- 无标题文档
查看论文信息

题名:

 持久性自由基触发煤自燃潜力及作用机理研究    

作者:

 段正肖    

学号:

 21120089008    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防控    

导师姓名:

 张嬿妮    

导师单位:

 西安科技大学    

提交日期:

 2024-12-16    

答辩日期:

 2024-12-01    

外文题名:

 Study on the potential and mechanism of persistent free radicals triggering coal spontaneous combustion    

关键词:

 煤自燃 ; 微观机理 ; 自由基反应 ; 触发特性 ; 持久性自由基 ; 反应路径    

外文关键词:

 Coal spontaneous combustion ; Microscopic mechanism ; Free radical reaction ; Trigger characteristics ; Persistent free radicals ; Reaction pathway    

摘要:

煤自燃在世界各主要产煤国均普遍存在,严重危害煤矿安全生产。研究煤自燃机理有助于揭示其本质从而防止其发生。由于煤物理和化学结构的复杂性,当前对于煤自燃自由基链式反应过程中的基本反应途径和细节仍缺乏足够多的了解。而作为煤自燃自由基链式反应理论中的起始和关键环节,链式反应的触发渠道及机理尚需进一步深入研究。持久性自由基作为一类赋存于有机质中的特殊活性物质,由于含有未配对电子导致其对有机碳结构的自氧化分解具有积极的触发和促进作用,近年来逐渐引起学界关注。煤化作用使得原煤中亦含有丰富的持久性自由基,但目前对于其在煤自燃自由基链式反应过程中发挥的具体作用及机理还不清楚。为此,本文聚焦于煤中的持久性自由基,对其赋存特征、演变规律、活化触发煤氧化特性以及触发煤氧化后的自由基链式反应传播历程等展开了实验研究和量子化学计算,最终系统揭示了持久性自由基触发煤自燃潜力及其作用机理。研究结果对丰富煤自燃自由基链式反应理论及开发新型煤自燃阻化技术具有重要理论和现实意义。取得主要创新性成果如下:

通过原位电子顺磁共振和原位漫反射傅里叶变换红外光谱实验,明确了持久性自由基在不同变质程度煤中的赋存特征,以及其在煤自燃过程中的动态变化规律,阐释了煤氧化分子结构改变对持久性自由基的影响。结果表明,高变质程度煤中的持久性自由基浓度较高。煤中的持久性自由基对温度表现出较强的敏感性,热分解和热氧化作用下整体表现出相似的变化规律。即随着反应温度的升高,其信号强度、对外能量交换作用增强,碳中心自由基增多。区别在于热氧化过程中持久性自由基的信号强度、浓度、能量交换作用均得到了提高,种类则更加复杂。煤氧化自由基链式反应生成的大量瞬时性自由基将为持久性自由基的形成提供物质基础,而煤中芳香大分子网络结构产生的共轭效应和空间位阻则有利于自由基的稳定。

采用煤基模型化合物,通过X射线光电子能谱和原位电子顺磁共振技术,揭示了煤自燃过程中持久性自由基的生成机理,确定了生成持久性自由基的关键条件,明确了反应特征参数。结果表明,煤中过渡金属氧化物会催化一些典型煤结构氧化生成持久性自由基。其中,酚羟基结构(Ar-OH)最具潜力,其将反应生成多种持久性自由基。反应过程中将经历物理吸附、化学吸附、电子转移、热分解等环节。除物理吸附外其余反应环节的自由能变和焓变均大于0,加热方能发生。反应过程中,从110℃起缓慢展现出持久性自由基信号,210℃以后信号显著增强。此类反应绝氧条件下亦可发生,煤中过渡金属元素将被还原成低价态,Ar-OH结构则被催化氧化为-C=O并最终解离出指标性气体CO。反应后期生成的持久性自由基中,未配对电子均位于芳环。

利用自旋捕获技术研究了煤中持久性自由基的活化特性,并基于8类典型煤结构模型,采用量子化学计算揭示了持久性自由基活化产物对煤氧化自由基反应的触发特性及潜力。结果表明,持久性自由基在光照或受热时可活化并诱导产生超氧阴离子自由基(O2•−)和羟基自由基(•OH),二者因极强的氧化性可直接参与煤的氧化进程,使得持久性自由基具备触发煤氧化自由基反应的潜力。•OH氧化性最强,其产量与光照时间、加热温度及煤中持久性自由基含量成正比。•OH能在常温下自发氧化煤中的活性官能团同时放出大量反应热(能垒<40 kJ/mol,焓变为-69.10 kJ/mol),随后其氧化产物还将自发与氧气发生0能垒的自由基二聚反应并再次释放反应热(焓变为-110.21 kJ/mol)。从动力学和热力学层面对比发现,这些由持久性自由基活化产生的•OH在触发煤氧化反应时,其潜力显著大于煤自燃过程中的其他重要氧化剂。

通过量子化学计算进一步揭示了持久性自由基触发煤氧化后的链式反应传播特性,掌握了链式反应传播历程、关键反应环节及中间体、反应热力学及动力学特征参数,建立了链式反应传播模型。结果表明,持久性自由基诱导生成的•OH在触发煤氧化自由基反应的同时亦促进煤体完成热量的原始积累,随着煤温的升高一些后续的自由基链式反应环节将相继突破能垒。当广泛存在的O2突破能垒开始直接氧化煤中的活性官能团时,煤氧化进入快速反应阶段。链式反应过程中,由于受到多种自由基的攻击,煤中持续发生着活性官能团的脱H过程,所含H原子越多其链式反应路径越复杂。反应中间体烷基过氧自由基(ROO•)和烷氧自由基(RO•)具备开启循环自氧化反应的特性,有利于加快煤氧化进程。此外,持久性自由基触发的抽氢氧化反应,以及ROO•和过氧化物(ROOH)的形成、分解反应是链式反应过程中最为重要的放热环节。而O2对活性官能团的抽氢氧化,ROO•、ROOH以及含-C=O基团的分解具有较高的反应能垒,是链式反应中的重要决速步。煤中持久性自由基的有效猝灭或消减其产生的•OH和O2•−将有利于防止煤的早期氧化及自热。而当煤氧化进入快速反应阶段时,有效防止ROO•和ROOH的分解将是关注的重点。

