- 无标题文档
查看论文信息

论文中文题名:

 煤系地层坚硬致密砂岩:微波-液氮交互致裂及渐进破坏实验研究    

姓名:

 杨攀    

学号:

 21203226089    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 煤岩致裂新技术    

第一导师姓名:

 单鹏飞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-07-02    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Hard and tight sandstone in coal measures: Experimental study of microwave-liquid nitrogen interaction cracking and progressive failure    

论文中文关键词:

 微波照射 ; 液氮冻融 ; 煤系地层 ; 致密砂岩 ; 交互式破坏实验    

论文外文关键词:

 microwave irradiation ; liquid nitrogen freeze-thaw ; coal-bearing strata ; tight sandstone ; interactive failure experiment    

论文中文摘要:

       我国煤系地层“顶板-煤-底板”结构中坚硬顶板约占三分之二,坚硬顶板弱化是保障煤矿安全高效开采的重要环节之一,常规顶板弱化技术存在一定的局限性。现有研究表明微波照射和液氮冻融可有效劣化岩石力学强度,但两者交互作用下砂岩致裂机理尚不清晰。本论文以陕北矿区煤系地层坚硬顶板中的致密砂岩作为研究对象,开展整体式与钻孔式微波-液氮交互致裂砂岩实验,研究微波-液氮交互作用下致密砂岩渐进破坏机理。所作主要研究工作如下:

       (1) 阐明了微波作用对含水砂岩弱化效果的影响。比较分析0.8 kW微波功率照射下不同含水率砂岩的升温速率,明晰了水在微波照射砂岩过程中的作用主要体现在快速升温、小幅升温和热平衡过渡这三个阶段。对比分析2.0 kW微波功率照射下不同含水饱和度砂岩的弱化效果,厘清了微波辐射下含水砂岩的爆裂原因,包括低孔隙率、微波整体性加热和蒸汽压急剧增大。

       (2) 揭示了整体式微波与液氮交互作用下砂岩裂隙时空展布特征。采用超声波测速仪,实时记录了微波与液氮交互致裂砂岩前后纵波波速数值,计算了微裂隙损伤因子,定量表征了砂岩内部损伤。获取刻画了不同交互次数下砂岩表面裂隙扩展情况,研究表明:微波加热与液氮冻结对砂岩裂隙发育具有显著促进作用,砂岩易形成复杂再生裂隙网络。

       (3) 明确了整体式微波与液氮交互作用下砂岩力学特性与能量演变规律。开展微波与液氮交互作用后砂岩单轴力学试验,精准测定加载过程声发射相关参数,分析砂岩受载破坏后的能量储存和耗散情况。研究表明:微波-液氮交互次数增多,砂岩峰值强度呈现线性降低,弹性模量显著减小,砂岩抵抗变形能力明显衰减,砂岩破坏形式由剪切破坏向拉剪混合破坏过渡,峰值强度对应的总应变能级和弹性应变能级大幅减小。

       (4) 探究了钻孔式微波与液氮交互作用下砂岩的潜在破裂特征。预制含孔洞砂岩试样,聚焦含水率差异性,开展微波照射和液氮压裂力学试验,结合声发射定位等手段,动态还原交互致裂下砂岩的二次破坏过程。研究表明:提高砂岩含水率,微波作用效果增强,损伤区域增大,有效缩短微波与液氮交互致裂时间,为陕北矿区煤系地层坚硬致密顶板微波与液氮交互压裂的现场应用提供理论基础支撑。

论文外文摘要:

        In the "roof-coal-floor" structure of my country's coal-bearing strata, the hard roof accounts for about two-thirds. The weakening of the hard roof is one of the important links to ensure the safe and efficient mining of coal mines. Conventional roof weakening technology has certain limitations. Existing studies have shown that microwave irradiation and liquid nitrogen freeze-thaw can effectively deteriorate the mechanical strength of rocks, but the sandstone fracturing mechanism under the interaction of the two is still unclear. This paper takes the dense sandstone in the hard roof of the coal-bearing strata in the northern Shaanxi mining area as the research object, carries out integral and drilled microwave-liquid nitrogen interactive fracturing sandstone experiments, and studies the progressive destruction mechanism of dense sandstone under microwave-liquid nitrogen interaction. The main research work is as follows:

        (1) The effect of microwave on the weakening of water-bearing sandstone was clarified. The heating rates of sandstones with different water contents under microwave power of 0.8 kW were compared and analyzed, and it was clarified that the role of water in the microwave irradiation of sandstone was mainly reflected in the three stages of rapid heating, small heating and thermal equilibrium transition. The weakening effect of sandstones with different water saturations under microwave power of 2.0 kW was compared and analyzed, and the reasons for the explosion of water-bearing sandstone under microwave radiation were clarified, including low porosity, microwave overall heating and a sharp increase in vapor pressure.

