- 无标题文档
查看论文信息

题名:

 粉煤灰基绿色薄喷材料制备及性能研究    

作者:

 马浩淼    

学号:

 20211225026    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 085600    

学科:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料与化工    

研究方向:

 固体废弃物资源化利用    

导师姓名:

 陈杰    

导师单位:

 西安科技大学    

提交日期:

 2023-06-19    

答辩日期:

 2023-06-03    

外文题名:

 Study on Preparation and Performance of Green Thin Spray-on Liner Materials with Fly Ash    

关键词:

 薄喷材料 ; 活化粉煤灰 ; 纤维增韧 ; 聚合物改性 ; 外加剂    

外文关键词:

 Thin spray-on liner materials ; Activated fly ash ; Fiber reinforce ; Polymer modification ; Admixture    

摘要:

煤矿巷道支护中,水泥基薄喷材料相比于传统喷射混凝土具有喷层薄、施工快、用量小、运输成本低、与围岩表面贴合更好等优点,近年来受到广泛关注。当巷道围岩变形时,水泥基薄喷材料易发生脆性断裂,且成本高昂。工业固废粉煤灰具有潜在的火山灰活性。将粉煤灰活性激发,以活化粉煤灰部分替代水泥,制备粉煤灰基薄喷材料,并以聚合物及柔性纤维对其脆性缺陷进行改性,用于煤矿巷道支护,将大幅降低支护成本,减少粉煤灰环境污染,实现循环经济。

在分析粉煤灰理化性能的基础上,通过正交试验确定了活化粉煤灰的复掺活化剂配比为占粉煤灰质量3.97%的氧化钙、5.45%的无水硫酸钠、1.00%的九水硅酸钠,揭示了粉煤灰活化机理。在此基础上,研究了活化粉煤灰掺量、质量浓度及胶沙比对薄喷材料流动性及强度的影响规律,结合薄喷试样的扫描电镜分析,通过正交试验及响应面法,确定了薄喷材料的基础配比为质量浓度76.9%,胶沙比1.18:1,活化粉煤灰掺量为73.7%。

以聚丙烯纤维及羟乙基纤维素分别对粉煤灰薄喷材料韧性及黏结性能进行改性,研究了聚丙烯纤维长度、体积掺量以及羟乙基纤维素掺量对薄喷材料流动性、强度、韧性及黏结性能的影响规律,通过扫描电镜分析了薄喷材料的微观结构,揭示了聚丙烯纤维增韧机理及羟乙基纤维素对薄喷材料黏结性能的改性机理。研究结果表明,聚丙烯纤维对裂纹扩展阻碍作用显著,其合理长度为9 mm,合理体积掺量为1.5%。掺入后聚丙烯纤维使粉煤灰薄喷材料7 d、28 d抗折强度、抗压强度及劈裂抗拉强度均有提升,其中劈裂抗拉强度相较于未掺入聚丙烯纤维试样分别提升145%、79%。羟乙基纤维素对聚丙烯纤维与基体界面以及薄喷材料与岩样界面黏结性能提升明显。掺入0.05%的羟乙基纤维素后,粉煤灰基薄喷材料7 d、28 d黏结强度相较于未掺入羟乙基纤维素的试样分别提升333%、201%。

利用聚羧酸高效减水剂及JS-SN III无碱型液体速凝剂(单一硫酸铝组份)分别对粉煤灰薄喷材料流动性、泌水率、凝结时间等性能进行调控,分析了聚羧酸减水剂及JS-SN III无碱型液体速凝剂掺量对浆料流动性、泌水率、凝结时间及试样强度的影响规律,通过微观形貌分析,揭示了聚羧酸减水剂及JS-SN III无碱型液体速凝剂调控机理。研究结果表明,聚羧酸减水剂能够提升浆料流动性,使试样致密,提升试样28 d强度,但过掺时会导致浆料保水性能下降,泌水率增大。添加0.1%聚羧酸减水剂,薄喷材料浆料稠度提升至107.3 mm,泌水率降低到2.1%。掺量10%的JS-SN III无碱液体速凝剂能够使浆料初凝时间由2.5 h降低到4 min,终凝时间由3 h缩短至13 min,试样1 d无侧限抗压强度提升了600%,达到0.6 MPa,但会导致中后期强度小于10%的削减。改性及调控后的粉煤灰薄喷材料龄期为28 d的试样抗压强度为22.21 MPa,劈裂抗拉强度为4.26 MPa,粘结强度为3.39 MPa。

