- 无标题文档
查看论文信息

论文中文题名:

 阻燃超疏水柔性压阻传感器的构建及其传感性能的研究    

姓名:

 董雨柔    

学号:

 22213065008    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081701    

学科名称:

 工学 - 化学工程与技术 - 化学工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工程与技术    

研究方向:

 胶体与表面化学    

第一导师姓名:

 屈孟男    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-12    

论文答辩日期:

 2025-05-27    

论文外文题名:

 Construction of flame-retardant superhydrophobic flexible piezoresistive sensors and study of their sensing performance    

论文中文关键词:

 阻燃 ; 超疏水 ; 柔韧性 ; 压阻传感器 ; 人体传感    

论文外文关键词:

 Flame-retardant ; Superhydrophobic ; Flexibility ; Piezoresistive sensors ; Human sensing    

论文中文摘要:

随着智能电子设备的快速发展,柔性压阻传感器已成为学术界与产业界关注的热点,其工作原理是压阻效应,即在外力作用下,传感器的电阻值会发生变化。与刚性传感器相比,柔性压阻传感器通常采用可拉伸、回弹性好的材料作为基底,因其具有优异的灵活性和便捷性,在智能可穿戴设备等领域具有不可替代的优势。虽然柔性压阻传感器在导电网络的搭建与制备工艺的优化等方面取得了显著的进展,但是仍然存在环境适应性差的问题。如潮湿的环境会干扰传感器内部电子的迁移,从而影响电信号的传输,导致传感器性能下降;而高温环境会逐渐侵蚀柔性基底,使其坍塌,并可能对人体皮肤造成灼伤。因此,赋予柔性压阻传感器阻燃超疏水的特性,能够提高其在极端环境(湿润、酸碱、盐渍及高温)下的稳定性。基于上述背景,本论文主要研究了利用聚氨酯(PU)海绵和纯棉织物(Cotton)作为柔性基底,以碳纳米管(CNTs)或炭黑(CB)作为导电材料,并采用磷系阻燃剂和低表面能物质共同对其进行改性,最终得到了阻燃超疏水柔性压阻传感器。

本论文的研究内容分为以下两个部分:

(1)利用浸涂法在聚氨酯海绵骨架表面沉积氨基化碳纳米管/中空玻璃微球/磷酸二氢铵(A-CNTs/HGM/ADP)涂层,并用聚二甲基硅氧烷(PDMS)对其表面进行疏水改性,得到具有超疏水、高阻燃性能的柔性压阻传感器(CHAP-PU)。该海绵基压阻传感器具有出色的灵敏度60.2 kPa-1(0-1.45 kPa),快速的响应/恢复时间(152 ms/178 ms)以及优异的耐久性(>3000次循环)。该压阻传感器不仅能够检测人体(手指,肘部和膝盖)的运动信号,而且在水下也能够稳定地运行。此外,与普通的聚氨酯海绵基压阻传感器相比,改性后的传感器具有优异的阻燃性,可用于构建火灾报警装置,实现了2 s的快速响应。因此,该多功能CHAP-PU传感器不仅性能优异,而且能够适应于多种复杂环境,有望集成在消防员身上实现在高温和高湿度环境下的运动传感检测。

(2)以聚多巴胺(PDA)为交联剂,利用浸涂法将不同浓度的炭黑(CB),以及磷酸(H3PO4)负载于织物上,通过进一步喷涂低表面能物质十二烷基三甲氧基硅烷(DTMS)提高织物表面的疏水性能。将所制备的低电阻织物和高电阻织物分别作为传感器的上下层,成功制备出了具有“中空”结构的高灵敏度阻燃超疏水织物基压阻传感器(CPHD)。该CPHD压阻传感器具有较高的灵敏度4.30 kPa-1(0-13.9 kPa),0-82.85 kPa的响应范围和快速的响应/恢复能力(79 ms/80 ms)。当以10 kPa的压力循环负载4600多次后,CPHD传感器仍然显示出稳定的响应信号。同时,该CPHD柔性压阻传感器具有优异的疏水性、阻燃性和隔热性,总热释放量(THR)仅为1.37 KJ/g,不仅可以检测人体的运动信号,还可作为隔热材料保护人体皮肤,在水下也能够精准地检测到小鱼身体摆动和液滴引发的微小信号。该CPHD织物基压阻传感器在人体运动检测和水下传感领域展现出广阔的应用前景。

