题名: |
合成气爆燃特性及反应动力学研究
|
作者: |
苏彬
|
学号: |
18120089017
|
保密级别: |
保密(4年后开放)
|
语种: |
chi
|
学科代码: |
083700
|
学科: |
工学 - 安全科学与工程
|
学生类型: |
博士
|
学位: |
工学博士
|
学位年度: |
2022
|
学校: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
气体与粉尘燃爆防控
|
导师姓名: |
罗振敏
|
导师单位: |
西安科技大学
|
提交日期: |
2022-06-23
|
答辩日期: |
2022-06-02
|
外文题名: |
Research on the Deflagration Characteristics and Kinetic Behaviors of Syngas-Air Mixture
|
关键词: |
合成气爆燃 ; 爆炸极限 ; 爆燃压力 ; 火焰发射光谱 ; 火焰形态 ; 反应动力学
|
外文关键词: |
Syngas deflagration ; Flammable limit ; Deflagration pressure ; Flame emission spectrum ; Flame structure ; Reaction kinetic
|
摘要: |
︿
合成气是一种具有发展前景的氢能替代燃料,作为一种新型可再生清洁能源,合成气被广泛关注。由于合成气组分中H2的存在,增加了其在生产、运输、存储和使用过程的爆炸危险性。因此,为了预防和控制合成气爆炸事故,有必要从防爆抑爆安全角度出发,考察合成气的爆燃条件、爆燃特性及其反应动力学特性。本文针对不同化工生产过程合成气中H2/CO比率多变性等特点,系统研究了其爆燃点火特性参数、爆燃效应表征参数、以及链-热反应进程的详细信息特征,建立了合成气爆燃宏-微观表征参数的内在关联。主要内容与成果如下:
利用标准可燃性气体爆炸极限测试装置,获得了不同条件下合成气爆炸极限参数和爆炸危险度变化规律。研究表明,随合成气中H2占比增大,合成气爆炸下限逐渐下降,爆炸上限呈现小范围波动变化,合成气爆炸危险度不断增大。随着惰性气体的添加,合成气爆炸上限下降,爆炸下限略微上升,最终爆炸上、下限汇聚于同一点,达到汇合点处所需的惰性气体浓度随合成气中H2占比增加而增大。在N2和CO2惰化状态下,H2占比R=100%的合成气爆炸临界氧浓度分别为5.439%和7.035%,H2占比R=0%的合成气爆炸临界氧浓度分别为6.216%和6.930%。随H2占比增大,合成气爆炸三角形的爆炸区向左下方移动和延伸,爆炸区面积逐渐增大,且CO2惰化状态下的爆炸区面积比N2惰化状态下的爆炸区更小。此外,从热力学和动力学角度分析了合成气爆炸极限变化的内在原因,基于实验及文献调研数据,建立了基于机器学习方法的合成气爆炸极限预测模型。
利用20L球形爆炸反应容器以及火焰光谱测量系统,得到了不同条件下合成气爆燃压力与自由基光谱辐射强度变化规律。研究表明,随当量比增大,合成气爆燃压力峰值先增大后减小,体系内绝热火焰温度对爆燃压力具有主导作用,两者均在当量比φ=1.2时达到最大(R=100%合成气在当量比φ=1.0时达到最大)。由于绝热火焰温度和层流燃烧速度的共同影响,∙OH发射光谱强度峰值在当量状态和轻度贫氧状态时均维持较大值,在深度贫氧状态时出现较为明显的下降趋势。提出了用于反映可燃性气体爆燃过程不同波段自由基化学发光特性的评估指数(自由基光谱辐射指数),合成气中H2的存在很大程度增大了其爆燃指数和∙OH光谱辐射指数,而惰性气体降低了两种指数,且同种惰性气体对合成气爆燃指数和∙OH光谱辐射指数的影响趋势基本一致。此外,引入了爆燃压力平均上升速率和自由基发射光谱强度平均上升速率,基于热力学第一定律和链式反应原理,建立了合成气爆燃压力与自由基发射光谱强度的耦合模型,并验证了该耦合模型的准确性。
通过高速纹影系统以及Matlab编程,获得了不同条件下合成气爆燃球形火焰发展演化规律。结果表明,合成气爆燃过程中球形火焰表面会出现褶皱和胞状结构,随合成气中H2占比增大,合成气爆燃过程中未燃气体与已燃气体密度比和爆燃火焰厚度均逐渐减小,从而促使球形火焰表面褶皱和胞状结构更严重。惰性气体减小了合成气爆燃过程中未燃气体与已燃气体密度比,增大了爆燃火焰厚度,延迟了球形火焰表面出现褶皱的时间和达到完全胞状化状态的临界时间,减弱了球形火焰表面褶皱程度。通过对爆燃压力与火焰发展的多维耦合分析,发现合成气爆燃压力上升速率越大,火焰亮度越显著,而压升速率越小,火焰亮度越暗;另外,胞状火焰的形成与爆燃压力上升速率有直接的关系,即压升速率较大时,火焰表面的胞状结构越明显,而压升速率较小时,火焰表面的胞状结构出现较晚或被明显抑制。
借助Chemkin和Gaussian数值计算软件研究了不同条件下合成气爆燃体系内化学反应动力学过程,获得了爆燃过程关键基元反应和关键自由基产率以及敏感性等动力学参数变化规律,并利用实验结果验证了USC Mech Ⅱ反应机理数值计算结果的可靠性。结果表明,基元反应R1(∙H+O2⇌∙O+∙OH)对H2和CO消耗程度随当量比的变化规律与爆燃压力和自由基发射光谱强度变化规律具有一致性,且基元反应R1对H2消耗程度的敏感性系数绝对值远大于其他基元反应,从一定程度推断基元反应R1对合成气爆燃压力以及自由基发射光谱强度有显著影响。此外,在合成气爆燃过程中基元反应H2+O2→∙HO2+∙H引发了整个体系的链式反应,∙OH不仅促进H2转化为H2O,而且也是H2促进CO发生氧化反应的关键自由基,N2/CO2并不会改变合成气爆燃的主要链式反应路径,其通过降低关键基元反应速率达到惰化抑制效果。
﹀
|
外文摘要: |
︿
Syngas is a promising alternative fuel in the field of hydrogen energy. As a new renewable and clean energy, syngas is widely concerned. The existence of H2 increases the explosive risk in the process of production, transportation, storage and use of syngas. Therefore, in order to prevent and control syngas explosion accidents, it is necessary to investigate the deflagration conditions, deflagration characteristics and kinetic behaviours of syngas from the perspective of explosion prevention and suppression. In this paper, the ignition parameters, deflagration behaviors and the detailed information of chain-thermal reaction process were studied systematically according to the variability of H2/CO ratios of syngas, and the internal correlation mechanism of macro-microscopic characterization parameters of syngas deflagration was established. The main work and obtained results are as follows.