以活化粉煤灰部分替代水泥制备了巷道支护用薄喷材料,所用活化粉煤灰质量占胶凝物质总质量73.7%,降低了煤矿巷道支护成本,为工业固体废弃物大宗化利用提供了可行途径,对生态保护、资源循环及可持续发展具有重要意义。

外文摘要:

In the support of coal mine tunnels, cement-based thin spray-on liner materials have attracted widespread attention in recent years due to their advantages over traditional shotcrete, such as thin spray layer, fast construction, small dosage, low transportation cost, and better adhesion to the surrounding rock surface. When the surrounding rocks of the tunnel are deformed, the cement-based thin spray-on liner materials is prone to brittle fracture, and the cost is high. Fly ash, a sort of industrial solid waste, has potential pozzolonicity. Activating the potential pozzolonicity of fly ash, partially replacing cement with activated fly ash, to prepare fly ash based thin spray-on liner materials, and modifying their brittle defects with polymers and flexible fibers for supporting in the coal mine tunnel will significantly reduce support costs, reduce environmental pollution caused by fly ash, and achieve circular economy.

On the basis of the physical and chemical properties of fly ash, the composite activator ratio of activated fly ash was determined to be 3.97% CaO, 5.45% Na2SO4, and 1.00% Na2SiO3, through orthogonal experiments accounting for the mass of fly ash. The activation mechanism of fly ash is revealed in this research. On this basis, the influence of activated fly ash content, mass concentration, and cement sand ratio on the flowability and strength of thin spray-on liner materials was studied. Combined with scanning electron microscopy analysis of thin spray-on liner samples, orthogonal experiments and response surface methodology were used to determine the basic ratio of thin spray-on liner materials as 76.9% mass concentration, 1.18:1 cement sand ratio, and 73.7% activated fly ash content.

The toughness and adhesive properties of thin spray-on liner materials with fly ash were modified with polypropylene fibers and hydroxyethyl cellulose, respectively. The effects of polypropylene fiber length and volume content, and hydroxyethyl cellulose content on the flowability, strength, toughness, and adhesive properties of the thin spray-on liner materials were studied. The microstructure of the thin spray-on liner materials was analyzed using scanning electron microscopy, the reinfocing mechanism of polypropylene fibers and the modification mechanism of hydroxyethyl cellulose on the adhesive performance of thin spray-on liner materials is revealed in this study. The results indicate that polypropylene fibers have a significant inhibitory effect on crack propagation, with a reasonable length of 9 mm and a reasonable volume content of 1.5%. The addition of polypropylene fibers improved the flexural strength, compressive strength, and splitting tensile strength at 7 d and 28 d of the thin spray-on liner materials with fly ash, with splitting tensile strength increased by 145% and 79% at 7 d and 28 d respectively compared to the sample without polypropylene fibers. Hydroxyethyl cellulose significantly improves the adhesive performance between polypropylene fiber and matrix interface, as well as between thin spray-on liner materials and rock sample interface. After adding 0.05% hydroxyethyl cellulose, the adhesive strength of the thin spray-on liner materials with fly ash increased by 333% and 201% respectively after 7 d and 28 d compared to the sample without hydroxyethyl cellulose.