论文外文摘要:

With the rapid development of intelligent electronic devices, flexible piezoresistive sensors have become a hotspot of attention in academia and industry, whose working principle is piezoresistive effect, i.e., under the action of external force, the resistance value of the sensor will change. Compared with rigid sensors, flexible piezoresistive sensors usually use stretchable and resilient materials as the substrate, and have irreplaceable advantages in fields such as smart wearable devices due to their excellent flexibility and convenience. Although flexible piezoresistive sensors have made significant progress in the construction of conductive networks and the optimisation of preparation processes, they still suffer from poor environmental adaptability. For example, humid environments can interfere with the migration of electrons inside the sensor, thus affecting the transmission of electrical signals and leading to a degradation of the sensor's performance; while high-temperature environments can gradually erode the flexible substrate, causing it to collapse and potentially causing burns to human skin. Therefore, endowing flexible piezoresistive sensors with flame-retardant superhydrophobic properties can improve their stability in extreme environments (wet, acidic, alkaline, salty and high temperatures). Based on the above background, this thesis focuses on the use of polyurethane (PU) sponge and cotton fabric (Cotton) as flexible substrates, carbon nanotubes (CNTs) or carbon black (CB) as conductive materials, and phosphorus-based flame retardant and low-surface-energy substances to jointly modify them, and ultimately obtain flame-retardant superhydrophobic flexible piezoresistive sensors.

The research for this thesis is divided into the following two parts:

A flexible piezoresistive sensor (CHAP-PU) with superhydrophobic and high flame-retardant properties was obtained by depositing an aminated carbon nanotubes/hollow glass microspheres/ammonium dihydrogen phosphate (A-CNTs/HGM/ADP) coating on the surface of a polyurethane sponge skeleton using dip-coating method, and hydrophobically modifying the surface with polydimethylsiloxane (PDMS). This sponge-based piezoresistive sensor has an excellent sensitivity of 60.2 kPa-1 (0-1.45 kPa), fast response/recovery time (152 ms/178 ms) and excellent durability (>3000 cycles). The piezoresistive sensor not only detects motion signals from the human body (fingers, elbows and knees), but also operates stably underwater. In addition, the modified sensor has excellent flame retardancy compared to ordinary polyurethane sponge-based piezoresistive sensors, and can be used to construct a fire alarm device that achieves a fast response of 2 s. As a result, this multifunctional CHAP-PU sensor not only has excellent performance, but also can be adapted to a wide range of complex environments, and is expected to be integrated into firefighters to achieve motion sensing detection in high-temperature and high-humidity environments.

Using polydopamine (PDA) as a cross-linking agent, different concentrations of carbon black (CB), and phosphoric acid (H3PO4) were loaded onto the fabrics using dip-coating method, and the hydrophobicity of the fabric surfaces was improved by further spraying of dodecyltrimethoxysilane (DTMS), which is a low surface energy substance. Highly sensitive flame-retardant superhydrophobic fabric-based piezoresistive sensors (CPHD) with a “hollow” structure were successfully prepared by using the prepared low-resistance fabrics and high-resistance fabrics as the upper and lower layers of the sensors, respectively. This CPHD piezoresistive sensor has a high sensitivity of 4.30 kPa-1 (0-13.9 kPa), a response range of 0-82.85 kPa and fast response/recovery (79 ms/80 ms). After cycling the load more than 4600 times at a pressure of 10 kPa, the CPHD sensor still shows a stable response signal. At the same time, the CPHD flexible piezoresistive sensor has excellent hydrophobicity, flame retardancy and thermal insulation, with a total heat release (THR) of only 1.37 KJ/g. It can not only detect human movement signals, but also act as a thermal insulation material to protect human skin, and can accurately detect tiny signals triggered by the body oscillations of small fishes and liquid droplets underwater. This CPHD fabric-based piezoresistive sensor shows promising applications in human motion detection and underwater sensing.