        (2) The temporal and spatial distribution characteristics of sandstone cracks under the interaction of microwave and liquid nitrogen were revealed. An ultrasonic velocimeter was used to record the longitudinal wave velocity values before and after the microwave and liquid nitrogen interaction cracked the sandstone in real time, calculate the microcrack damage factor, and quantitatively characterize the internal damage of the sandstone. The expansion of cracks on the sandstone surface under different interaction times was obtained and characterized. The study shows that microwave heating and liquid nitrogen freezing have a significant promoting effect on the development of sandstone cracks, and sandstone is prone to form a complex regenerative crack network.

        (3) The mechanical properties and energy evolution of sandstone under the interaction of integrated microwave and liquid nitrogen were clarified. Uniaxial mechanical tests on sandstone after microwave and liquid nitrogen interaction were carried out, and the AE related parameters during the loading process were accurately measured to analyze the energy storage and dissipation of sandstone after load failure. The study showed that as the number of microwave-liquid nitrogen interactions increased, the peak strength of sandstone decreased linearly, the elastic modulus decreased significantly, the deformation resistance of sandstone was significantly attenuated, the failure form of sandstone transitioned from shear failure to tension-shear mixed failure, and the total strain energy level and elastic strain energy level corresponding to the peak strength were greatly reduced.

        (4) The potential fracture characteristics of sandstone under the interaction of drilling microwave and liquid nitrogen were explored. Sandstone samples with holes were prefabricated, and the differences in water content were focused on. Microwave irradiation and liquid nitrogen fracturing mechanical tests were carried out. Combined with AE positioning and other means, the secondary damage process of sandstone under interactive fracturing was dynamically restored. The study showed that increasing the water content of sandstone can enhance the effect of microwave action, increase the damage area, and effectively shorten the interactive fracturing time of microwave and liquid nitrogen. This provides a theoretical basis for the field application of microwave and liquid nitrogen interactive fracturing in the hard and dense roof of coal-bearing strata in the northern Shaanxi mining area.

参考文献:

[1]谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021,46(7):2197-2211.

[2]徐刚,黄志增,范志忠,等.工作面顶板灾害类型、监测与防治技术体系[J]. 煤炭科学技术,2021,49(2): 1-11.

[3]梁洪达,郭鹏飞,孙鼎杰,等.不同聚能爆破模式应力波传播及裂纹扩展规律研究[J].振动与冲击,2020,39(4):157-164.

[4]卢义玉,黄杉,葛兆龙,等.我国煤矿水射流卸压增透技术进展与战略思考[J].煤炭学报,2022,47(9): 3189-3211.

[5]康红普,冯彦军,张震,等.煤矿井下定向钻孔水力压裂岩层控制技术及应用[J].煤炭科学技术,2023,51(1):31-44.

[6]谢雄刚,刘锦伟,王磊,等.静态膨胀剂膨胀开裂突出煤层的测试研究[J].煤炭学报,2016,41(10):2620-2625.

[7]齐庆新,潘一山,李海涛,等.煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J].煤炭学报,2020,45(5):1567-1584.

[8]王少锋,孙立成,周子龙,等.非爆破岩理论和技术发展与展望[J]. 中国有色金属学报,2022,32(12):3 883-3912.

[9]Mao R, Feng Z, Liu Z, et al. Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens [J]. Journal of Natural Gas Science and Engineering, 2017, 44: 278-286.

[10]程晓强.综采工作面坚硬顶板静态膨胀致裂研究[D].西安:西安科技大学,2020.

[11]Kumar H, Lester E, Kingman S, et al. Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy. International Journal of Coal Geology. 2011;88(1):75–82.