The flammable limit and explosion risk of syngas under different conditions were obtained by using the standard device for testing flammable limit of combustible gas. Results showed that with the increase of H2 proportion in syngas, the lower flammable limit of syngas decreased gradually, while the upper explosion limit fluctuated in a small range. The explosion risk of syngas increased with the increase of H2 content. With the inert gas dilution, the upper flammable limit decreased, and the lower flammable limit increased slightly. They end up converging at the same point, and the concentration of inert gas at converging point increased with the increase of the H2 proportion in syngas. With N2 and CO2 dilution, the critical oxygen concentration was 5.439% and 7.035% respectively for the syngas (R=100%), and it was 6.216% and 6.930% respectively for the syngas (R=0%). With the increase of the H2 proportion, the syngas explosion triangle moved and extended to the left, and the area increased gradually. The explosion zone with CO2 dilution was smaller than that with N2 dilution. In addition, the internal reasons for the change of explosion limit of syngas were analyzed from the point of view of thermodynamics and kinetics. Prediction models based on machine learning for syngas explosion limit were established on the basis of experimental and literature data.
The deflagration pressure and flame spectral intensity of syngas under different conditions were obtained by using 20L spherical explosion tank and spectral measurement system. Results showed that the pressure peak of syngas deflagration increased at first and then decreased with the increase of equivalence ratio, and the adiabatic flame temperature had a great influence on the deflagration pressure. Both of them reached the maximum when the equivalent ratio was 1.2 (The deflagration pressure of syngas (R=100%) reached the maximum when the equivalent ratio was 1.0). Due to the influence of adiabatic flame temperature and laminar burning velocity, the peak of ∙OH spectral intensity maintained a large value in both equivalent state and slight poor-oxygen state, but it showed an obvious downward trend in deep poor-oxygen state. In addition, an evaluation index (Free radical spectral radiation index) was proposed to reflect the chemiluminescence characteristics of free radicals at different bands in the deflagration process. The presence of H2 greatly increased the deflagration index and ∙OH spectral radiation index of syngas, while inert gas reduced them. Finally, the average rising rates of deflagration pressure and free radical spectral intensity were introduced, and the coupling model of deflagration pressure and free radical emission spectrum intensity was established based on the first law of thermodynamics and the principle of chain reaction.
The formation and evolution of spherical flame of syngas deflagration under different conditions were obtained by using the high-speed schlieren system and Matlab programming. Results show that wrinkles and cellular structures appeared on the surface of spherical flame during syngas deflagration. With the increase of H2 proportion, the density ratio of unburned gas to burned gas and the thickness of deflagration flame decreased gradually, which aggravated the wrinkle and cellular structure of spherical flame. The inert gas reduced the density ratio of the unburned gas to the burned gas during the syngas deflagration, increased the thickness of the deflagration flame, delayed the wrinkling time and the critical time to reach the complete cellular state, and weakened the wrinkling degree of spherical flame. Through the coupling analysis of deflagration pressure and flame development, it was found that the larger the rising rate of syngas deflagration was, the brighter the flame was. On the contrary, the smaller the rising rate of syngas deflagration implied the the darker flame. In addition, the formation of cellular flame was directly related to the rising rate of deflagration pressure. The larger rising rate of deflagration indicated the cellular structure of flame was more significant, while the smaller rising rate of deflagration indicated the cellular structure of flame appeared later or was obviously suppressed.
The kinetic process of syngas deflagration under different conditions was analyzed by means of Chemkin and Gaussian numerical software, and the kinetic parameters such as rate of production and sensitivity of key elementary reaction and free radicals were obtained. And the numerical calculation results by using USC Mech Ⅱ reaction mechanism were in good agreement with the experimental results. Results showed that the variation of H2 and CO consumption from reaction R1 with equivalent ratio was consistent with that of deflagration pressure and flame spectral intensity, and the absolute value of sensitivity coefficient of R1 to H2 consumption is much larger than that of other elementary reactions. It was inferred that reaction R1 had a significant effect on syngas deflagration pressure and flame spectral intensity. Besides, the reaction H2+O2→∙HO2+∙H initiated the chain reaction of the whole syngas deflagration system. ∙OH not only promoted the conversion of H2 to H2O, it was also the key free radical for H2 contributing to the oxidation of CO. N2/CO2 did not change the main chain reaction path of syngas deflagration, but achieved the inhibition effect by reducing the key elementary reaction rate.
﹀
|
参考文献: |
︿