参考文献:

[1]Luo Y, Abidian M, Ahn J, et al. Technology roadmap for flexible sensors[J]. ACS Nano, 2023, 17(6), 5211-5295.

[2]Cai Y, Liu L, Meng X, et al. A broad range and piezoresistive flexible pressure sensor based on carbon nanotube network dip-coated porous elastomer sponge[J]. RSC Advances, 2022, 12(52), 34117-34125.

[3]Yu Y, Liao X, Feng W. Recent development of elastomer-based smart sensing materials and structures[J]. Advanced Composites and Hybrid Materials, 2025, 8(1), 138.

[4]Wang X, Li H, Wang T, et al. Flexible and high-performance piezoresistive strain sensors based on multi-walled carbon nanotubes@polyurethane foam[J]. RSC Advances, 2022, 12(22), 14190-14196.

[5]Zhang J, Liu L, Liu J, et al. Reduced graphene oxide/polyurethane composite sponge fabricated by dual-templates method for piezoresistive pressure sensor[J]. Carbon Letters, 2024, 34(2), 805-814.

[6]Xu C, Lu H, Liu Z, et al. Flexible piezoresistive sensors based on porous PDMS/CB composite materials prepared by the solvothermal method[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(10), 906.

[7]Yu Q, Pan J, Li J, et al. A general strategy to immobilize metal nanoparticles on MXene composite fabrics for enhanced sensing performance and endowed multifunctionality[J]. Journal of Materials Chemistry C, 2022, 10(36), 13143-13156.

[8]Zhai Y, Yu Y, Zhou K, et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors[J]. Chemical Engineering Journal, 2020, 382, 122985.

[9]Ruan D, Chen G, Luo X, et al. Bionic octopus-like flexible three-dimensional force sensor for meticulous handwriting recognition in human-computer interactions[J]. Nano Energy, 2024, 123, 109357.

[10]Lv Y, Min L, Niu F, et al. Conductive nanomaterials with different dimensions for flexible piezoresistive sensors: From selectivity to applications[J]. Advanced Materials Technologies, 2023, 8(11), 2201886.

[11]Gong S, Cheng W. One‐dimensional nanomaterials for soft electronics[J]. Advanced Electronic Materials, 2017, 3(3), 1600314.

[12]Gao W, Lu C, Li H, et al. Self-healable, superhydrophobic, and flexible strain sensor based on polyurethane composite for underwater sensing[J]. ACS Applied Polymer Materials, 2023, 5(9), 7263-7276.

[13]Latthe S, Terashima C, Nakata K, et al. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf[J]. Molecules, 2014, 19(4), 4256-4283.

[14]Xu C, Chen J, Zhu Z, et al. Flexible pressure sensors in human-machine interface applications[J]. Small, 2024, 20(15), 2306655.

[15]Zhu W, Liu X, Chen X, et al. Sensitivity-stability trade-off in conductive foam-based pressure sensors[J]. Journal of Materials Chemistry C, 2024, 12(18), 6568-6577.

[16]Shi Y, Lv X, Zhao J, et al. Flexible capacitive pressure sensor based on microstructured composite dielectric layer for broad linear range pressure sensing applications[J]. Micromachines, 2022, 13(2), 223-223.

[17]Wang L, Tang Y, Li Y, et al. MXene/Silver nanowire-based spring frameworks for highly flexible waterproof supercapacitors and piezoelectrochemical-type pressure-sensitive sensor devices[J]. Langmuir, 2022, 38(23), 7312-7321.

[18]Qiao B, Song J, Zhang T, et al. A triboelectric flexible pressure sensors based on synergistic enhancement of material and structure for robot behavior perception[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(29), 1918.

[19]Shi L, Feng J, Zhu Y, et al. A review of flexible strain sensors for walking gait monitoring[J]. Sensors and Actuators A: Physical, 2024, 377, 115730.

[20]Hu J, Dun G, Geng X, et al. Recent progress in flexible micro-pressure sensors for wearable health monitoring[J]. Nanoscale Advances, 2023, 5(12), 3131-3145.

[21]Bhakhar S, Tannarana M, Pataniya P, et al. Flexible paper-based piezo-resistive sensor functionalized by MoS2 nanosheets[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(11), 994.