[12]Lu GM, Feng XT, Li YH, et al. Experimental investigation on the effects of microwave treatment on basalt heating, mechanical strength, and fragmentation. Rock Mechanics and Rock Engineering. 2019;52(8):2535–2549.

[13]乔兰,郝家旺,李占金,等.基于微波加热技术的硬岩破裂方法探究[J].煤炭学报,2021,46(S1):241-252.

[14]卢高明,李辉,刘粲,等.微波作用下水分对岩石波速和强度的影响[J].中国科技论文,2019,14(9):1015-1021.

[15]高峰,熊鑫,熊信,等.饱和度对玄武岩微波响应的影响试验研究[J].岩土力学,2022,43(S2):43-51.

[16]Hassani F, Nekoovaght PM, Gharib N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation. Journal of Rock Mechanics and Geotechnical Engineering. 2016, 8(1): 1-15.

[17]高亚楠,王云龙,张垚,等.基于连续-离散方法的微波照射下花岗岩力学行为与破裂特征[J].煤炭学报,2023,48(2):693-713.

[18]柳静献,李国栋,常德强等.矿井降温技术研究进展与展望[J].金属矿山,2023,(7):18-27.

[19]高明忠,谢晶,杨本高,等.场微波作用下岩石体破裂特征及其机制探索[J].煤炭学报,2022,47(3):1122-1137.

[20]Pressacco M, Kangas J, Saksala T. Comparative numerical study on the weakening effects of microwave irradiation and surface flux heating pretreatments in comminution of granite[J]. Geosciences, 2023, 13(5): 132.

[21]田军,卢高明,冯夏庭等.主要造岩矿物微波敏感性试验研究[J].岩土力学,2019,40(6):2066-2074.

[22]戴俊,孟振,吴丙权.微波照射对岩石强度的影响研究[J].有色金属(选矿部分),2014(3):54-57.

[23]卢高明,李元辉,HASSANI Ferri,等.微波辅助机械破岩试验和理论研究进展[J].岩土工程学报,2016,38(8):1497-1506.

[24]卢高明,冯夏庭,李元辉,等.多模谐振腔对赤峰玄武岩微波致裂效果研究[J].岩土工程学报,2020,42(6):1115-1124.

[25]周科平,薛轲,刘涛影.微波作用下砂岩孔隙结构演化及强度劣化的试验研究[J].矿冶工程,2020,40(2):6-11.

[26]胡国忠,朱杰琦,朱健,等.微波辐射下页岩微结构的损伤特性与致裂效应[J].煤炭学报,2020,45(10):3471-3479.

[27]陈登红,王智鹏,袁永强,等.较低功率微波辐射坚硬石灰岩损伤路径优化研究[J].采矿与安全工程学报,2022,39(5):1021-1032.

[28]刘志义,甘德清,甘泽.微波照射后磁铁矿石动力学性能及破碎特征研究[J].岩石力学与工程学报,2021,40(1):126-136.

[29]Yin T, Wu B, Wang C, et al. Determination of dynamic tensile strength of microwave-induced basalt using Brazilian test[J]. Rock Mechanics and Rock Engineering, 2022: 1-15.

[30]Lu G, Feng X, Li Y, et al. Influence of microwave treatment on mechanical behaviour of compact basalts under different confining pressures[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(2): 213-222.

[31]Nicco M, Holley E A, Hartlieb P, et al. Textural and mineralogical controls on microwave-induced cracking in granites[J]. Rock mechanics and rock engineering, 2020, 53: 4745-4765.

[32]Lin F, Feng X T, Yang C, et al. Microwave response characteristics and influencing factors of ores based on dielectric properties of synthetic samples[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 315-328.

[33]Ge Z, Sun Q. Acoustic emission characteristics of gabbro after microwave heating[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104616.

[34]Tang M, Gao M, Li S, et al. Failure behavior and energy evolution characteristics of deep roadway sandstone under different microwave irradiation modes[J]. Journal of Central South University, 2023, 30(1): 214-226.

[35]滕腾,贾文建,易鹏,等.微波热力冲击下硬脆砂岩冲击倾向性演化规律试验研究[J].矿业科学学报,2024,9(2):209-216.

[36]Zheng Y, Ma Z, Gong Q, et al. Heating-dominated fracturing of granite by open-ended microwave: insights from acoustic emission measurement[J]. Rock Mechanics and Rock Engineering, 2022, 55(8): 4577-4589.