The flowability, bleeding rate, and setting time of thin spray-on liner materials with fly ash were regulated using polycarboxylic acid high-efficiency water reducing agent and JS-SN III alkali free liquid accelerator (single aluminum sulfate component). The influence of the dosage of polycarboxylic acid water reducing agent and JS-SN III alkali free liquid accelerator on the flowability, bleeding rate, setting time, and sample strength of the slurry was analyzed through microscopic morphology analysis, the regulatory mechanism of polycarboxylic acid water reducer and JS-SN III alkali free liquid accelerator is revealed. The results indicate that polycarboxylic acid water reducing agent can improve the fluidity of the slurry, make the samples dense, and enhance the 28 d strength of the samples. However, excessive addition can lead to a decrease in the water retention performance of the slurry and an increase in the bleeding rate. By adding 0.1% polycarboxylic acid water reducing agent, the consistency of the thin spray material slurry was increased to 107.3 mm, and the bleeding rate was reduced to 2.1%. The addition of 10% JS-SN III alkali free liquid accelerator can reduce the initial setting time of the slurry from 2.5 h to 4 min, and shorten the final setting time from 3 h to 13 min. The unconfined compressive strength of the samples after 1 d has increased by 600%, reaching 0.6 MPa, but it will lead to a reduction of strength less than 10% in the middle and later ages. The thin spray-on liner materials with fly ash has a compressive strength of 22.21 MPa at 28 d, a splitting tensile strength of 4.26 MPa, and a bonding strength of 3.39 MPa after modification and regulation.

Activated fly ash was partially used to replace cement in the preparation of thin spray-on liner materials for tunnel support. The mass of activated fly ash used accounted for 73.7% of the total mass of cementitious materials, reducing the cost of coal mine tunnel support and providing a feasible approach for the large-scale utilization of industrial solid waste. It is of great significance for ecological protection, resource circulation, and sustainable development.

参考文献:

[1] 中华人民共和国国家统计局.国家统计局统计年度数据[DB/OL].北京:https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E0H&sj=2021, 2022-02-28.

[2] 陈从喜,吴琪,李政.2016年中国矿产资源开发利用形式分析[J].矿产保护与利用,2017,No.211(05):1-7.

[3] 陈宾.喷射混凝土在巷道支护中的作用[J].煤炭技术,2006,25(3):63-65.

[4] 张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报,2004,33(5):34-37.

[5] GB 50086-2015,岩土锚杆与喷射混凝土支护工程技术规范[S].国家市场监督管理总局,2015.

[6] Galvin JM. Support and reinforcement systems [M]. Springer International Publishing, 2016: 211-269.

[7] Yılmaz H, Toper A Z. Emerging support concept: thin spray-on liners [C]//2003' International Mining Congress and Exhibition of Turkey-IMCET,2003:65-74.

[8] Peter Kolapo, Moshood Onifade, Khadija Omar Said, et al. On the application of the novel thin spray-on liner (TSL): a progress report in mining operations [J]. Geotechnical and Geological Engineering, 2021, 39(8): 5445-5477.

[9] Li Z C, Nocelli B, Saydam S. Effect of rock strength and surface roughness on adhesion strength of thin spray-on liners [J]. International Journal of Rock Mechanics and Mining Sciences, 2017,91:195-202.

[10] 李恒,刘伟,梁曼,等.我国粉煤灰综合利用途径及对减排降碳的影响分析[J].居业,2021,No.166(11):165-166.

[11] 张旭,杜涛.粉煤灰的高效利用及粉煤灰基Al-MCM-41的制备[C]//第十一届全国能源与热工学术年会论文集.马鞍山,2021:197-211.

[12] Solomon L. Hailu, Robert I. McCrindle, Mathapelo P. Seopela, et al. Speciation of major and trace elements leached from coal fly ash and the kinetics involved [J]. Journal of environmental science and health, Part A. Toxic/hazardous substances & environmental engineering, 2019, 54(11/12): 1186-1196.

[13] Pan L J, Xiong Z J. Study on properties of cementbased high fluid fracture repairing slurry [J]. Jiangsu Construction, 2019, 2:80-82.

[14] Archibald JF, Mercer RA, Lausch P. The evaluation of thin polyurethane surface coastings as an effective means of ground control [C]//International symposium on rock support, 1992: 105-115.

[15] Lau V, Saydam S, Cai Y, Mitra R. Laboratory investigationof support mechanism for thin spray-on liners [C]//Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 2008: 1381-1388.

[16] Wojno L, Kuijpers J S. Spray-on, user friendly and flexible support for mine excavations [C]//Proc. Int. Symp. Rock Support—Applied Solutions for Underground Structures, 1997: 671-683.