外文摘要:

Coal spontaneous combustion is common in major coal producing countries around the world, seriously endangering coal mine safety production. Studying the mechanism of coal spontaneous combustion can help reveal its essence and prevent its occurrence. Due to the complexity of the physical and chemical structure of coal, there is still a lack of in-depth understanding of the basic reaction pathways and details in the free radical reaction process of coal spontaneous combustion. As the starting and key link in the theory of free radical chain reactions, the triggering channels and mechanisms of the free radical chain reaction in coal spontaneous combustion still need further in-depth research. As a special type of active substance that exists in organic matter, persistent free radicals have a positive triggering and promoting effect on the self oxidation decomposition of organic carbon structures due to their unpaired electrons, which has gradually attracted attention from the academic community in recent years. Raw coal also contains abundant persistent free radicals, but the specific role and mechanism they play in the free radical reaction process of coal spontaneous combustion are still unclear. Therefore, this study focuses on persistent free radicals in coal, and conducts experimental research and quantum chemical calculations on their occurrence characteristics, evolution laws, activation and triggering coal oxidation characteristics, as well as the propagation process of free radical chain reactions after triggering coal oxidation. Ultimately, the potential and mechanism of persistent free radicals triggering coal spontaneous combustion are systematically revealed. The research results have important theoretical and practical significance for enriching the theory of coal spontaneous combustion free radical chain reaction and developing new technologies for coal spontaneous combustion inhibition. The main innovative achievements are as follows:

Through in-situ electron paramagnetic resonance and in-situ diffuse reflectance Fourier transform infrared spectroscopy experiments, the occurrence characteristics of persistent free radicals in coal with different degrees of metamorphism and their dynamic changes during coal spontaneous combustion were clarified, and the influence of molecular structure changes on persistent free radicals during coal oxidation was explained. The results indicate that the concentration of persistent free radicals in highly metamorphic coal is relatively high. Persistent free radicals exhibit strong sensitivity to temperature, and show similar patterns of change overall under thermal decomposition and oxidation. As the reaction temperature increases, the signal intensity and external energy exchange increase, and the number of carbon center free radicals increases. The difference is that the signal intensity, concentration, and energy exchange of persistent free radicals are all increased during the thermal oxidation process, and the types are more complex. The large number of transient free radicals generated by the coal oxidation free radical reaction will provide the material basis for the formation of persistent free radicals, while the conjugation effect and steric hindrance generated by the aromatic macromolecule network structure in coal are conducive to the stability of free radicals.

Using coal based model compounds, the formation mechanism of persistent free radicals during coal spontaneous combustion was revealed through X-ray photoelectron spectroscopy and in-situ electron paramagnetic resonance technology. At the same time, the key conditions for generating persistent free radicals were determined, and the reaction characteristic parameters were clarified. The results indicate that transition metal oxides in coal catalyze the oxidation of some typical coal structures to form persistent free radicals.Among them, the phenolic hydroxyl structure (Ar-OH) in coal has the most potential, which will react to generate a variety of persistent radicals. During the reaction process, it will undergo physical adsorption, chemical adsorption, electron transfer, thermal decomposition, and other stages. Except for physical adsorption, the free energy change and enthalpy change of all other reaction steps are greater than 0, indicating that heating is necessary for the reaction to occur. During the reaction process, the signal of persistent free radicals slowly appears from 110 ℃, and the signal intensity significantly increases after 210 ℃. This type of reaction can also occur under anaerobic conditions. Transition metal elements in coal will eventually be reduced to low valence states, while the Ar-OH structure will be catalytically oxidized to -C=O and eventually dissociated into the indicator gas CO. For persistent free radicals generated in the later stages of the reaction, their unpaired electrons are all located in the aromatic ring.

The activation characteristics of persistent free radicals in coal were studied using spin trapping technology, and based on eight typical coal structure models. The triggering mechanism and potential of persistent free radicals on coal oxidation was revealed using quantum chemical calculations. The results indicate that persistent free radicals in coal can induce the production of a large amount of superoxide anion radical (O2•−) and hydroxyl radical (•OH) under light or heating conditions, which can directly participate in the coal oxidation process due to their strong oxidizing properties, making persistent free radicals have the potential to trigger coal oxidation free radical reactions. •OH has the strongest oxidizing ability, and its production is proportional to the duration of light exposure, heating temperature, and the concentration of persistent free radicals in coal. •OH can spontaneously oxidize the active functional groups in coal at room temperature and release a large amount of reaction heat (energy barrier<40 kJ/mol, enthalpy change equal to -69.10 kJ/mol). Subsequently, its oxidation products (carbon centered free radicals) will spontaneously undergo free radical dimerization with oxygen and release reaction heat again (enthalpy changes equal to -110.21 kJ/mol). From the perspective of kinetics and thermodynamics, it is found that the potential of these induced •OH to trigger coal oxidation free radical reactions is significantly greater than that of other important oxidants during coal spontaneous combustion, such as O2. From the perspective of kinetics and thermodynamics, it is found that the •OH generated by persistent free radicals activation has significantly greater potential than other oxidants in coal spontaneous combustion processes when triggering coal oxidation reactions.