[1] Christophe M, Ekins P. The geographical distribution of fossil fuels unused when limiting global warming to 2°C[J]. Nature, 2015,517(7533):187-U143. [2] Friedlingstein P, Andrew R M, Rogelj J, et al. Persistent growth of CO2 emissions and implications for reaching climate targets[J]. Nature Geoscience, 2014,7(10):709-715 [3] Wang W Q, Sun Z Y. Experimental studies on explosive limits and minimum ignition energy of syngas: a comparative review[J]. International Journal Hydrogen Energy, 2019, 44(11):5640-5649. [4] Wang L Q, Ma H H, Shen Z W, et al. Detonation behaviors of syngas-oxygen in round and square tubes[J]. International Journal Hydrogen Energy, 2018,43(31):14775-14786. [5] Liu J, Wang J, Zhang N, et al. On the explosion limit of syngas with CO2 and H2O additions[J]. International Journal Hydrogen Energy, 2018,43(6):3317-3329. [6] Salzano E, Basco A, Cammarota F, et al. Explosions of syngas/CO2 mixtures in oxygen-enriched air[J]. Industrial & Engineering Chemistry Research, 2011,51(22): 7671 -7678. [7] Wang L, Ma H, Shen Z, et al. An experimental investigation on explosion behaviors of syngas-air mixtures in a vessel with a large blockage ratio perforated plate[J]. Fuel, 2020, 264:1-10. [8] Mohammadi M, Najafpour G D, Younesi H, et al. Bioconversion of synthesis gas to second generation biofuels: a review[J]. Renewable and Sustainable Energy Reviews, 2011,15(9):4255-4273. [9] Redl S, Diender M, Jensen T, et al. Exploiting the potential of gas fermentation[J]. Industrial Crops and Products, 2017,106:21-30. [10] Phillips J R, Huhnke R L, Atiyeh HK. Syngas fermentation: a microbial conversion process of gaseous substrates to various products[J]. Fermentation, 2017,3(2),28:1-26. [11] Grimalt-Alemany A, Skiadas I V, Gavala H N, Syngas biomethanation: state-of- the-art review and perspectives[J]. Biofuels Bioproducts and Biorefining-biofpr, 2018,12(1): 139-158. [12] Acharya B, Roy P, Dutta A. Review of syngas fermentation processes for bioe- thanol[J]. Biofuels, 2015,5(5):551-564. [13] Liu Z, Green W H. Analysis of Adsorbent-Based Warm CO2 Capture Technology for Integrated Gasification Combined Cycle (IGCC) Power Plants[J]. Industrial & Engineering Chemistry Research, 2014,53(27):11145-11158. [14] Melikoglu M. Vision 2023: status quo and future of biomass and coal for sustainable energy generation in Turkey[J]. Renewable and Sustainable Energy Reviews, 2017, 74:800-808. [15] Toledo T M, Araus S K, Diego Vasconcelo A. Syngas production from coal in presence of steam using filtration combustion[J]. International Journal of Hydrogen Energy, 2015,40 (19):6340-6345. [16] Salgansky E A, Yu Zaichenko A, Podlesniy D N, et al. Coal dust gasification in the filtration combustion mode with syngas production[J]. International Journal of Hydrogen Energy, 2017,42(16):11017-11022. [17] Qiu P, Du C, Liu L, et al. Hydrogen and syngas production from catalytic steam gasification of char derived from ion-exchangeable Na- and Ca-loaded coal[J]. International Journal of Hydrogen Energy, 2018,43(27):12034-12048. [18] Lieuwen T, Yang V, Yetter R. Synthesis gas combustion: fundamentals and applications. CRC Press, 2009. [19] Salzano E, Basco A, Cammarota F, et al. Explosions of syngas/CO2 mixtures in oxygen- enriched air[J]. Industrial & Engineering Chemistry Research, 2012,51(22): 7671-7678. [20] Toledo M, Araus K, Vasconcelo D. Syngas production from coal in presence of steam using filtration combustion[J]. International Journal Hydrogen Energy, 2015,40(19): 6340-6345. [21] Sansaniwal SK, Rosen MA, Tyagi SK. Global challenges in the sustainable development of biomass gasification: an overview[J]. Renewable and Sustainable Energy Reviews, 2017,80:23-43. [22] Caro S, Torres D, Toledo M. Syngas production from residual biomass of forestry and cereal plantations using hybrid filtration combustion[J]. International Journal of Hydrogen Energy, 2015,40(6):2568-2577. [23] He M Y, Xiao B, Liu S M, et al. Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2010,87(2):181-187. [24] Xu Q, Lan P, Zhang B, et al. Preparation of syngas via catalytic gasification of biomass with a nickel-based catalyst[J]. Energy Sources, 2013,35(9):848-858. [25] Son Y I, Sang J Y, Yong K, et al. Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier[J]. Biomass & Bioenergy, 2011,35(10): 4215-4220. [26] Simone M, Barontini F, Nicolella C, et al. Experimental characterization of the performance of a downdraft biomass gasifier[C]. Proceedings of the European combustion meeting, 2011. [27] Carpenter D L, Bain R L, Davis R E, et al. Pilot-Scale gasification of corn stover, switchgrass, wheat straw, and wood: 1. parametric study and comparison with literature[J]. Industrial & Engineering Chemistry Research, 2010,49(4):1859-1871. [28] Michel R, Rapagnà S, Marcello MD, et al. Catalytic steam gasification of Miscanthus X giganteus in fluidised bed reactor on olivine based catalysts[J]. Fuel Processing Technology, 2011,92(6):1169-1177. [29] Vera D, Mena B De, Jurado F, et al. Study of a downdraft gasifier and gas engine fueled with olive oil industry wastes[J]. Applied Thermal Engineering, 2013,51(1-2):119-129. [30] Keller JO, Gresho M, Harris A, et al. What is an explosion? [J]. International Journal of Hydrogen Energy, 2014,39(35):20426-20433. [31] Tran MV, Scribano G, Chong CT, et al. Influence of hydrocarbon additions and dilutions on explosion behaviour of syngas/air mixtures[J]. International Journal of Hydrogen Energy, 2017,42(44):27416-27427. [32] Tran MV, Scribano G, Chong CT, et al. Experimental and numerical investigation of explosive behaviour of syngas/air mixtures[J]. International Journal of Hydrogen Energy, 2018,43(16):8152-8160. [33] Yu M, Yang X, Zheng K, et al. Experimental study of premixed syngas/air flame deflagration in a closed duct[J]. International Journal of Hydrogen Energy, 2018,43(29): 13676-13686. [34] Tran MV, Scribano G, Cheng TC, et al. Experimental and numerical investigation of explosive behavior of syngas/air mixtures[J]. International Journal of Hydrogen Energy, 2018,43(16):8152-8160. [35] Xie Y L, Wang J H, Cai X, et al. Pressure history in the explosion of moist syngas/air mixtures[J]. Fuel, 2016,185:18-25. [36] 中国科学技术协会. 