[17] Reynolds D, Leach A. The use of engineered cements in thin section support systems for water sensitive strata [C]//2002' 2nd international seminar on surface support liners: thin sprayed liners, shotcrete, mesh. SAIMM, Sandton, South Africa.

[18] Tannant D D. Thin spray-on liners for underground rock support [C]//Proceedings of the 17th International Mining Congress and Exhibition of Turkey-IMCET, 2001: 57-73.

[19] ENC 250TSL v7.2 25-07-08. Specification and guidelines on thin spray-on liners for mining and tunnelling [S]. EFNARC: Org E, 2008.

[20] Yilmaz H. Shear-bond strength testing of thin spray-on liners [J]. Journal Of The South African Institute Of Mining & Metallurgy, 2007, 107(8):519-527.

[21] Guner D, Ozturk H. Experimental and numerical analysis of the effects of curing time on tensile mechanical properties of thin spray-on liners [J]. Rock Mechanics & Rock Engineering, 2016, 49(8):3205-3222.

[22] Plessis M D, Malan D F. Investigating the use of polymer-modified cementitious thin spray-on liners as stope face support [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142(3):104728.

[23] Yilmaz H. Tensile strength testing of thin spray-on liner products (TSLs) and shotcret [J]. The Journal of The Southern African Institute of Mining and Metallurgy, 2010(110):559-569.

[24] Son M. Adhesion strength at the shotcrete-rock contact in rock tunneling [J]. Rook Mech Rook Eng, 2013(46):1237-1246.

[25] Ozturk H. Influence of rock properties and environmental conditions on thin spray-on liner adhesive bond [J]. International Journal of Rock Mechanics & Mining Sciences, 2011(48):1196-1198.

[26] 邹向荣,关智平.聚合物水泥基新型喷涂技术在井巷中的应用[J].陕西煤炭,2010,29(6):91-93.

[27] 张国安.超薄喷射支护技术在开滦矿区的工程应用[J].能源技术与管理,2014,39(5):29-31.

[28] 刘凤文.巷道薄喷封闭技术研究及试验[J].煤炭与化工,2016,39(1):70-72,97.

[29] 刘凤文,张少波,吴建生.薄喷支护技术在东欢坨矿的试验研究[J].煤矿爆破,2018,No.125(01):6-9.

[30] 冯琦勇.薄喷封闭技术在西曲矿北三下组煤集中运料巷的应用[J].山东煤炭科技,2021,39(12):190-191+200.

[31] 史玲.TSL(thin spray-on liners)材料在巷道支护中的应用[J].中国矿业,2011,20(3):93-96,104.

[32] 史玲.地下工程中喷层支护机理研究进展[J].地下空间与工程学报,2011,7(4):145-149.

[33] 董山,明世祥,刘鹏博.新型喷涂速效支护技术及其作用原理的探讨[J].金属矿山,2010,No.413(11):56-59+160.

[34] 董山,明世祥.新型聚合物薄喷层潜在支护功能的研究[C]//2010'中国矿业科技大会论文集,苏州:《金属矿山》编辑部,2010:350-352+357.

[35] 李海洋.大巷顶板急变形原因及薄喷支护技术研究[J].山东煤炭科技,2020,38(12):67-69+72.

[36] 雷瑞,付东升,李国法,等.粉煤灰综合利用研究进展[J].洁净煤技术,2013,19(3):106-109.

[37] Siddique R. Effect of fine aggregate replacement with class F fly ash on the mechanical properties of concrete [J]. Cement and Concrete Research, 2003, 33(4): 539-547.

[38] Hanehara S, Tomosawa F, Kobayakawa M. Effects of water ratio, mixing ratio of fly ash and curing temperature on pozzolanic reation of fly ash in cement paste [J]. Cement and Concrete Research, 2001, 31(1):31-39.

[39] Woolard C D, Strong J, Erasmus C R. Evaluation of the use of modified coal ash as a potential sorbent for organic waste streams [J]. Applied Geochemistry, 2002, 17(8):1159-1164.