The subsequent chain reaction propagation characteristics of coal oxidation triggered by persistent free radicals were further revealed through quantum chemical calculations. At the same time, the chain reaction propagation process, key reaction links and intermediates, reaction thermodynamic characteristic parameters were mastered, and a chain reaction propagation model was established. The results indicate that the •OH induced by persistent free radicals not only triggers the coal oxidation free radical reaction, but also promotes the original accumulation of heat in the coal. As the coal temperature increases, some free radical chain reaction links will successively break through the energy barrier. When the widely present O2 breaks through the energy barrier and directly oxidizes the active functional groups in coal, coal oxidation enters the rapid reaction stage. In the chain reaction process, due to the attack of various free radicals, the active functional groups in coal continue to undergo the process of dehydrogenation, and the more H atoms it contains, the more complex the chain reaction path becomes. As reaction intermediates, alkyl peroxide radical (ROO•) and alkoxy radical (RO•) have the characteristic of initiating cyclic auto oxidation reactions, which is beneficial for accelerating the coal oxidation reaction process. In addition, the hydrogen extraction reaction of persistent free radicals, as well as the formation and decomposition reactions of ROO• and peroxides (ROOH), are the most important exothermic links in the chain reaction process. The hydrogen extraction reaction of O2, ROO•, ROOH, and the decomposition of -C=O groups have high reaction energy barriers and can be regarded as the rate determining step of chain reactions. The effective quenching of persistent free radicals in coal, or the reduction of their generated •OH and O2•−, will be beneficial in preventing early oxidation and self heating of coal. And when coal oxidation enters the rapid reaction stage, effectively preventing the decomposition of ROO• and ROOH will be the focus of attention.

参考文献:

[1] 王德明. 矿井火灾学[M]. 徐州: 中国矿业大学出版社, 2008.

[2] 邓军, 白祖锦, 肖旸, 等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全, 2020, 51(10): 118-125.

[3] 李增华, 位爱竹, 杨永良. 煤炭自燃自由基反应的电子自旋共振实验研究[J]. 中国矿业大学学报, 2006(05): 576-580.

[4] 李增华. 煤炭自燃的自由基反应机理[J]. 中国矿业大学学报, 1996(03): 111-114.

[5] 王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020, 45(12): 4132-4143.

[6] 王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J]. 煤炭学报, 2014, 39(08): 1667-1674.

[7] 戴广龙. 煤低温氧化过程中自由基浓度与气体产物之间的关系[J]. 煤炭学报, 2012, 37(01): 122-126.

[8] 位爱竹. 煤炭自燃自由基反应机理的实验研究[D]. 中国矿业大学, 2008.

[9] Li Zenghua, Kong Biao, Wei Aizhu, et al. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method[J]. Environmental Science and Pollution Research, 2016, 23(23): 23593-23605.

[10] Li Jinhu, Li Zenghua, Yang Yongliang, et al. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion[J]. Fuel Processing Technology, 2018, 171: 350-360.

[11] Wang Haihui, Dlugogorski Bogdan Z, Kennedy Eric M. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modeling. Progress in Energy and Combustion Science, 2003; 29(6): 487-513.

[12] Chen Liangzhou, Qi Xuyao, Tang Jie, et al. Reaction pathways and cyclic chain model of free radical during coal spontaneous combustion[J]. Fuel, 2021, 293: 120436.

[13] Yu Haoran, Liu Danxu, Wang Hengyi, et al. Singlet oxygen synergistic surface-adsorbed hydroxyl radical for phenol degradation in CoP catalytic photo-Fenton[J]. Chinese Journal of Catalysis, 2022, 43(10): 2678-2689.

[14] Gehling William, Dellinger Barry. Environmentally persistent free radicals and their lifetimes in PM2.5[J]. Environmental Science & Technology, 2013, 47(15): 8172-8178.

[15] Shi Yafang, Dai Yunchao, Liu Ziwen, et al. Light-induced variation in environmentally persistent free radicals and the generation of reactive radical species in humic substances[J]. Frontiers of Environmental Science & Engineering, 2020, 14: 1-10.

[16] Zhu Kecheng, Jia Hanzhong, Sun Yajiao, et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species[J]. Water Research, 2020, 173: 115564.

[17] 林浩, 李豪, 孙浩堯, 等. 道路沥青中长寿命自由基特征及二次生成[J]. 中国环境科学, 2021, 41(03): 1102-1108.

[18] Wang Peng, Pan Bo, Li Hao, et al. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China[J]. Environmental Science & Technology, 2018, 52(3): 1054-1061.

[19] Wu Lan, Zhao Song, Zhu Kecheng, et al. Role of coke-bounded environmentally persistent free radicals in phenanthrene degradation by hydrogen peroxide[J]. Environmental Technology, 2020, 41(16): 2122-2129.

[20] Fang Guodong, Zhu Changyin, Dionysiou Dionysios D, et al. Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation[J]. Bioresource Technology, 2015, 176: 210-217.

[21] Liu Jiaxun, Jiang Xiumin, Shen Jun, et al. Influences of particle size, ultraviolet irradiation and pyrolysis temperature on stable free radicals in coal[J]. Powder Technology, 2015, 272: 64-74.

[22] Austen D.E.G, Ingram D.J.E, Tapley J.G. The investigation of free radical trapped in low temperature carbons[J]. Transactions of the Faraday Society, 1958, 54: 400-408.