中国科协第287次青年科学家论坛简报[Z]. 2015. [37] 胡耀元, 杨元法, 李勇, 等. H2, CH4, CO多元爆炸性混合气体的爆炸极限及其容器因素[J]. 中国科学(B辑化学), 2002(01):35-39. [38] 胡锐, 吴小华, 胡耀元. (H2+CO+CH4+Air)多元爆炸性混合气体爆炸形态与波形的区划[J]. 化学学报, 2010,68(7):623-632. [39] 陆美丽, 胡耀元, 马静萌, 等. H2, CO双元体系支链爆炸的特性与防爆安全指标[J]. 高校化学工程学报, 2007,21(1):93-99. [40] 陆美丽. H2, CO和CH4多元爆炸性混合气体支链爆炸特性和防爆安全指标[D]. 浙江师范大学, 2005. [41] 尚融雪, 万嵩, 杨红霞, 等. CO2和N2惰化条件下合成气可燃下限实验研究[J].东北大学学报(自然科学版), 2019,40(08):1191-1196. [42] 魏永生, 周邦智, 郑敏燕. H2、CO、CH4混合气体爆炸极限的多元回归分析[J]. 化学研究与应用, 2004,16(3):419-420. [43] 魏永生, 周邦智, 郑敏燕. 水煤气-空气混合气体爆炸极限与浓度关系的统计分析[J]. 计算机与应用化学, 2004(05):709-713. [44] 郑立刚, 余明高, 于水军. 多元混合气爆炸极限的非线性预测研究[J]. 中国安全科学学报, 2006(10):94-99. [45] 李畅, 苑艺笑, 原琪, 等. H2/CO合成气的最小点火能研究[J].中国安全科学学, 2021,31(04):88-94. [46] Ning D, Wang S, Fan A, et al. A numerical study of the effects of CO2 and H2O on the ignition characteristics of syngas in a micro flow reactor[J]. International Journal of Hydrogen Energy, 2018,43(50):22649-22657. [47] Wierzba I, Wang Q. The flammability limits of H2-CO-CH4 mixtures in air at elevated temperatures[J]. International Journal of Hydrogen Energy, 2006,31(4):485-489. [48] Petersen E L, Kalitan D M, Barrett A B, et al. New syngas/air ignition data at lower temperature and elevated pressure and comparison to current kinetics models[J]. Combustion & Flame, 2007,149(1-2):244-247. [49] Schoor F V D, Norman F, Vandermeiren K, et al. Flammability limits, limiting oxygen concentration and minimum inert gas/combustible ratio of H2/CO/N2/air mixtures[J]. International Journal of Hydrogen Energy, 2009,34(4):2069-2075. [50] Jang S E, Park J, Han S H, et al. A numerical study on the low limit auto-ignition temperature of syngas and modification of chemical kinetic mechanism[C]// ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, 2019. [51] Grune J, Breitung W, Kuznetsov M, et al. Flammability limits and burning characteristics of CO-H2-H2O-CO2-N2 mixtures at elevated temperatures[J]. International Journal of Hydrogen Energy, 2015,40(31):9838-9846. [52] Liang W, Liu J, Law C K. On explosion limits of H2/CO/O2, mixtures[J]. Combustion and Flame, 2017,179:130-137. [53] Liang W K, Liu Z R, Law C K. Explosion limits of H2/CH4/O2, mixtures: Analyticity and dominant kinetics[J]. Proceedings of the Combustion Institute, 2019,37(1):493-500. [54] Liu J, Wang J L, Zhang N, et al. On the explosion limit of syngas with CO2 and H2O additions[J]. International Journal of Hydrogen Energy, 2018,43(6):3317-3329. [55] Wang P X, Zhao Y J, Chen Y L, et al. Study on the lower flammability limit of H2/CO in O2/H2O environment[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11926-11936. [56] Liu Z G, Kong W J, Jean-Louis Consalvi, et al. H2/CO/air premixed and partially premixed flame structure at different pressures based on reaction limit analysis[J]. Science Bulletin, 2018,63(19):1260-1266. [57] Shih H Y, Hsu J R, Lin Y H. Computed flammability limits of opposed-jet H2/CO syngas diffusion flames[J]. International Journal of Hydrogen Energy, 2014,39(7): 3459-3468. [58] Mansfield A B, Wooldridge M S. High-pressure low-temperature ignition behavior of syngas mixtures[J]. Combustion and Flame, 2014,161(9):2242-2251. [59] 余明高, 韦贝贝, 郑凯. N2与CO2对合成气爆炸特性影响的实验研究[J]. 爆炸与冲击, 2019,39(06):155-162. [60] 余明高, 栾鹏鹏, 郑凯, 等. 管道内预混合成气爆炸特性[J]. 化工学报, 2018,69(10): 4486-4494. [61] Zheng K, Yang X, Yu M, et al. Effect of N2 and CO2 on explosion behavior of syngas/air mixtures in a closed duct[J]. International Journal of Hydrogen Energy, 2019,44(51): 28044-28055. [62] Yang X, Yu M, Han S, et al. Effect of equivalence ratio and ignition location on premixed syngas-air explosion in a half-open duct[J]. Fuel, 2020,288(2):119724. [63] Yang X, Yu M, Han S, et al. Experimental study on the premixed syngas-air explosion in duct with both ends open[J]. International Journal of Hydrogen Energy, 2021,46(4): 11004-11014. [64] Yu M G, Yang X F, Zheng K, et al. Experimental study of premixed syngas/air flame deflagration in a closed duct[J]. International Journal of Hydrogen Energy, 2018,43(29): 13676-13683. [65] Yu M G, Yang X F, Zheng K, et al. Experimental study of premixed syngas/air flame propagation in a half-open duct[J]. Fuel, 2018,225:192-202. [66] Xie Y L, Wang X J, Wang J H. Explosion behavior predictions of syngas/air mixtures with dilutions at elevated pressures: Explosion and intrinsic flame instability parameters[J]. Fuel, 2019,255,115724. [67] Park J, Kim J S, Chung J O, et al. Chemical effects of added CO2 on the extinction characteristics of H2/CO/CO2 syngas diffusion flames[J]. International Journal of Hydrogen Energy, 2009,34(20):8756-8762. [68] 胡耀元, 钟依均, 应桃开, 等. H2, CO, CH4多元爆炸性混合气体支链爆炸阻尼效应[J]. 