[37]Feng X, Li S, Yang C, et al. The Influence of the Rotary Speed of a Microwave Applicator on Hard-Rock Fracturing Effect[J]. Rock Mechanics and Rock Engineering, 2022, 55(11): 6963-6979.

[38]蔡承政,李根生,黄中伟,等.液氮冻结条件下岩石孔隙结构损伤试验研究[J].岩土力学,2014,35(4):965-971.

[39]蔡承政,任科达,杨玉贵,等.液氮压裂作用下页岩破裂特征试验研究[J].岩石力学与工程学报,2020,39(11):2183-2203.

[40]Gao Y, Hou P, Su S, et al. Role of Liquid Nitrogen Cooling State in Physical and Tensile Properties of Sandstone[J]. International Journal of Thermophysics, 2022, 43(4): 52.

[41]Gao F, Cai C, Yang Y. Experimental research on rock fracture failure

characteristics under liquid nitrogen cooling conditions[J]. Results in Physics, 2018, 9: 252-262.

[42]Cai C, Li G, Huang Z, et al. Experimental study of the effect of liquid nitrogen cooling on rock pore structure[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 507-517.

[43]Wang L, Cao Z, Xue Y, et al. Effect of weakening characteristics of mechanical properties of granite under the action of liquid nitrogen[J]. Frontiers in Ecology and Evolution, 2023, 11: 1249617.

[44]Qu H, Hu Y, Guo R, et al. Experimental study on pore structure alteration of deep shale under liquid nitrogen freezing based on nuclear magnetic resonance[J]. International Journal of Hydrogen Energy, 2023, 48(1): 51-66.

[45]Zhang D, Lu G, Wu J, et al. Effects of Ultralow Temperature and Water Saturation on the Mechanical Properties of Sandstone[J]. Rock Mechanics and Rock Engineering, 2023: 1-21.

[46]郑士杰.超低温作用对页岩力学性质的影响[D].北京:中国石油大学(北京),2022.

[47]陶静.液氮预注后页岩压裂的损伤破裂机理研究[D].徐州:中国矿业大学,2020.

[48]Hou P, Su S, Zhang Y, et al. Effect of liquid nitrogen thermal shock on structure damage and brittleness properties of high-temperature marble[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(2): 69.

[49]董硕,沙松,蒙世仟,等.液氮冷却作用下三类高温岩石力学性能试验研究[J].东北大学学报(自然科学版),2021,42(11):1591-1599.

[50]黄中伟,温海涛,武晓光,等.液氮冷却作用下高温花岗岩损伤实验[J].中国石油大学学报(自然科学版),2019,43(2):68-76.

[51]Wu X, Huang Z, Li R, et al. Investigation on the damage of high-temperature shale subjected to liquid nitrogen cooling[J]. Journal of Natural Gas Science and Engineering, 2018, 57: 284-294.

[52]Shao Z, Tang X, Wang X. The influence of liquid nitrogen cooling on fracture toughness of granite rocks at elevated temperatures: An experimental study[J]. Engineering Fracture Mechanics, 2021, 246: 107628.

[53]Chen Z, Sha S, Xu L, et al. Damage evaluation and statistic constitutive model of high-temperature granites subjected to liquid nitrogen cold shock[J]. Rock Mechanics and Rock Engineering, 2022, 55(4): 2299-2321.

[54]Sun Y, Zhai C, Xu J, et al. Damage and failure of hot dry rock under cyclic liquid nitrogen cold shock treatment: A non-destructive ultrasonic test method[J]. Natural Resources Research, 2022, 31(1): 261-279.

[55]Rong G, Sha S, Li B, et al. Experimental investigation on physical and mechanical properties of granite subjected to cyclic heating and liquid nitrogen cooling[J]. Rock Mechanics and Rock Engineering, 2021, 54: 2383-2403.

[56]Li Q, Yin T, Li X, et al. Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling[J]. Bulletin of Engineering Geology and the Environment, 2020, 79: 313-327.

[57]Shao Z, Wang Y, Tang X. The influences of heating and uniaxial loading on granite subjected to liquid nitrogen cooling[J]. Engineering geology, 2020, 271: 105614.