[40] Behrooz S G, Carlf S, Wojciech S J, et al. Sim-ultaneous control of HgO, SO2, and NOx by novel oxi-dized calciumbased sorbents [J]. Journal of Air and Waster Manage Association, 2002, 52(3): 273-278.

[41] 张宁宁,石忠钰,韩瑞,等.粉煤灰“工程型”及“产品型”资源化利用研究进展[J].金属矿山,2022,No.551(05):26-36.

[42] Davidovits J. Geopolymers and geopolymeric materials [J]. Journal of Thermal Analysis, 1989,35: 429-441.

[43] Adewuyi Y G. Recent advances in fly-ash-based geopolymers: potential on the utilization for sustainable environmental remediation [J]. ACS Omega, 2021,6(24):15532-15542.

[44] Aliabdo A A, Elmoaty A A , Salem H A. Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance [J]. Construction and Building Materials, 2016,123:581-593.

[45] 许凌云,张祖华,史才军,等.地质聚合物混凝土力学性能和结构性能的研究进展[J/OL].材料导报,2022(07):1-29.

[46] 金慧,陆春校.粉煤灰的活化方法及应用研究进展[J].四川建材,2015,41(02):8-9.

[47] 阳东翱.超高性能混凝土TSLs的组成与微结构关系研究[D].长沙:湖南大学,2017.

[48] 柯国军,杨晓峰,彭红,等.化学激发粉煤灰活性机理研究进展[J].煤炭学报,2005,30(3):366-370.

[49] Jaarsveld J G S V, Deventer J S J V. Effect of the alkali metal activator on the properties of fly ash-based geopolymers [J]. Industrial & Engineering Chemistry Research, 1999, 38(10): 3932-3941.

[50] Yaghoubi M, Arulrajah A, Disfani M M, et al. Effects of industrial by -product based geopolymers on the strength development of a soft soil [J]. Soils and Foundations, 2018, 58(3): 716-728.

[51] 刘鑫,田轶轩,黄金凤,等.用于地聚合物的粉煤灰活性评价研究[J].材料导报,2022,36(2):98-104.

[52] Xie Tianyu, Visintin, Phillip, et al. Mix design and mechanical properties of geopolymer and alkali activated concrete: review of the state-of-the-art and the development of a new unified approach [J]. Construction and Building Materials, 2020, 256:119380.1-119380.33.

[53] 高巧玲.Na2SO4掺量对中性钠盐粉煤灰水泥水化程度和抗压强度的影响机理[J].湖南城市学院学报(自然科学版),2019,28(04):15-21.

[54] 陈杰,石莹,黄庆享,等.矸石电厂粉煤灰的化学激发及活化机理研究[J].非金属矿,2013,36(06):25-27.

[55] 陈杰,高尚勇,石莹,等.矸石电厂粉煤灰的火山灰反应动力学研究[J].硅酸盐通报,2016,35(03):908-912.

[56] 陈杰,刘永,石莹,等.矸石电厂粉煤灰基膏体充填材料研究[J].材料科学与工艺,2016,24(03):80-84.

[57] 褚运凯.高沙充填材料胶结剂制备及其输送性能研究[D].西安:西安科技大学,2021.

[58] Becher P F, Hsueh C H, Angelini P, et al. Toughening behavior in whisker-reinforced ceramic matrix composites [J]. Journal of the American Ceramic Society, 1988, 71(12): 1050-1061.

[59] Khan R. Fiber bridging in composite laminates: A literature review [J]. Composite Structures, 2019, 229:111418.1-111418.15.

[60] Ding C, Guo L P, Chen B. Orientation distribution of polyvinyl alcohol fibers and its influence on bridging capacity and mechanical performances for high ductility cementitious composites [J]. Construction and Building Materials,2020,247:118491.1-118491.16.

[61] 许金余,白二雷.纤维混凝土及其在防护工程中的应用[J].空军工程大学学报(自然科学版),2019,20(04):1-11.

[62] Mahmood A, Noman M T, Pechočiaková M, et al. Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering[J]. Polymers, 2021, 13(13):2099.