化学学报, 2004,62(10):956-962. [69] Tran M V, Scribano G, Chong C T, et al. Numerical and experimental study of the influence of CO2 dilution on burning characteristics of syngas/air flame[J]. Journal of the Energy Institute, 2019,92(5):1379-1387. [70] Tran M V, Scribano G, Chong C T, et al. Influence of hydrocarbon additions and dilutions on explosion behavior of syngas/air mixtures[J]. International Journal of Hydrogen Energy, 2017,42(44):27416-27427. [71] Tran M V, Scribano G, Chong C T, et al. Experimental and numerical investigation of explosive behavior of syngas/air mixtures[J]. International Journal of Hydrogen Energy, 2018, 43(16):8152-8160. [72] Tran M V, Scribano G, Cheng T C, et al. Simulation of explosion characteristics of syngas/air mixtures[J]. Energy Procedia, 2018,153:131-136. [73] Sun Z Y. Turbulent explosion characteristics of stoichiometric syngas[J]. International Journal of Energy Research, 2017,42(3):1225-1236. [74] Sun Z Y. Explosion pressure measurement of 50%H2-50%CO synthesis gas–air mixtures in various turbulent ambience[J]. Combustion Science and Technology, 2018, 190(6): 1-16. [75] Sun Z Y. Laminar Explosion Properties of Syngas[J]. Combustion Science and Technology, 2020,192(1):1007-1022. [76] Sun Z Y, Liu S Y. A comparative study on the turbulent explosion characteristics of syngas between CO-enriched and H2-enriched[J]. Energy, 2022,241:122941. [77] Sun Z Y, Li G X. Turbulence influence on explosion characteristics of stoichiometric and rich hydrogen/air mixtures in a spherical closed vessel[J]. Energy Conversion and Management, 2017,149:526-535. [78] Li T, Hampp F, Lindstedt R P. Experimental study of turbulent explosions in hydrogen enriched syngas related fuels[J]. Process Safety and Environmental Protection, Part B, 2018,116:663-676. [79] Skrinsky J. Influence of pressure and temperature on safety characteristics of syngas-air mixture produced by autothermal gasification technology[J]. Chemical Engineering Transactions, 2018,65:133-138. [80] Wang L Q, Ma H H, Shen Z W. An experimental investigation on explosion behaviors of syngas-air mixtures in a vessel with a large blockage ratio perforated plate[J]. Fuel, 2019, 264:1-10. [81] Han S, Yu M, Yang X, et al. Effects of obstacle position and hydrogen volume fraction on premixed syngas-air flame acceleration[J]. International Journal of Hydrogen Energy, 2020,45(53):29518-29532. [82] Guo Z, Wen X, Zhang S, et al. Experimental study on the combustion-induced rapid phase transition of syngas/air mixtures under different conditions[J]. International Journal of Hydrogen Energy, 2020,45(38):19948-19955. [83] Zhou Q, Cheung C S, Leung C W, et al. Explosion characteristics of bio-syngas at various fuel compositions and dilutions in a confined vessel[J]. Fuel, 2020,259:116254. [84] Cao W, Li W, Zhang Y, et al. Experimental study on the explosion behaviors of premixed syngas-air mixtures in ducts[J]. International Journal of Hydrogen Energy, 2021,46(46): 23053-23066. [85] Cammarota F, Salzano E, Di Sarli V. Explosion parameters of wood chip-derived syngas in air[J]. Journal of Loss Prevention in the Process Industries, 2014,32:399-403. [86] Liu Y Y, Tan H Z, Xu W G, et al. Study on the influence of dust on CO/H2 deflagration characteristic[J]. Procedia Engineering, 2014,84:460-466. [87] Theoretical analysis of anomalous explosion behavior for H2/CO/O2/N2 and CH4/O2/N2/ CO2 mixtures in the light of combustion-induced rapid phase transition[J]. International Journal of Hydrogen Energy, 2015,40(25):8239-8247. [88] Xie Y, Wang J, Cai X, et al. Pressure history in the explosion of moist syngas/air mixtures[J]. Fuel, 2016,185:18-25. [89] Yang X, Yu M, Zheng K, et al. An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air mixtures in a half-open duct[J]. Fuel, 2019,237:619-629. [90] Li T, Hampp F, Lindstedt R P. The impact of hydrogen enrichment on the flow field evolution in turbulent explosions[J]. Combustion and Flame, 2019,203:105-119. [91] Boivin P, Jiménez C, Sánchez A L, et al. A four-step reduced mechanism for syngas combustion[J]. Combustion & Flame, 2011,158(6):1059-1063. [92] Vu T M, Park J, Kwon O B, et al. Effects of diluents on cellular instabilities in outwardly propagating spherical syngas–air premixed flames[J]. International Journal of Hydrogen Energy, 2010,35(8):3868-3880. [93] Liu C C, Shy S S, Chiu C W, et al. Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment[J]. International Journal of Hydrogen Energy, 2011,36(14):8595-8603. [94] Chiu C W, Dong Y C, Shy S S. High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers[J]. International Journal of Hydrogen Energy, 2012,37(14):10935-10946. [95] Yepes H A, Amell A A. Laminar burning velocity with oxygen-enriched air of syngas produced from biomass gasification[J]. International Journal of Hydrogen Energy, 2013, 38(18):7519-7527. [96] Goswami M, Bastiaans R J M, Konnov A A, et al. Laminar burning velocity of lean H2-CO mixtures at elevated pressure using the heat flux method[J]. International Journal of Hydrogen Energy, 2014,39(3):1485-1498. [97] Shang R, Zhang Y, Zhu M, et al. Laminar flame speed of CO2 and N2 diluted H2/CO/air flames[J]. International Journal of Hydrogen Energy, 2016, 41(33):15056-15067. [98] Shy S S, Liu C C, Lin J Y, et al. Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damkohler, and Karlovitz numbers[J]. Proceedings of the Combustion Institute, 2015,35(2):1509-1516. [99] Nakamura H, Takahashi H, Tezuka T, et al. Effects of CO-to-H2 ratio and diluents on ignition properties of syngas examined by weak flames in a micro flow reactor with a controlled temperature profile[J]. Combustion and Flame, 2016,172:94-104. [100] Wang L, Jiang Y, Pan L, et al. Lagrangian investigation and chemical explosive mode analysis of extinction and re-ignition in H2/CO/N2 syngas non-premixed flame[J]. International Journal of Hydrogen Energy, 2016,41(8):4820-4830. [101] 尚融雪. 高温及稀释条件下合成气层流火焰传播特性研究[D].东北大学,2016. [102] 李洪萌. 合成气预混层流燃烧特性的研究[D].