[23] Zhou Bin, Liu Qingya, Shi Lei, et al. Electron spin resonance studies of coals and coal conversion processes: A review[J]. Fuel Processing Technology, 2019, 188: 212-227.

[24] 蔡佳文. 基于煤理化特性演变规律的协效阻化机制研究[D]. 中国矿业大学, 2021.

[25] Hu Xincheng, Yu Zhaoyang, Cai Jiawen, et al. The influence of methane on the development of free radical during low-temperature oxidation of coal in gob[J]. Fuel, 2022, 330: 125369.

[26] Al-nu'airat Jomana, Dlugogorski Bogdan Z, Oluwoye Ibukun, et al. Effect of Fe2O3 nanoparticles on combustion of coal surrogate (Anisole): Enhanced ignition and formation of persistent free radicals[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3091-3099.

[27] Duan Zhengxiao, Zhang Yanni, Deng Jun, et al. The promotion mechanism of persistent free radicals on low-temperature oxidation of coal[J]. Fuel, 2024, 376: 132698.

[28] Kam A.Y, Hixson A.N, Perlmutter D.D. The oxidation of bituminous COAL-II experimental kinetics and interpretation[J]. Chemical Engineering Science, 1976, 31(9): 821-834.

[29] Kam A.Y, Hixson A.N, Perlmutter D.D. The oxidation of bituminous coal-I Development of a mathematical model[J]. Chemical Engineering Science, 1976, 31(9): 815-819.

[30] 王德明. 煤矿热动力灾害及特性[J]. 煤炭学报, 2018, 43(01): 137-142.

[31] 徐精彩, 文虎, 张辛亥, 等. 综放面采空区遗煤自燃危险区域判定方法的研究[J]. 中国科学技术大学学报, 2002(06): 39-44.

[32] 徐精彩, 王华. 煤自燃极限参数的神经网络预测方法[J]. 煤炭学报, 2002(04): 366-370.

[33] 胡新成. 含瓦斯氧化气氛对自燃氧化过程中煤微观理化特性及宏观热效应影响研究[D]. 中国矿业大学, 2017.

[34] 葛岭梅, 薛韩玲, 徐精彩, 等. 对煤分子中活性基团氧化机理的分析[J]. 煤炭转化, 2001, 24(3): 23-28.

[35] Wang Haihui, Dlugogorski Bogdan.Z, Kennedy Eric.M. Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures[J]. Fuel, 2002, 81(15): 1913-1923.

[36] 邓存宝. 煤的自燃机理及自燃危险性指数研究[D]. 辽宁工程技术大学, 2006.

[37] 赵婧昱. 淮南煤氧化动力学过程及其微观结构演化特征研究[D]. 西安科技大学, 2017.

[38] 穆晓刚. 高有机硫炼焦煤氧化放热特性及自燃机理研究[D]. 辽宁工程技术大学, 2021.

[39] 张玉涛, 张园勃, 李亚清, 等. 低瓦斯气氛下煤氧化热效应和关键基团演变特性[J]. 中国矿业大学学报, 2021, 50(04): 776-783.

[40] Fan Lulu, Meng Xianliang, Zhao Jianqiao, et al. Reaction site evolution during low-temperature oxidation of low-rank coal[J]. Fuel, 2022, 327: 125195.

[41] 贾海林, 崔博, 焦振营, 等. 基于TG/DSC/MS技术的煤氧复合全过程及气体产物研究[J]. 煤炭学报, 2022, 47(10): 3704-3714.

[42] 李雪明. 阳泉矿区伴生硫铁矿物诱发煤自燃的机理研究[D]. 辽宁工程技术大学, 2021.

[43] Zhang Yuanbo, Zhang Yutao, Li Yaqing, et al. Determination and dynamic variations on correlation mechanism between key groups and thermal effect of coal spontaneous combustion[J]. Fuel, 2022, 310: 122454.

[44] 李金亮. 煤低温氧化过程产气机理研究[D]. 山东科技大学, 2020.

[45] 唐一博. 基于模型化合物的煤表面活性基团低温氧化研究[D]. 中国矿业大学, 2014.

[46] 张兰君. 有机硫对煤自燃特性影响研究[D]. 中国矿业大学, 2016.

[47] 辛海会. 煤火贫氧燃烧阶段特性演变的分子反应动力学机理[D]. 中国矿业大学, 2016.

[48] 邓军, 周佳敏, 白祖锦, 等. 瓦斯对煤低温氧化过程微观结构及热反应性的影响研究[J]. 煤炭科学技术, 2023, 51(01): 304-312.

[49] 秦波涛, 王德明, 李增华. 以活化能的观点研究煤炭自燃机理[J]. 中国安全科学学报, 2005, 15(1): 11-13.

[50] 陆伟, 胡千廷, 仲晓星, 等. 煤自燃逐步自活化反应理论[J]. 中国矿业大学学报, 2007, 1(36): 111-115.

[51] 陆伟, 王德明, 戴广龙, 等. 煤物理吸附氧的研究[J]. 湖南科技大学学报, 2005, 20(4): 6-10.

[52] 陈龙, 张嬿妮. 氧浓度对煤低温氧化热效应影响规律研究[J]. 中国安全生产科学技术, 2020, 16(06): 49-54.

[53] 齐峰. 煤低温氧化动力学参数及氧化热测试理论与方法研究[D]. 中国矿业大学, 2006.

[54] Deng Jun, Ren Lifeng, Ma Li, et al. Effect of oxygen concentration on low-temperature exothermic oxidation of pulverized coal[J]. Thermochimica Acta, 2018, 667: 102-110.