[63] 高丹盈,赵军,朱海堂,等.钢筋钢纤维混凝土深梁抗裂度的计算方法[J].水利学报,2002,33(11):124-128.

[64] 牛龙龙,张士萍,韦有信.钢纤维掺量对混凝土力学性能的影响[J].混凝土与水泥制品,2019,No.275(03):51-54.

[65] Han Juhong, Zhao Mengmeng, Chen Jingyu, et al. Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete [J]. Construction and Building Materials, 2019, 209: 577-591.

[66] 曹明莉,许玲,李志文,等.聚乙烯醇纤维及钢纤维增强水泥砂浆流变性和流动性能[J].建筑材料学报,2017,20(1):112-117.

[67] Isa A, Nosbi N, Che I M, et al. A review on recycling of carbon fibres: methods to reinforce and expected fibre composite degradations [J]. Materials. 2022, 15(14):4991.

[68] Bhatt P, Goe A. Carbon fibres: production, properties and potential use [J]. Material Science Research India, 2017, 14(1):52-57.

[69] Lefeuvre A, Garnier S, Jacquemin L, et al. Anticipating in-use stocks of carbon fibre reinforced polymers and related waste generated by the wind power sector until 2050 [J]. Resources Conservation and Recycling, 2018, 141(2019):30-39.

[70] Górski M, Kotala B, Białozor R. Types and properties of non-metallic reinforcement [C]//Proceedings of the XXXIII National Workshops of Structural Designers, Szczyrk, Poland. 2018: 6-9.

[71] Ahmad J, González-Lezcano R A, Majdi A, et al. Glass fibers reinforced concrete: overview on mechanical, durability and microstructure analysis [J]. Materials. 2022, 15(15):5111.

[72] 徐义华,王恒.纤维增强混凝土研究进展与应用[J].四川建材,2022,48(4):17-18.

[73] Fiore V, Scalici T, Bella G D, et al. A review on basalt fibre and its composites [J]. Composites Part B, 2015,74:74-94.

[74] Gong Y, Yang J, He X, et al. Structural design calculation of basalt fiber polymer-modified RPC beams subjected to four-point bending [J]. Polymers, 2021, 13(19): 3261.

[75] Kurniawan D, Kim B S, Lee H Y, et al. Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites [J]. Composites Part B, 2012, 43(3):1010-1014.

[76] Varley R J, Tian W, Leong K H, et al. The effect of surface treatments on the mechanical properties of basalt-reinforced epoxy composites [J]. Polymer Composites, 2013, 34(3):320-329.

[77] Wang Y, Sun X, Hu S. Experimental investigation on the elastic modulus and fracture properties of basalt fiber-reinforced fly ash geopolymer concrete [J]. Construction and Building Materials, 2022, 338:127570.

[78] Yu J, Chen Y, Leung C. Mechanical performance of Strain-Hardening Cementitious Composites (SHCC) with hybrid polyvinyl alcohol and steel fibers [J]. Composite Structures, 2019, 226:111198.

[79] 俞靖洋,梁乃兴,童攀,等.聚乙烯醇纤维水泥稳定碎石基层疲劳寿命分析[J].硅酸盐通报, 2019,38(8):2408‑2413+2419.

[80] Xiao S, Cai Y, Guo Y, et al. Experimental study on axial compressive performance of polyvinyl alcohol fibers reinforced fly ash-slag geopolymer composites [J]. Polymers, 2021, 14(1):142.

[81] Tan Y, Xu Z, Liu Z, et al. Effect of silica fume and polyvinyl alcohol fiber on mechanical properties and frost resistance of concrete [J]. Buildings, 2022, 12(1):47.

[82] Murad Y, Abdel-Jabbar H. Shear behavior of RC beams prepared with basalt and polypropylene fibers [J]. Case Studies in Construction Materials, 2022,16:e00835.

[83] Deng Z Y, Liu X R, Chen P, et al. Basalt-polypropylene fiber reinforced concrete for durable and sustainable pipe production. Part 1: Experimental program [J]. Structural Concrete, 2021, 23(1):311-327.