[58]Xi Y, Wang H, Jiang J, et al. Impacts of different cooling methods on the dynamic tensile properties of thermal-treated granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 169: 105438.

[59]Xue Y, Wang L, Liu J, et al. Experimental study on the effect of heating and liquid nitrogen-cooling cyclic treatment on mechanical properties and fracturing characteristics of granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 176: 105691.

[60]陈登红,汪朝家,王智鹏,等.水对石英砂岩微波辐射升温损伤的影响规律研究[J].金属矿山,2023,(5):155-164.

[61]Yang P, Shan P, Xu H, et al. Experimental study on mechanical damage characteristics of water-bearing tar-rich coal under microwave radiation[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2024, 10(1): 3.

[62]Lu J, Xie H, Li M, et al. Effect of microwave radiation on mechanical behaviors of tight fine sandstone subjected to true triaxial stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 152: 105063.

[63]贾海梁,韩力,孙强,等.微波照射冻结石英砂岩热融软化特性及损伤机制研究[J].岩石力学与工程学报,2021,40(9):1884-1893.

[64]Liu H, Yang G, Yun Y, et al. Investigation of sandstone mesostructure damage caused by freeze-thaw cycles via CT image enhancement technology[J]. Advances in Civil Engineering, 2020, 2020: 1-13.

[65]Maľa M, Greif V. Effect of frost damage on the pore interconnectivity of porous rocks by spontaneous imbibition method[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 8789-8799.

[66]牛晓斌.循环应力作用下热损伤粉砂岩力学性质及声发射特性研究[D].吉林:吉林大学,2020.

[67]张凯,张东晓,赵勇强,等.损伤岩石声发射演化特征及响应机制试验研究[J].煤田地质与勘探,2024,52(3):96-106.

[68]李满,刘先珊,潘玉华,等.循环热冲击后裂隙砂岩力学特性试验研究[J].岩土力学,2023,44(5):1260-1270.

[69]崔凯,顾鑫,吴国鹏,等.不同条件下贺兰口岩画载体变质砂岩干湿损伤特征与机制研究[J].岩石力学与工程学报,2021,40(6):1236-1247.

[70]杨科,张寨男,池小楼,等.循环载荷下含水砂岩裂纹演化与损伤特征试验研究[J].岩土力学,2022,43(7):1791-1802.

[71]单鹏飞,杨攀,来兴平,等.微波–水交互作用下富油煤岩渐进性破坏规律试验[J].岩石力学与工程学报,2023,42(S2):3884-3896.

[72]王云飞,刘晓,王立平,等.加载速率和饱水对砂岩力学行为和微观损伤特征的影响[J].采矿与安全工程学报,2022,39(2):421-428.

[73]肖伟晶.热损伤煤系砂岩承载过程力学与声学响应及失稳前兆判定研究[D].重庆:重庆大学,2022.

[74]甘一雄,吴顺川,任义,等.基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J].岩土力学,2020,41(7):2324-2332.

[75]Bi J, Zhao Y, Wu Z, et al. Research on crack classification method and failure precursor index based on RA-AF value of brittle rock[J]. Theoretical and Applied Fracture Mechanics, 2024, 129: 104179.

[76]徐鹏飞,邓华锋,张恒宾,等.不同应力水平下砂岩时滞性单轴压缩破坏特性研究[J].岩土力学,2021,42(11):3041-3050.

[77]刘超,尹思禹,张锦,等.深部采动应力条件下砂岩破裂的声发射和能量演化规律研究[J].采矿与安全工程学报,2022,39(3):470-479.

[78]秦涛,段燕伟,孙洪茹,等.砂岩三轴加载过程中力学特征与能量耗散特征[J].煤炭学报,2020,45(S1):255-262.

[79]任科达.液氮压裂高温花岗岩破裂特征与机理研究[D].徐州:中国矿业大学,2021.

[80]刘慧,蔺江昊,杨更社,等.冻融循环作用下砂岩受拉损伤特性的声发射试验[J].采矿与安全工程学报,2021,38(4):830-839.

[81]吴宝杨,王伟男,郭东明.浸水次数影响下裂隙砂岩强度损伤及声发射特征[J].采矿与安全工程学报,2020,37(5):1054-1060.

中图分类号:

 TD315    

开放日期:

 2025-07-02    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式