[22]Chen F, Liu H, Xu M, et al. Fast-response piezoresistive pressure sensor based on polyaniline cotton fabric for human motion monitoring[J]. Cellulose, 2022, 29(12), 6983-6995.

[23]渠纯纯, 孙文秀, 李臻, 等. 植物柔性传感器研究进展与展望[J]. 农业工程学报, 2023, 39(08), 32-43.

[24]Song Y, Chen H, Su Z, et al. Highly compressible integrated supercapacitor piezoresistance‐sensor system with CNT-PDMS sponge for health monitoring[J]. Small, 2017, 13(39), 1702091.

[25]Huang J, Li D, Zhao M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal, 2019, 373, 1357-1366.

[26]Li Y, Shi L, Cheng Y, et al. Development of conductive materials and conductive networks for flexible force sensors[J]. Chemical Engineering Journal, 2022, 455, 140763.

[27]Zhang C, Zhou Y, Ye C. Silver nanowires/waterborne polyurethane composite film based piezoresistive pressure sensor for ultrasensitive human motion monitoring[J]. Nanotechnology, 2024, 35(32), 5502.

[28]Qin Z, Lv Y, Fang X, et al. Ultralight polypyrrole crosslinked nanofiber aerogel for highly sensitive piezoresistive sensor[J]. Chemical Engineering Journal, 2022, 427, 131650.

[29]Borode T, Wang D, Prasad A. Polyaniline-based sensor for real-time plant growth monitoring[J]. Sensors and Actuators A: Physical, 2023, 355, 114319.

[30]Gong S, Cheng W. One‐dimensional nanomaterials for soft electronics[J]. Advanced Electronic Materials, 2016, 3(3), 1600314.

[31]Daňová R, Olejnik R, Slobodian P, et al. The piezoresistive highly elastic sensor based on carbon nanotubes for the detection of breath[J]. Polymers, 2020, 12(3), 713.

[32]Neinhuis C. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6), 667-677.

[33]曹祥康, 孙晓光, 蔡光义, 等. 耐久型超疏水表面: 理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33 (09), 1525-1537.

[34]Wenzel R. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8), 988-994.

[35]Cassie A, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40(0), 546-551.

[36]Bico J, Marzolin C, Quéré D. Pearl drops[J]. Europhysics letters, 1999, 47(2), 220.

[37]Zhang W, Wang D, Sun Z, et al. Robust superhydrophobicity: mechanisms and strategies[J]. Chemical Society Reviews, 2021, 50(6), 4031-4061.

[38]Liu L, Jiao Z, Zhang J, et al. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications[J]. ACS Applied Materials & Interfaces, 2021, 13(1), 1967-1978.

[39]Ge Z, Cai T, Yang H, et al. Biology and nature: bionic superhydrophobic surface and principle[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10, 1033514-1033514.

[40]代学玉, 汪永丽, 高兰玲. 化学沉积法制备超疏水表面的研究进展[J]. 山东化工, 2017, 46(18), 57-58.

[41]Wang H, He X, Huang X, et al. Vapor-based fabrication of PEDOT coating for wearable strain sensors with excellent sensitivity and self-cleaning capability[J]. Materials Today Chemistry, 2023, 28, 101361.

[42]Ekanayake U, Dayananda K, Nadeesha R, et al. Fabrication of multifunctional smart polyester fabric via electrochemical deposition of ZnO nano-/microhierarchical structures[J]. Journal of Coatings Technology and Research, 2022, 19(4), 1243-1253.

[43]柳雷. 聚氨酯材料的超疏水改性及应用研究[D]. 硕士, 2018.

[44]Liu X, Chen K, Zhang D, et al. One-step methods to fabricate durable superhydrophobic coatings for flexible electronic sensors. Coatings, 2021, 11(1), 95.

[45]Qu M, Lv Y, Ge J, et al. Hydrophobic and multifunctional strain, pressure and temperature sensor based on TPU/SiO2-ILs ionogel for human motion monitoring, liquid drop monitoring, underwater applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 664, 131103.

[46]楼陈钰, 朱子龙. 阻燃窗帘的性能评价及实测分析[J]. 纺织科技进展, 2016, 07, 40-43.

