency Communication in 5G and Beyond[J]. IEEE Access, 2018, 6: 72002-72014.

[46] Djordjevic I B, Wang T. Multiple component codes based generalized LDPC codes for high-speed optical transport[J]. Optics express, 2014, 22(14): 16694-16705.

[47] Tanner R. A recursive approach to low complexity codes[J]. IEEE Transactions on Information Theory, 1981, 27(5): 533-547.

[48] Lentmaier M, Zigangirov K S. On generalized low-density parity-check codes based on Hamming component codes[J]. IEEE Communications Letters, 1999, 3(8): 248-250.

[49] 刘洋, 刘欣, 王斌, 等. 空间耦合低密度奇偶校验码的深度迭代译码算法设计[J]. 科学技术与工程, 2022, 22(12): 4849-4855.

[50] Mitchell D G M, Lenmaier M, Costello D J. Spatially Coupled LDPC Codes Constructed From Protographs[J]. IEEE Transactions on Information Theory, 2015, 61(9): 4866-4889.

[51] Paolini E, Fossorier M, Chiani M. Generalized and Doubly Generalized LDPC Codes With Random Component Codes for the Binary Erasure Channel[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1651-1672.

[52] Yu Y, Zhang L. Hamming-GLDPC codes in BEC and AWGN channel[C]// 6th International Conference on Wireless, Mobile and Multi-Media (ICWMMN 2015). IET, 2015: 103-106.

[53] Hang C Y, Wang P H, Weng J J, et al. Belief-propagation decoding of LDPC codes with variable node-centric dynamic schedules[J]. IEEE Transactions on Communications, 2021, 69(8): 5014-5027.

[54] 武小飞. 空间耦合LDPC码的构造研究与译码实现[D]. 重庆大学. 2020.

[55] Middleton D. Non-Gaussian noise models in signal processing for telecommunications: new methods an results for class A and class B noise models[J]. Information Theory IEEE Transactions on, 1999, 45(4): 1129-1149.

[56] Karakus O, Kuruoglu E, Altınkaya M A. Modelling impulsive noise in indoor powerline communication systems[J]. Image and Video Processing, 2020, 14(8): 1655-1661.

[57] Mathur A, Bhatnagar M R, Panigrahi B K. Performance evaluation of PLC under the combined effect of background and impulsive noises[J]. IEEE Communications Letters, 2015, 19(7): 1117-1120.

[58] Asadpour M. A Novel Channel Estimation Method for Power Line Communications[J]. Communications on Applied Electronics, 2017, 7(10): 21-27.

中图分类号:

 TN911.22    

开放日期:

 2023-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式