北京交通大学,2016. [103] 周雅君,王智化,何勇,等.合成气组分及雷诺数对火焰结构影响的实验研究[J].实验流体力学, 2014,28(03):45-51. [104] Xiao C, Wang J H, Zhao H R, et al. Flame morphology and self-acceleration of syngas spherically expanding flame[J]. International Journal of Hydrogen Energy, 2018, 43(36):17531-17541. [105] 吕嘉诚. 稀释气体对合成气湍流预混火焰锋面结构演变及传播特性的影响研究[D].北京交通大学, 2020. [106] Nournai P, Houshfar E, Ashjaee M, et al. Experimental investigation on premixed flame of H2/CO in a slot burner using the Mach-Zehnder interferometry[J]. Optics and Laser Technology, 2019,115:140-148. [107] Azimov U, Okuno M, Tsuboi K, et al. Multidimensional CFD simulation of syngas combustion in a micro-pilot-ignited dual-fuel engine using a constructed chemical kinetics mechanism[J]. International Journal of Hydrogen Energy, 2011,36(21):13793 -13807. [108] Askari O, Wang Z, Vien K, et al. On the flame stability and laminar burning speeds of syngas/O2/He premixed flame[J]. Fuel, 2017,190:90-103. [109] Varghese R J, Kolekar H, Hariharan V, et al. Effect of CO content on laminar burning velocities of syngas-air premixed flames at elevated temperatures[J]. Fuel, 2018,214: 144-153. [110] Lee H C, Jiang L Y, Mohamad A A. A review on the laminar flame speed and ignition delay time of Syngas mixtures[J]. International Journal of Hydrogen Energy, 2014, 39(2):1105-1121. [111] Zhang G P, Li G, Li H M, et al. Effect of CO2 on self-acceleration properties of syngas/air turbulent premixed flame at different equivalence ratios[J]. International Journal of Hydrogen Energy, 2020,45(58):34204-34213. [112] 穆克进, 张彦, 惠鑫, 等. 运用OH-PLIF方法探测预混火焰前锋结构[J]. 工程热物理学报, 2008(04):711-714. [113] 冯耀勋, 杨浩林, 蒋利桥, 等. 壁面附近火焰OH自由基行为的PLIF研究[J]. 工程热物理学报, 2011,32(04):699-702. [114] 王丽媛. 基于PLIF的加压预混火焰OH基浓度测量方法研究[D]. 哈尔滨工业大学, 2017. [115] 冯耀勋, 郑晓峰. 基于PLIF技术测试壁面附近处火焰中OH自由基活性分布的研究[J]. 热能动力工程, 2017,32(11):19-25. [116] 朱文堃, 齐洪亮, 杨玉奇, 等. 基于OH-PLIF测量技术的煤粉射流火焰着火燃烧特性[J]. 燃烧科学与技术, 2019,25(02):175-181. [117] 叶家伟, 张顺平, 于欣, 等. 基于500 Hz OH-PLIF技术的超声速燃烧室火焰结构[J].航空动力学报, 2020,35(12):2593-2601. [118] 张茁. 合成气湍流火焰的OH-PLIF测量及表征[D]. 哈尔滨工业大学, 2018. [119] 卫之龙, 王金华, 舒新建, 等. 合成气预混层流火焰结构的实验和数值研究[J]. 西安交通大学学报, 2014,48(07):34-40. [120] Knyazkov D A, Bolshova T A, Dmitriev A M, et al. Experimental and numerical investigation of the chemical reaction kinetics in H2/CO syngas flame at a pressure of 1–10 atm[J]. Combustion, Explosion, and Shock Waves, 2017, 53(4):388–397. [121] 孟顺. O2/H2O条件下CO/H2的层流火焰特性及化学动力学[D]. 哈尔滨工业大学, 2016. [122] Xu H, Liu F, Sun S, et al. Flame attachment and kinetics studies of laminar coflow CO/H2 diffusion flames burning in O2/H2O[J]. Combustion & Flame, 2018,196: 147-159. [123] Davidson D F, Chang A Y, Hanson R K. Laser photolysis shock tube for combustion kinetics studies[J]. Symposium (International) on Combustion, 1989,22(1):1877-1885. [124] Bhaskaran K A, Roth P. The shock tube as wave reactor for kinetic studies and material systems[J]. Progress in Energy and Combustion Science, 2002,28(2):151-192. [125] Vasudevan V, Davidson D F, Hanson R K. Shock tube measurements of toluene ignition times and OH concentration time histories[J]. Proceedings of the Combustion Institute, 2005,30(1):1155-1162. [126] Davidson D F, Haylett D R, Hanson R K. Development of an aerosol shock tube for kinetic studies of low-vapor-pressure fuels[J]. Combustion and Flame, 2008,155(1-2): 108-117. [127] Davidson D F, Hanson R K. Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements[J]. Shock Waves, 2009,19(4):271-283. [128] Vasu S S, Hong Z, Davidson D F, et al. Shock tube/laser absorption measurements of the reaction rates of OH with ethylene and propene[J]. Journal of Physical Chemistry A, 2010, 114(43):11529-11537. [129] Hong Z, Davidson D F, Barbour E A, et al. A new shock tube study of the H+O2→OH+O reaction rate using tunable diode laser absorption of H2O near 2.5μm[J]. Proceedings of the Combustion Institute, 2011,33(1):309-316. [130] Ren W, Davidson D F, Hanson R K. IR laser absorption diagnostic for C2H4 in shock tube kinetics studies[J]. International Journal of Chemical Kinetics, 2012,44(6): 423-432. [131] Ren W, Lam K Y, Pyun S H, et al. Shock tube/laser absorption studies of the decomposition of methyl formate[J]. Proceedings of the Combustion Institute, 2013, 34(1):453-461. [132] Badra J, Elwardany A E, Khaled F, et al. A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one[J]. Combustion and Flame, 2014,161(3):725-734. [133] Lynch P T, Troy T P, Ahmed M, et al. Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry[J]. Analytical Chemistry, 2015,87(4):2345-2352. [134] Spearrin R M, Li S, Davidson D F, et al. High-temperature iso-butene absorption diagnostic for shock tube kinetics using a pulsed quantum cascade laser near 11.3 m[J]. Proceedings of the Combustion Institute, 2015,35(3):3645-3651. [135] 齐飞. 同步辐射真空紫外单光子电离技术及其应用[J]. 中国科学技术大学学报, 2007,37(4):414-425. [136] 苑文浩, 李玉阳, Dagaut P, 等. 甲苯燃烧的实验与动力学模型研究[C]//第七届全国高超声速科技学术会议. 2014, 18. [137] 李玉阳, 袁涛, 张奎文, 等. 低压预混甲苯/氧气/氩气火焰的中间体构成[J]. 工程热物理学报, 2010(11):1948-1952. [138] 王占东. 环己烷及其单烷基衍生物燃烧反应动力学的实验和模型研究[D]. 中国科学技术大学, 2014. [139] 袁涛. 正庚烷、异辛烷热解和预混火焰的实验及动力学模型研究[D]. 中国科学技术大学, 2010. [140] 吴武华, 金汉锋, 曾美容, 等. 乙烯同向流扩散火焰的数值模拟和芳烃生成的动力学分析[J]. 燃烧科学与技术, 2015(1):65-70. [141] 程占军, 张李东, 王占东, 等. 富燃乙烯低压预混火焰中掺杂CO2的实验和动力学模型研究[J]. 工程热物理学报, 2013(09):1787-1791. [142] 张奎文, 郭会军, 周忠岳, 等. 同步辐射真空紫外光电离质谱研究乙烯扩散火焰[J]. 工程热物理学报, 2009,30(10):1795-1799. [143] Zhao L, Cheng Z, Ye L, et al. Experimental and kinetic modeling study of premixed o-xylene flames[J]. Proceedings of the Combustion Institute, 2015,35(2):1745-1752. [144] Yuan W, Li Y, Dagaut P, et al. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation[J]. Combustion and Flame, 2015,162(1):3-21. [145] Yuan W, Li Y, Dagaut P, et al. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study[J]. Combustion and Flame, 2015,162(1):22-40. [146] Yang J, Zhao L, Yuan W, et al. Experimental and kinetic modeling investigation on laminar premixed benzene flames with various equivalence ratios[J]. Proceedings of the Combustion Institute, 2015,35(1):855-862. [147] Jin H, Frassoldati A, Wang Y, et al. Kinetic modeling study of benzene and PAH formation in laminar methane flames[J]. Combustion and Flame, 2015,162(5):1692 -1711. [148] Jin H, Cuoci A, Frassoldati A, et al. Experimental and kinetic modeling study of PAH formation in methane coflow diffusion flames doped with n-butanol[J]. Combustion and Flame, 2014,161(3):657-670. [149] Zhao L, Xie M, Ye L, et al. An experimental and modeling study of methyl propanoate pyrolysis at low pressure[J]. Combustion and Flame, 2013,160(10):1958-1966. [150] Qi F. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2013,34(1):33-63. [151] Cuoci A, Frassoldati A, Faravelli T, et al. Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames[J]. Proceedings of the Combustion Institute, 2013,34(1):1811-1818. [152] OβWald P, Güldenberg H, Kohse-H Inghaus K, et al. Combustion of butanol isomers - A detailed molecular beam mass spectrometry investigation of their flame chemistry[J]. Combustion and Flame, 2011,158(1):2-15. [153] Tian Z, Li Y, Zhang L, et al. An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure[J]. Combustion and Flame, 2009,156(7):1413 -1426. [154] Wang J, Yang B, Li Y, et al. The tunable VUV single-photon ionization mass spectrometry for the analysis of individual components in gasoline[J]. International Journal of Mass Spectrometry, 2007,263(1):30-37. [155] 刘奎, 李孝斌, 郑丹. 甲烷爆炸感应期内火焰光谱特征分析方法研究[J]. 光谱学与光谱分析, 2015(08):2067-2072. [156] 李孝斌, 李会荣, 何昆, 等. 甲烷爆炸感应期内C2自由基及其特征光谱分析[J]. 西安科技大学学报, 2015(02):248-252. [157] 李孝斌, 李会荣, 何昆, 等. 甲烷爆炸感应期内CN/CH/CHO/CH2O/NCN特征光谱分析[J]. 煤炭学报, 2014(10):2042-2046. [158] 李孝斌, 李树刚, 林海飞, 等. 矿井瓦斯爆炸感应期确定方法的实验研究[J]. 中国矿业大学学报, 2009(04):540-543. [159] 朱传杰, 林柏泉. 基于化学反应动力学的瓦斯爆炸对冲火焰叠加特征的研究[J]. 煤炭学报, 2011(S1):114-118. [160] Dixon-Lewis G, Williams D J. Comprehensive chemical kinetics[M]. Elsevier,1977. [161] Westbrook C K, Dryer F L. Chemical kinetics modeling of hydrocarbon combustion[J]. Pregrss in Energy & Combustion Science, 1984,10(1):1-57. [162] Maas U, Pope S B. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space[J]. Combustion & Flame, 1992,88(3-4):239-264. [163] Westbrook C K. Chemical kinetics of hydrocarbon ignition in practical combustion systems[J]. Proceedings of the Combustion Institute, 2000,28:1563-1577. [164] Westbrook C K,Pitz W J,Herbinet O, et al. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane[J]. Combustion and Flame, 2009,156( 1):181-199. [165] Bongartz D, Ghoniem A F. Chemical kinetics mechanism for oxy-fuel combustion of mixtures of hydrogen sulfide and methane[J]. Combustion and Flame, 2015,162(3):544 -553. [166] 齐飞, 李玉阳, 曾美容, 等. 燃烧反应动力学研究进展与展望[J]. 中国科学技术大学学报, 2013,43(11):948-958. [167] 齐飞, 李玉阳, 张晓愿. 燃烧反应动力学研究进展与展望[J]. 中国科学基金, 2015 (03):187-195. [168] Li J, Zhao Z, Kazakov A, et al. An updated comprehensive kinetic model of hydrogen combustion[J]. International Journal of Chemical Kinetics, 2004,36(10),566-575. [169] Davis S G, Joshi A V, Wang H, et al. An optimized kinetic model of H2/CO combustion[J]. Proceedings of the Combustion Institute, 2005,30(1): 1283-1292. [170] Frassoldati A, Faravelli T, Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds - ScienceDirect[J]. International Journal of Hydrogen Energy, 2007,32( 15):3471-3485. [171] Kéromnès A, Metcalfe W K, Heufer K A, et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J]. Combustion and Flame, 2013,160(6), 995-1011. [172] 谢永亮, 王金华, 张猛, 等. CO2和H2O对合成气层流燃烧速度的影响[J]. 工程热物理学报, 2014,35(06):1248-1251. [173] 袁也. H2/CO合成气稀释扩散燃烧的实验与数值模拟研究[D]. 南京师范大学, 2018. [174] 张勋. N2稀释合成气层流预混及扩散火焰燃烧特性的PLIF研究及CHEMKIN模拟[D]. 重庆大学, 2017. [175] 朱晓宇, 杨卫娟, 张兴, 等. 带压环境中CO2/H2O/N2气体稀释对合成气层流火焰速度的影响[J]. 化工进展, 2020,39(11):4357-4366. [176] 左子农. 合成气掺混燃料预混层流燃烧特性研究[D]. 天津大学, 2018. [177] 王全德, 魏赏赏, 王伟, 等. 合成气燃烧反应机理的验证和分析[J].新能源进展, 2014,2(03):173-179. [178] 尚融雪, 李刚, 张培红. 甲烷对合成气层流预混火焰传播特性的影响[J].中国安全科学学报, 2019,29(01):74-80. [179] Nakamura H, Takahashi H, Tezuka T, et al. Effects of CO-to-H2 ratio and diluents on ignition properties of syngas examined by weak flames in a micro flow reactor with a controlled temperature profile[J]. Combustion & Flame, 2016,172:94-104. [180] Trevino C M F. Reduced kinetic mechanism for methane ignition[C]. Elsevier,1992. [181] Medvedev V G, Telegin V G, Telegin G G. Statistical analysis of kinetics of an adiabatic thermal explosion[J]. Combustion, Explosion, and Shock Waves, 2009,45(3): 274-277. [182] 胡婷婷. 瓦斯爆炸及催化氧化的机理研究[D]. 山西大学, 2010. [183] 罗振敏, 邓军, 郭晓波. 基于Gaussian的瓦斯爆炸微观反应机理[J]. 辽宁工程技术大学学报(自然科学版), 2008(03):325-328. [184] 邓军, 李会荣, 杨迎, 等. 瓦斯爆炸微观动力学及热力学分析[J]. 煤炭学报, 2006, (04): 488-491. [185] 罗振敏, 康凯. CO2抑制甲烷-空气链式爆炸微观机理的仿真分析[J].中国安全科学学报, 2015,25(05):42-48. [186] 罗振敏, 康凯, 任军莹. NH3对甲烷链式爆炸的微观作用机理[J].煤炭学报, 2016,41 (04):876-883. [187] 罗振敏, 张江, 王涛. CO/CH4链式爆炸反应机理研究[J].兵工学报, 2017,38(S1): 49-59. [188] Luo Z, Su B, Wang T, et al. Effects of propane on the flammability limits and chemical kinetics of methane-air explosions[J]. Combustion Science and Technology, 2020, 192(9): 1785–1801. [189] Luo Z, Su B, Li Q, et al. Micromechanism of the initiation of a multiple flammable gas explosion[J]. Energy & Fuels, 2019,33(8):7738-7748. [190] 罗振敏, 刘荣玮, 王超, 等. 矿井火区典型可燃气体对甲烷化学动力学的影响分析[J]. 