[47]Yin X, Li L, Pang H, et al. Halogen-free instinct flame-retardant waterborne polyurethanes: composition, performance, and application. RSC Advances, 2022, 12(23), 14509-14520.

[48]刘姝君. 阻燃竹基纤维复合材料的制造与性能评价[D]. 博士, 2013, 07, 43.

[49]Ma Z, Zhang Z, Wang C, et al. Construction of green versatile coating integrating fireproof, electric-conduction and self-cleaning performance for cotton fabrics[J]. Applied Surface Science, 2023, 637, 157862.

[50]Chen B, Lu H, Zhu H, et al. Superhydrophobic and flame-retardant chitosan/ammonium polyphosphate/montmorillonite aerogel-based piezoresistive pressure sensor for human motion detection[J]. Sensors and Actuators A: Physical, 2024, 369, 115135.

[51]Nishikawa T, Yamane H, Matsuhisa N, et al. Stretchable strain sensor with small but sufficient adhesion to skin[J]. Sensors, 2023, 23(4), 1774-1774.

[52]Bai J, Li D, Tang W, et al. Carbonized biomass cattail for flexible pressure sensor[J]. Materials Today Communications, 2023, 35, 105561.

[53]Kang B, Yan X, Zhao Z, et al. Dual-sensing, stretchable, fatigue-resistant, adhesive, and conductive hydrogels used as flexible sensors for human motion monitoring[J]. Langmuir, 2022, 38(22), 7013-7023.

[54]Ma L, Lei X, Guo X, et al. Carbon black/graphene nanosheet composites for three-dimensional flexible piezoresistive sensors[J]. ACS Applied Nano Materials, 2022, 5(5), 7142-71149.

[55]Liang J, Sheng H, Ma H, et al. Transparent electronic skin from the integration of strain sensors and supercapacitors[J]. Advanced Materials Technologies, 2022, 8(4), 2201234.

[56]Zhao L, Ke T, Ling Q, et al. Multifunctional ionic conductive double-network hydrogel as a long-term flexible strain sensor[J]. ACS Applied Polymer Materials, 2021, 3(11), 5494-5508.

[57]Zhao Z, Li Q, Dong Y, et al. Washable patches with gold nanowires/textiles in wearable sensors for health monitoring[J]. ACS Applied Materials & Interfaces, 2022, 14(16), 18884-18900.

[58]Li Y, Samad Y, Taha T, et al. Highly flexible strain sensor from tissue paper for wearable electronics[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8), 4288-4295.

[59]Cheng S, Narang Y, Yang C, et al. Stick‐on large‐strain sensors for soft robots[J]. Advanced Materials Interfaces, 2019, 6(20), 1900985.

[60]Li J, Yao Z, Meng X, et al. High-fidelity, low-hysteresis bionic flexible strain sensors for soft machines[J]. ACS Nano, 2024, 18(3), 2520-2530.

[61]Shen Y, Liu C, He H, et al. Recent advances in wearable biosensors for non-invasive detection of human lactate[J]. Biosensors, 2022, 12(12), 1164.

[62]Liu B, Lin X, Zhao P, et al. Robust polypyrrole@halloysite nanotube-coated polyurethane sponge as multifunctional flexible sensors[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(24), 8753-8763.

[63]Huang B, Feng J, He J, et al. High sensitivity and wide linear range flexible piezoresistive pressure sensor with microspheres as spacers for pronunciation recognition[J]. ACS Applied Materials & Interfaces, 2024, 16(15), 19298-19308.

[64]Cai Y, Liu L, Meng X, et al. A broad range and piezoresistive flexible pressure sensor based on carbon nanotube network dip-coated porous elastomer sponge[J]. RSC Advances, 2022, 12(52), 34117-34125.

[65]Wang F, Zhang W, Song Y, et al. Wearable and cost-effective pressure sensor based on a carbon nanotube/polyurethane sponge for motion detection and gesture recognition[J]. ACS Applied Electronic Materials, 2023, 5(12), 6704-6715.

[66]Wu X, Huang S, Zhang Y, et al. Flame retardant polyurethane sponge/MTMS aerogel composites with improved mechanical properties under ambient pressure drying[J]. Journal of Nanoparticle Research, 2020, 22, 221.