[55] Wang Caiping, Deng Yin, Zhang Yutao, et al. Coal oxidation characteristics and index gases of spontaneous combustion during the heating and cooling processes[J]. Fuel, 2022, 307: 121806.

[56] 周思博. 微波辐射对煤氧化反应动力学特性的影响研究[D]. 中国矿业大学, 2023.

[57] 仲晓星, 候飞, 曹威虎, 等. 基于等转化率法的煤氧化自热动力学参数测试方法[J]. 煤炭学报, 2021, 46(06): 1727-1737.

[58] 文虎, 徐精彩, 李莉, 等. 煤自燃的热量积聚过程及影响因素分析[J]. 煤炭学报, 2003, 28(4): 370-374.

[59] 王凯. 陕北侏罗纪煤低温氧化反应性及动力学研究[D]. 西安科技大学, 2015.

[60] 张嬿妮. 热重分析在研究煤氧复合过程中的应用[D]. 西安科技大学, 2004.

[61] Li Xueming, Jin Zhixin, Bai Gang, et al. Experimental study on the influence of water immersion on spontaneous combustion of anthracite with high concentrations of sulfur-bearing minerals[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141: 893-903.

[62] Zhang Lanjun, Li Zenghua, Li Jinhu, et al. Studies on the low-temp oxidation of coal containing organic sulfur and the corresponding model compounds[J]. Molecules, 2015, 20(12): 22241-22256.

[63] Mu Xiaogang, Liu Jinfang, Gao Fei, et al. Microwave-assisted removal of sulfur in large particle size coal by bromine water[J]. Fuel, 2021, 289: 119838.

[64] 王涌宇. 煤氧化过程中氢气生成特性和释放机理的实验研究[D]. 太原理工大学, 2017.

[65] Van eck Nees Jan; Waltman Ludo. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538.

[66] Li Jinhu, Li Zenghua, Yang Yongliang, et al. Experimental study on the effect of mechanochemistry on coal spontaneous combustion[J]. Powder Technology, 2018, 339: 102-110.

[67] 汤宗情. 煤自燃过程中孔隙演化机制及其对多元气体吸附特性的影响[D]. 中国矿业大学, 2020.

[68] Zhou Buzhuang, Yang Shengqiang, Wang Chaojie, et al. The characterization of free radical reaction in coal low-temperature oxidation with different oxygen concentration[J]. Fuel, 2020, 262: 116524.

[69] Xu Qin, Yang Shengqiang, Yang Wenming, et al. Effect of particle size and low-temperature secondary oxidation on the active groups in coal structures[J]. Process Safety and Environmental Protection, 2021, 149: 334-344.

[70] 艾晴雪. 煤自燃过程活性基团与自由基反应特性研究[D]. 华北理工大学, 2018.

[71] Jiang Xiaoyuan, Yang Shengqiang, Zhou Buzhuang, et al. Effect of gas atmosphere change on radical reaction and indicator gas release during coal oxidation[J]. Fuel, 2022, 312: 122960.

[72] 姬玉成. 抗氧化凝胶泡沫防遗煤自燃机理研究[D]. 北京科技大学, 2022.

[73] 高飞, 蒲锌格, 贾喆. 抗氧化剂硫辛酸抑制煤自燃效果及机理研究[J]. 中国矿业大学学报, 2024, 53(03): 534-545.

[74] Xue Di, Hu Xiangming, Cheng Weiming, et al. Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate[J]. Energy, 2020, 213: 118901.

[75] Wang Deming, Xin Haihui, Qi Xuyao, et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016, 163: 447-460.

[76] Chen Liangzhou, Qi Xuyao, Zhang Yabo, et al. Reaction activity and mechanism of R3-CH structure oxidation in coal self-heating[J]. Fuel, 2021, 290: 119797.

[77] Zhang Xun, Lu Bing, Qiao Ling, et al. Study on the kinetics of chemical structure reaction in coal catalyzed by OH free radical[J]. Energy, 2023, 285: 129553.

[78] Xi Zhilin, Jin BangXin, Ze Shan. Reaction mechanisms involving peroxy radical in the low-temperature oxidation of coal[J]. Fuel, 2021, 300: 120943.

[79] Xi Zhilin, Li Mengmeng, Li Xue, et al. Reaction mechanisms involving the hydroxyl radical in the low-temperature oxidation of coal[J]. Fuel, 2022, 314: 122732.

[80] Xi Zhilin, Xi Ke, Lu Linping, et al. Study on oxidation characteristics and conversion of sulfur-containing model compounds in coal[J]. Fuel, 2023, 331: 125756.

[81] Zhang Yanni, Shu Pan, Deng Jun, et al. Analysis of oxidation pathways for characteristic groups in coal spontaneous combustion[J]. Energy, 2022, 254: 124211.

[82] Zhu Hongqing, Huo Yujia, Wang Wei, et al. Quantum chemical calculation of reaction characteristics of hydroxyl at different positions during coal spontaneous combustion[J]. Process Safety and Environmental Protection, 2021, 148: 624-635.

[83] 姬玉成, 张英华, 黄志安, 等. 褐煤低温氧化分子结构单元变化特性[J]. 中南大学学报(自然科学版), 2020, 51(09): 2614-2623.

[84] Xi Zhilin, Li Mengmeng, Lu Linping, et al. Mechanism of MnSOD removing peroxy radical for inhibiting coal spontaneous combustion[J]. Fuel, 2022, 325: 124967.

[85] Xi Zhilin, Gao Ke, Guo Xiangyu, et al. Mechanistic study of the inhibition of active radicals in coal by catechin[J]. Combustion Science and Technology, 2021, 193(11): 1931-1948.