矿业安全与环保, 2021,48(05):1-6. [191] Su B, Luo Z, Wang T, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture[J]. Journal of Hazardous Materials, 2021,403,123680. [192] 罗振敏, 刘利涛, 王涛, 等. C2H6、C2H4、CO与H2对甲烷爆炸压力及动力学特性影响[J]. 工程科学学报, 2022,44(03):339-347. [193] 梁运涛. 封闭空间瓦斯爆炸过程的反应动力学分析[J]. 中国矿业大学学报, 2010(02):196-200. [194] 梁运涛, 曾文. 定容燃烧弹中瓦斯爆炸的反应动力学模拟[J]. 燃烧科学与技术, 2010,16(4):375-381. [195] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟[J]. 化工学报, 2009,60(7):1700-1706. [196] Liang Y, Zeng W. Numerical study of the effect of water addition on gas explosion. Journal of Hazardous Materials[J]. 2010,174(1-3):386–392. [197] 梁运涛, 王连聪, 罗海珠, 等. 定容燃烧反应器中瓦斯爆炸反应动力学计算模型[J]. 煤炭学报, 2015(08):1853-1858. [198] 贾宝山, 王小云, 温海燕, 等. 煤矿巷道内CO抑制瓦斯爆炸的反应动力学模拟研究[J]. 爆破, 2013(01):35-40. [199] 贾宝山, 温海燕, 梁运涛, 等. 受限空间瓦斯爆炸与氢气促进机理研究[J]. 中国安全科学学报, 2012,22(02):81-87. [200] 贾宝山, 胡如霞, 皮子坤, 等. 采空区遗煤自燃产生的C2H4促进瓦斯爆炸特性[J]. 辽宁工程技术大学学报, 2015(6):677-682. [201] 陆卫东, 贾宝山, 李守国, 等. CO2气体对瓦斯爆炸的阻尼效应研究[J]. 煤矿安全, 2016,47(9):1-3. [202] 贾宝山, 李艳红, 曾文, 等. 定容体系中氮气影响瓦斯爆炸反应的动力学模拟[J]. 过程工程学报, 2011,11(5):812-817. [203] 李成兵, 吴国栋, 经福谦. 水蒸气抑制甲烷燃烧和爆炸实验研究与数值计算[J]. 中国安全科学学报, 2009,19(1):118-124. [204] Standard Test Method for Concentration Limits of Flammability of Chemicals (Vapors and Gases), ASTM E 681-04[S]. American Society for Testing and Materials, 2015. [205] Todd D M. Gas turbine improvements enhance IGCC viability[C]. Gasification Technologies Conference, 2000. [206] 赫兹堡. 分子光谱与分子结构[M]. 北京: 科学出版社, 1983. [207] Lutz A E, Kee R J, Miller J A. SENKIN: A Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis[J]. Sandia National Laboratories Report, 1988, Web. [208] Rasmussen C L, Rasmussen A E, Glarborg P. Sensitizing effects of NOx on CH4 oxidation at high pressure[J]. Combustion & Flame, 2008,154(3):529-545. [209] Rodat S, Abanades S, Coulié J, et al. Kinetic modelling of methane decomposition in a tubular solar reactor[J]. Chemical Engineering Journal, 2009,146(1):120-127. [210] Carrasco N, Alcaraz C, Dutuit O, et al. Sensitivity of a Titan ionospheric model to the ion-molecule reaction parameters[J]. Planetary & Space Science, 2008,56(12): 1644- 1657. [211] Wang H, You X Q, Joshi Ameya V, et al. USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC _Mech_II.htm, May 2007. [212] 近藤重雄, 韩美. 新的爆炸危险度F值[J]. 低温与特气, 1995(2):57-60. [213] Hughes A J, Raybould W E. Rapid determination of the explosibility of mine fire gases[J]. Mining Engineer, 1960,120:37-53. [214] 王刚, 侯世占, 迟晓东. 爆炸三角形原理的应用[J]. 煤炭技术, 2008,27(9):65-66. [215] 罗振敏, 王涛, 文虎, 等. CO对CH4爆炸及自由基发射光谱特性的影响[J].煤炭学报, 2019,44(07):2167-2177. [216] Su B, Luo Z, Wang T, et al. Coupling analysis of the flame emission spectra and explosion characteristics of CH4/C2H6/air mixtures[J]. Energy & Fuels, 2020,34(1):920- 928. [217] Luo Z, Li D, Su B, et al. On the time coupling analysis of explosion pressure and intermediate generation for multiple flammable gases[J]. Energy, 2020,198,117329. [218] Florio L A. Effect of gas equation of state on CFD predictions for ignition characteristics of hydrogen escaping from a tank [J]. International Journal of Hydrogen Energy. 2014, 39:18451-18471. [219] Bradley D, Gaskell P H, Gu X J. Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: A computational study[J]. Combustion & Flame, 1996,104(1-2):176-198. [220] Bradley D, Cresswell T M, Puttock J S. Flame acceleration due to flame-induced instabilities in large-scale explosions[J]. Combustion and Flame, 2001,124(4):551-559. [221] Sun Z Y, Liu F S, Bao X C, et al. Research on cellular instabilities in outwardly propagating spherical hydrogen-air flames[J]. International Journal of Hydrogen Energy, 2012,37(9):7889-7899. [222] 胡二江. 天然气-氢气混合燃料结合EGR的发动机和预混层流燃烧研究[D]. 西安交通大学, 2010. [223] Yang S, Saha A, Wu F, et al. Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities[J]. Combustion and Flame, 2016, 171:112- 118. [224] Yuan J, Ju Y, Law C K. On flame-front instability at elevated pressures[J]. Proceedings of the Combustion Institute, 2007,31(1):1267-1274. [225] Kadowaki S, Suzuki H, Kobayashi H. The unstable behavior of cellular premixed flames induced by intrinsic instability[J]. Proceedings of the Combustion Institute, 2005, 30(1):169-176. [226] Bradley D, Sheppart C G W, Woolley R, et al. The development and structure of flame instabilities and cellularity at low Markstein numbers in explosions[J]. Combustion and Flame, 2000,122:195-209. [227] Addabbo R, Bechtold J K, Matalon M. Wrinkling of spherically expanding flames[J]. Proceedings of the Combustion Institute, 2002,29(2):1527-1535. [228] 汤成龙, 黄佐华, 何佳佳, 等. 丙烷-空气-稀释气层流燃烧速率测定[J].内燃机学报, 2008,26(06):525-532. [229] Jiang Y, Xu H, Ma X, et al. Laminar burning characteristics of 2-MTHF compared with ethanol and isooctane[J]. Fuel, 2017,190:10-20. [230] Law C K, Jomaas G, Bechtold J K. Cellular instabilities of expanding hydrogen/ propane spherical flames at elevated pressures: theory and experiment[J]. Proceedings of the Combustion Institute, 2005,30(1):159-167. [231] Kim W K, Mogi T, Kuwana K, et al. Prediction model for self-similar propagation and blast wave generation of premixed flames[J]. International Journal of Hydrogen Energy, 2015,40(34):11087-11092. [232] Sun Z Y, Liu F S, Bao X C, et al. Research on cellular instabilities in outwardly propagating spherical hydrogen-air flames[J]. International Journal of Hydrogen Energy, 2012,37(9):7889-7899. [233] Okafor E C, Nagano Y, Kitagawa T. Experimental and theoretical analysis of cellular instability in lean H2-CH4-air flames at elevated pressures[J]. International Journal of Hydrogen Energy, 2016,41(15):6581-6592.
﹀
|
中图分类号: |
X932
|
开放日期: |
2028-08-25
|