[84] Mostofinejad D, Moosaie I, Eftekhar M, et al. Ultra-high performance hybrid polyvinyl alcohol-polypropylene fiber-reinforced cementitious composites with augmented toughness and strain-hardening behavior [J]. Iranian Journal of Science and Technology, Transaction of Civil Engineering, 46(3):1997-2009.

[85] Afroughsabet V, Ozbakkaloglu T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers [J]. Construction and Building Materials, 2015, 94:73-82.

[86] 李娜,刘艳华,张忠.聚丙烯纤维对再生混凝土力学及收缩性能影响研究[J].公路工程,2021,46(1):200-204.

[87] Song P S, Hwang S, Sheu B C. Strength properties of nylon- and polypropylene-fiber-reinforced concretes [J]. Cement & Concrete Research, 2005, 35(8):1546-1550.

[88] 梁宁慧,严如,田硕,等.预加荷载下聚丙烯纤维混凝土抗渗机理研究[J].湖南大学学报(自然科学版),2021,48(9):155-162.

[89] 元成方,魏逸然,李爽.聚丙烯纤维混合再生骨料混凝土力学性能研究[J].郑州大学学报(工学版),2021,42(2):49-53.

[90] Fowler D W. Polymers in concrete: a vision for the 21st century [J]. Cement and Concrete Composites, 1999, 21(5-6):449-452.

[91] Raman B, Rakesh C, Singh S P. Mechanical properties of polymer concrete [J]. Journal of Composites, 2013:1-12.

[92] 李林香,谭盐宾,谢永江,等.增稠剂对混凝土收缩性能的影响[J].新型建筑材料,2022,49(03):38-41.

[93] 王茹,刘科,万芹,等.含羟乙基纤维素醚对CSA水泥早期水化的影响[J].建筑材料学报,2022,25(8):836-842.

[94] Tanguler-Bayramtan M, Alam B, Sucu M, et al. Cement and hydroxyethyl methyl cellulose interaction: the performance of cement-based adhesives [J]. Materials and Structures, 2022, 55(3): 91.

[95] Li J, Wang R, Xu Y. Influence of cellulose ethers chemistry and substitution degree on the setting and early-stage hydration of calcium sulphoaluminate cement [J]. Construction and Building Materials, 2022, 344: 128266.

[96] DL/T 5181-2017,水电水利工程锚喷支护施工规范[S].国家能源局,2017.

[97] GB/T 1596-2017,用于水泥和混凝土中的粉煤灰[S].中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会,2017.

[98] 刘鑫,田轶轩,黄金凤,等.用于地聚合物的粉煤灰活性评价研究[J].材料导报,2022,36(02):102-108.

[99] GB/T 17671-2021,水泥胶砂强度检验方法(ISO法)[S].国家市场监督管理总局、中国国家标准化管理委员会,2021.

[100] GB 8076-2008,混凝土外加剂[S].中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会,2008.

[101] GB/T 35159-2017,喷射混凝土用速凝剂[S].中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会,2017.

[102] GB/T 1346-2011,水泥标准稠度用水量、凝结时间、安定性检验方法[S].中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会,2011.

[103] SL/T 352-2020,水工混凝土试验规程[S].中华人民共和国水利部,2020.

[104] 刘云强,左晓宝,黎亮,等.硫酸盐侵蚀下硬化水泥浆体微结构演变及膨胀过程的数值模拟[J].硅酸盐通报,2022,41(12):4128-4138.

[105] 王智,卢浩,钱觉时.石灰形态对粉煤灰活性激发效果影响及动力学分析[J].新型建筑材料,1999(10):23-25.

[106] 覃丽芳,曲波,史才军,等.钙硅比对铝硅酸盐凝胶形成与特性的影响[J].材料导报,2020,34(12):12057-12063.

[107] 黄金龙,唐明亮,沈晓冬.杂质对氢氧化钙晶体形貌影响的探索研究[J].混凝土,2013(8):91-93.

[108] 彭玉清,郭荣鑫,林志伟,等.粉煤灰地聚合物力学性能影响因素研究综述[J].硅酸盐通报,2021,40(3):858-866.