[86] Shu Pan, Zhang Yanni, Deng Jun, et al. Reaction mechanism of antioxidant inhibition of hydroxyl radical in coal oxidation[J]. Environmental Science and Pollution Research, 2024: 1-18.

[87] Saab Sérgio C, Martin-neto Ladislau. Studies of semiquinone free radicals by ESR in the whole soil, HA, FA and humin substances[J]. Journal of the Brazilian Chemical Society, 2004, 15: 34-37.

[88] Uebersfeld J, Etienne A, Combrisson J. Paramagnetic resonance, a new property of coal-like materials[J]. Nature, 1954, 174(4430): 614-614.

[89] Rothenberger K.S, Sprecher R.F, Retcofsky H.L, et al. Nature of the electron-paramagnetic-resonance intensity in iodine treated coals[J]. Fuel, 1994, 73(10): 1600-1605.

[90] Lyons M.J, Spence J.B. Environmental free radicals[J]. British Journal of Cancer, 1960, 14(4): 703.

[91] Retcofsky H.L, Stark J.M, Friedel R.A.A. Electron spin resonance in American coals[J]. Analytical Chemistry, 1968, 40(11): 1699-1704.

[92] Smith Michael B. March's advanced organic chemistry: reactions, mechanisms, and structure[M]. John Wiley & Sons, 2020.

[93] Korkmaz Mustafa, Özbey Turan. Electron spin resonance in some Turkish coals[J]. Fuel, 1991, 70(6): 789-793.

[94] 卢景雰. 现代电子顺磁共振波谱学及其应用[M]. 北京大学医学出版社有限公司, 2012.

[95] Liu Jiaxun, Jiang Xiumin, Shen Jun, et al. Chemical properties of superfine pulverized coal particles. Part 1. Electron paramagnetic resonance analysis of free radical characteristics[J]. Advanced Powder Technology, 2014, 25(3): 916-925.

[96] Liu Jiaxun, Jiang Xiumin, Han Xiangxin, et al. Chemical properties of superfine pulverized coals. Part 2. Demineralization effects on free radical characteristics[J]. Fuel, 2014, 115: 685-696.

[97] Azam Sikandar, Kurashov Vasily, Golbeck John H, et al. Comparative 6+ studies of environmentally persistent free radicals on nano-sized coal dusts[J]. Science of the Total Environment, 2023, 878: 163163.

[98] Cai Jiawen, Yang Shengqiang, Zheng Wancheng, et al. Risk assessment of oxidizability of coal after dynamic hazard and its effect on functional groups and radicals[J]. Natural Resources Research, 2021, 30: 4533-4545.

[99] Hu Xincheng, Yu Zhaoyang, Cai Jiawen, et al. The influence of methane on the development of free radical during low-temperature oxidation of coal in gob[J]. Fuel, 2022, 330: 125369.

[100] Duan Zhengxiao, Zhang Yanni, Deng Jun, et al. Effect of molecular structure change on the properties of persistent free radicals during coal oxidation[J]. Fuel, 2023, 350: 128861.

[101] William Gehling, Lavrent Khachatryan, Barry Dellinger. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5[J]. Environmental Science & Technology, 2014, 48(8): 4266-4272.

[102] Duan Zhengxiao, Zhang Yanni, Deng Jun, et al. Research on the potential of persistent free radicals triggering open-pit coal oxidation and spontaneous combustion [J]. Combustion Science and Technology, 2024.

[103] Cheng Anyuan, Li Yang, Wu Di, et al. Incomplete solid fuel burning as the major emission source of atmospheric phenols and environmentally persistent free radicals[J]. Fuel, 2024, 369: 131735.

[104] Zhao Jinfeng, Shen Guofeng, Shi Lin, et al. Real-world emission characteristics of environmentally persistent free radicals in PM2.5 from residential solid fuel combustion[J]. Environmental Science & Technology, 2022, 56(7): 3997-4004.

[105] Zhou Buzhang, Yang Shengqiang, Jiang Xiaoyuan, et al. The reaction of free radicals and functional groups during coal oxidation at low temperature under different oxygen concentrations[J]. Process Safety and Environmental Protection, 2021, 150: 148-156.

[106] Shi Quanlin, Qin Botao, Bi Qiang, et al. An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine, China[J]. Fuel, 2018, 226: 307-315.

[107] 肖旸, 叶星星, 刘昆华, 等. 二次氧化煤自燃过程关键官能团的转变规律[J]. 煤炭学报, 2021, 46(S2): 989-1000.

[108] 邓军, 赵婧昱, 张嬿妮, 等. 不同变质程度煤二次氧化自燃的微观特性试验[J]. 煤炭学报, 2016, 41(05): 1164-1172.

[109] Zheng Yuannan, Li Qingzhao, Lin Baiquan, et al. Real-time analysis of the changing trends of functional groups and corresponding gas generated law during coal spontaneous combustion[J]. Fuel Processing Technology, 2020, 199: 106237.

[110] Ma Li, Yu Wencong, Ren Lifeng, et al. Micro-characteristics of low-temperature coal oxidation in CO2/O2 and N2/O2 atmospheres[J]. Fuel, 2019, 246: 259-267.

[111] Fang Guodong, Gao Juan, Liu Cun, et al. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation[J]. Environmental Science & Technology, 2014, 48(3): 1902-1910.

[112] Lavrent Khachatryan, Julien Adounkpe, Zofia Maskos, et al. Formation of cyclopentadienyl radical from the gas-phase pyrolysis of hydroquinone, catechol, and phenol[J]. Environmental Science & Technology, 2006, 40(16): 5071-5076.

[113] Oniki T, Takahama U. Effects of reaction time, chemical reduction, and oxidation on ESR in aqueous solutions of humic acids[J]. Soil Science, 1994, 158(3): 204-210.

[114] Jia Hanzhong, Nulaji Gulimire, Gao Hongwei, et al. Formation and stabilization of environmentally persistent free radicals induced by the interaction of anthracene with Fe (III)-modified clays[J]. Environmental Science & Technology, 2016, 50(12): 6310-6319.

[115] Green Uri, Aizenshtat Zeev, Ruthstein Sharon, et al. Stable radicals formation in coals undergoing weathering: effect of coal rank[J]. Physical Chemistry Chemical Physics, 2012, 14(37): 13046-13052.

[116] Dellinger Barry, Lomnicki Slawomir, Khachatryan Lavrent, et al. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute, 2007, 31(1): 521-528.

[117] Pilawa Barbara, Wiȩckowski Andrzej B, Lewandowski Marek, et al. Epr studies of interactions between paramagnetic centres of exinite, vitrinite and inertinite during thermal decomposition[J]. Fuel, 1997, 76(1): 79-83.

[118] Shi Yafang, Zhu Kecheng, Dai Yunchao, et al. Evolution and stabilization of environmental persistent free radicals during the decomposition of lignin by laccase[J]. Chemosphere, 2020, 248: 125931.

[119] Dack Stuart W, Hobday Malcolm D, Smith Thomas D, et al. Free-radical involvement in the drying and oxidation of victorian brown coal[J]. Fuel, 1984, 63(1): 39-42.

[120] Dack Stuart W, Hobday Malcolm D, Smith Thomas D, et al. Origin of electron paramagnetic resonance signal in anthracite[J]. Carbon, 2015,94: 53-59.

[121] 唐正, 赵松, 钱雅洁, 等.生物炭持久性自由基形成机制及环境应用研究进展[J]. 化工进展, 2020, 39(04): 1521-1527.

[122] 向冲. 自由基在焦结构演化和应用中的作用研究[D]. 北京化工大学, 2020.

[123] Xiang Chong, Liu Qingya, Shi Lei, et al. A study on the new type of radicals in corncob derived biochars[J]. Fuel, 2020, 277: 118163.

[124] Li Jinhu, Li Zenghua, Yang Yongliang, et al. Room temperature oxidation of active sites in coal under multi-factor conditions and corresponding reaction mechanism[J]. Fuel, 2019, 256: 115901.

[125] Li Jinhu, Li Zenghua, Yang Yongliang, et al. Insight into the chemical reaction process of coal self-heating after N2 drying[J]. Fuel, 2019, 255: 115780.

[126] Zhang Yulong, Wang Junfeng, Xue Sheng, et al. Evaluation of the susceptibility of coal to spontaneous combustion by a TG profile subtraction method[J]. Korean Journal of Chemical Engineering, 2016, 33: 862-872.

[127] Li Jinliang, Lu Wei, Liang Yuntao, et al. Variation of CO2/CO ratio during pure-oxidation of feed coal[J]. Fuel, 2020, 262: 116588.

[128] Chen Qingcai, Sun Haoyao, Wang Mamin, et al. Dominant fraction of EPFRs from nonsolvent-extractable organic matter in fine particulates over Xi’an, China[J]. Environmental Science & Technology, 2018, 52(17): 9646-9655.

[129] Watanabe Akira, Mcphail Donald B, Maie Nagamitsu, et al. Electron spin resonance characteristics of humic acids from a wide range of soil types[J]. Organic Geochemistry, 2005, 36(7): 981-990.

[130] Milori dmbp, Martin-neto L, Bayer C, et al. Humification degree of soil humic acids determined by fluorescence spectroscopy[J]. Soil Science, 2002, 167(11): 739-749.

[131] Mathew Sindhu, Abraham T. Emilia, Zakaria Zainul Akmar. Reactivity of phenolic compounds towards free radicals under in vitro conditions[J]. Journal of Food Science and Technology, 2015, 52: 5790-5798..

[132] Wang Caiping, Lv Chunhui, Bai Zujin, et al. Synergistic acceleration effect of coal spontaneous combustion caused by moisture and associated pyrite[J]. Fuel, 2021, 304: 121458.

[133] Wang Jie, Zhang Yulong, Wang Junfeng, et al. Synergistic inhibition effect of inorganic salt inhibitor and free radical scavenger on coal spontaneous combustion[J]. Journal of China Coal Society, 2020, 45(12): 4132-4143.

[134] Wang Guangheng, Zhou Anning. Time evolution of coal structure during low temperature air oxidation[J]. International Journal of Mining Science and Technology, 2012, 22(4): 517-521.

[135] Chen Bo, Diao Zhijun, Lu Haiyun. Using the ReaxFF reactive force field for molecular dynamics simulations of the spontaneous combustion of lignite with the Hatcher lignite model[J]. Fuel, 2014, 116: 7-13.

[136] Tang Jin, Qu Sanyin, Hu Juan, et al. A new organic dye bearing aldehyde electron-withdrawing group for dye-sensitized solar cell[J]. Solar Energy, 2012, 86(9): 2306-2311.

[137] 熊言坤. 淖毛湖煤中有机质的结构研究[D]. 大连理工大学, 2020.

[138] Mathews Jonathan P, Chaffee Alan L. The molecular representations of coal-A review[J]. Fuel, 2012, 96: 1-14.

[139] Wiser Wendell H. Conversion of bituminous coal to liquids and gases: chemistry and representative processes[M]//Magnetic resonance: introduction, advanced topics and applications to fossil energy. Dordrecht: Springer Netherlands, 1984: 325-350.