[109] 李莉,张赛,何强,等.响应面法在试验设计与优化中的应用[J].实验室研究与探索,2015,34(8):41-45.

[110] 张泽志,韩春亮,李成未.响应面法在试验设计与优化中的应用[J].河南教育学院学报(自然科学版),2011,20(4):34-37.

[111] 赵少甫,韩伟.试验设计与优化方法在中药提取中的应用[J].机电信息,2016,No.482(20):38-45.

[112] 张晓萍,杨静,勇强,等.响应面优化法在纤维素酶合成培养基设计上的应用[J].林产化学与工业,2010,30(3):29-34.

[113] 李丽,王全金,胡常福,等.响应面法在复合垂直流人工湿地对村镇污水脱氮优化设计中的应用[J].环境污染与防治,2014,36(2):27-31.

[114] 宋保维,温庆国,毛昭勇,等.基于均匀试验响应面法在鱼雷外形设计中的应用[J].鱼雷技术,2009,17(6):19-23.

[115] 张丽娟,孟昕娜.正交设计和响应面设计在路用混凝土配合比优化中的应用与比较[J].石家庄铁道大学学报(自然科学版),2021,34(3):119-126.

[116] 蒋晗,赵进,方结红,等.Plackett-Burman设计和响应面法在食品专业综合实验教学中的应用[J].食品工程,2017,No.143(02):10-14.

[117] 鲍锐,陈中凯,刘玲,等.响应面法在灵芝深层发酵产灵芝酸优化中的应用[J].安徽科技学院学报,2020,34(5):36-41.

[118] 孙旭,何仁.响应曲面法在柴油机配气相位优化中的应用[J].江苏大学学报(自然科学版),2019,40(3):276-281.

[119] JGJ/T 238-2011,混凝土基层喷浆处理技术规程(附条文说明)[S].中华人民共和国住房和城乡建设部,2011.

[120] 张少波.煤矿薄喷技术的理论与实践[J].能源技术与管理,2016,41(z1):17-22.

[121] 魏群.喷涂柔膜在锚杆支护中的作用机理研究[D].中国矿业大学,2020.

[122] 邓宗才,赵连志,丁建明,等 .PVA纤维分散性及纤维混凝土弯曲韧性试验研究[J].混凝土与水泥制品,2021,No.304(08):49-53.

[123] Son M. Adhesion strength at the shotcrete-rock contact in rock tunneling [J]. Rock Mechanics and Rock Engineering, 2013, 46(5):1237-1246.

[124] Ou Z H, Ma B G, Jian S W. Influence of cellulose ethers molecular parameters on hydration kinetics of Portland cement at early ages [J]. Construction and Building Materials, 2012, 33: 78-83.

[125] 王茹,刘科,万芹,等.含羟乙基纤维素醚对CSA水泥早期水化的影响[J].建筑材料学报,2022,25(8):836-842.

[126] 肖伟.PVA纤维束搅拌设备作用机理及分散技术研究[D].重庆:重庆交通大学,2017.

[127] 李烜东,邵翔,孙德文,等.聚羧酸的分子设计与功能研究进展[J].广州化工,2021,49(4):25-28.

[128] 王传林,刘泽平,张腾腾,等.聚羧酸减水剂对活性粉末混凝土性能影响[J].公路,2022,67(1):316-322.

[129] LR Prudêncio. Accelerating admixtures for shotcrete [J]. Cement & Concrete Composites, 1998, 20(2):213-219.

[130] Paglia C. The influence of alkali-free and alkaline shotcrete accelerators within cement systems: I. characterization of the setting behavior [J]. Cement & Concrete Research, 2003, 33(3):387-395.

[131] Varley N. Experiences with the use of alkali free accelerators in Asia [J]. Tunnelling & Underground Space Technology, 2006, 21(3/4): 409.

[132] Li G, Zhang J, Niu M, et al. The mechanism of alkali-free liquid accelerator on the hydration of cement pastes [J]. Construction and Building Materials, 2020, 233:117296.

中图分类号:

 X752    

开放日期:

 2026-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式