[140] 邓军, 李亚清, 张玉涛, 等. 羟基(-OH)对煤自燃侧链活性基团氧化反应特性的影响[J]. 煤炭学报, 2020, 45 (01): 232-240.

[141] 吴君宏. 褐煤水热提质过程中氧、硫和水分的演变机理和成浆性研究[D]. 浙江大学, 2017.

[142] 李璐. 煤中常见化学键的解离及分子结构的量子化学理论研究[D]. 大连理工大学, 2016.

[143] 李刚. 煤热解中间体和自由基表征及反应机理研究[D]. 大连理工大学, 2015.

[144] 王学霞. 铁粉强化类煤有机含硫模型化合物热解脱硫的机理研究[D]. 中国矿业大学, 2022.

[145] Shi Ting, Wang Xiaofang, Deng Jun, et al. The mechanism at the initial stage of the room-temperature oxidation of coal[J]. Combustion and Flame, 2005, 140(4): 332-345.

[146] Zhang Xun, Lu Bing, Qiao Ling, et al. Study on the kinetics of chemical structure reaction in coal catalyzed by OH free radicals[J]. Energy, 2023, 285: 129553.

[147] Kerst Melanie, Andersson J T. Microwave-assisted extraction of polycyclic aromatic compounds from coal[J]. Fresenius' Journal of Analytical Chemistry, 2001, 370: 970-972.

[148] Zhang Liangping, Hu Song, Syed-hassan Syed Shatir A, et al. Mechanistic influences of different solvents on microwave-assisted extraction of Shenfu low-rank coal[J]. Fuel Processing Technology, 2017, 166: 276-281.

[149] 王迎春. 煤中小分子化合物对煤高温快速液化反应性影响的研究[D]. 太原理工大学, 2014.

[150] 刘方刚. 原位质谱的构建及在煤和模型化合物热解行为和反应机理研究中的应用[D]. 大连理工大学, 2021.

[151] 王福生,孙玮,张渝,等.过渡金属离子促进煤自燃机理的量子化学计算[J].煤炭学报,2024,49(05):2347-2359.

[152] Dias Camila L, Oliveira Marcos L.S, Hower James C, et al. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil[J]. International Journal of Coal Geology, 2014, 122: 50-60.

[153] Zhao Yan, Truhlar donald G. Density functionals with broad applicability in chemistry[J]. Accounts of Chemical Research, 2008, 41(2): 157-167.

[154] Zhang Xing, Gu Wenyi, Ma Zhongliang, et al. Short-term exposure to ZnO/MCB persistent free radical particles causes mouse lung lesions via inflammatory reactions and apoptosis pathways[J]. Environmental Pollution, 2020, 261: 114039.

[155] Yang Lili, Liu Guorui, Zheng Minghui, et al. Pivotal roles of metal oxides in the formation of environmentally persistent free radicals[J]. Environmental Science & Technology, 2017, 51(21): 12329-12336.

[156] Vejerano Eric, Lomnicki Slawo, Dellinger Barry. Lifetime of combustion-generated environmentally persistent free radicals on Zn(II)O and other transition metal oxides[J]. Journal of Environmental Monitoring, 2012, 14(10): 2803-2806.

[157] Patterson Matthew C., Ditusa Mark F., Mcferrin Cheri A., et al. Formation of environmentally persistent free radicals (EPFRs) on ZnO at room temperature: Implications for the fundamental model of EPFR generation[J]. Chemical Physics Letters, 2017, 670: 5-10.

[158] 苏原, 吉可明, 荀家瑶, 等. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(09): 1560-1570.

[159] Lu Tian, Chen Feiwu. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.

[160] Lu Tian, Chen Qinxue. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems[J]. Journal of Computational Chemistry, 2022, 43(8): 539-555.

[161] Kodera Yoichi, Mccoy Benjamin J. Distribution kinetics of radical mechanisms: reversible polymer decomposition[J]. AIChE journal, 1997, 43(12): 3205-3214.

[162] Liu Hao, Li Zenghua, Yang Yongliang, et al. Investigation of the effect of different distilled water, rainwater and seawater mass ratios on coal spontaneous combustion characteristics[J]. Science of the Total Environment, 2023, 900: 165878.

[163] Yang Xinlei, Chu Tingxiang, Wang Liang, et al. Mechanochemical evolution of coal microscopic groups: A new pathway for mechanical forces acting on coal spontaneous combustion[J]. Science of the Total Environment, 2024, 925: 171471.

[164] Zhao Song, Liu Ze, Zhang Ru, et al. Interfacial reaction between organic acids and iron-containing clay minerals: Hydroxyl radical generation and phenolic compounds degradation[J]. Science of the Total Environment, 2021, 783: 147025.

[165] Fang Guodong, Liu Cun, Wang Yujun, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation[J]. Applied Catalysis B: Environmental, 2017, 214: 34-45.

[166] 戚绪尧, 王涛, 张兰君, 等. 低共熔溶剂抑制煤自燃的机理[J]. 煤炭学报, 2024, 49(04): 1917-1930.

[167] Gao Fei, Jia Zhe, Cui Zheng, et al. Evolution of macromolecular structure during coal oxidation via FTIR, XRD and Raman[J]. Fuel Processing Technology, 2024, 262: 108114.

[168] 李宗翔, 张明乾, 杨志斌, 等. 断层构造对煤结构及氧化自燃特性的影响[J]. 煤炭学报, 2023, 48(03): 1246-1254.

中图分类号:

 TD752.2    

开放日期:

 2026-12-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式