[67]Li L, Su Q, Xiao W, et al. Layer-by-layer assembly enables electrically conductive, hydrophobic and flame-retardant fabric composites for multifunctional sensing and fire warning[J]. Composites Part B: Engineering, 2025, 112235.

[68]Raza T, Tufail M, Ali A, et al. Wearable and flexible multifunctional sensor based on laser-induced graphene for the sports monitoring system[J]. ACS Applied Materials & Interfaces, 2022, 14(48), 54170-54181.

[69]Li J, Mu L, Liu Q, et al. A review: fabric-based solar driven interfacial evaporator[J]. Nano Energy, 2024, 132, 110394.

[70]Liu Q, Li J, He J, et al. Ultrahigh moisture resistance, highly sensitive and flame retardancy wearable strain sensor for agile water rescue, fire alarm and human motion detection[J]. Chemical Engineering Journal, 2024, 479, 147706.

[71]Li X, Wang Y, Wang R, et al. A dip‐decoating process for producing transparent bi‐superhydrophobic and wrinkled water surfaces[J]. Advanced Materials Interfaces, 2018, 5(15), 1800356.

[72]Hou C, Fan Z, Yang J. Construction of super hydrophobic paper by modified nano-SiO2 hybrid medium fluoro-epoxy polymer and its properties[J]. Progress in Organic Coatings, 2024, 187, 108180.

[73]Xu Q, Zhang W, Dong C, et al. Biomimetic self-cleaning surfaces: synthesis, mechanism and applications[J]. Journal of The Royal Society Interface, 2016, 13(122), 20160300.

[74]李红. 化学膨胀阻燃热塑性聚烯烃弹性体研究[D]. 硕士, 2009.

[75]钟矿. 磷酸二氢铵-尿素合成聚磷酸铵的研究[D]. 硕士, 2018.

[76]Liu X, Wei Y, Qiu Y. Advanced flexible skin-like pressure and strain sensors for human health monitoring[J]. Micromachines, 2021, 12(6), 695-695.

[77]Yan G, Han D, Li W, et al. Effect of pyrolysis carbon black and carbon nanotubes on properties of natural rubber conductive composites[J]. Journal of Applied Polymer Science, 2022, 139(23), 52321.

[78]Shahzad F, Zaidi S, Naqvi R. 2D transition metal carbides (MXene) for electrochemical sensing: a review[J]. Critical Reviews in Analytical Chemistry, 2020, 52(4), 848-864.

[79]Sun T, Zhang J, Chen Y, et al. Bioinspired, ultra-sensitive flexible strain sensor based on ceramic fiber paper with superhydrophobic and high-temperature-resistant properties[J]. Advanced Materials Technologies, 2022, 8(3), 2200972.

[80]Su Z, Xu D, Liu Y, et al. All-fabric tactile sensors based on sandwich structure design with tunable responsiveness[J]. ACS Applied Materials & Interfaces, 2023, 15(26), 32002-32010.

[81]Zhou S, Zhu X, Yan Q. One‐step electrochemical deposition to achieve superhydrophobic cobalt incorporated amorphous carbon‐based film with self‐cleaning and anti‐corrosion[J]. Surface and Interface Analysis, 2017, 50(3), 290-296.

[82]Liu k, Yang C, Zhang S, et al. Laser direct writing of a multifunctional superhydrophobic composite strain sensor with excellent corrosion resistance and anti-icing/deicing performance[J]. Materials & Design, 2022, 218, 110689.

[83]Shi X, Jing C, Luo H, et al. A flame retardant coating based on amino acid and phytic acid for cotton fabrics[J]. Polymer Degradation and Stability, 2024, 230, 11106.

[84]Zhu J, Song Y, Wang J, et al. A highly flame-retardant, agile fire-alarming and ultrasensitive cotton fabric-based piezoresistive sensor for intelligent fire system[J]. Polymer Degradation and Stability, 2023, 211, 110338 .

[85]Zou S, Wang Y, Li D, et al. Facile and scalable fabrication of stretchable flame-resistant yarn for temperature monitoring and strain sensing[J]. Chemical Engineering Journal, 2022, 450, 138465.

中图分类号:

 TB34    

开放日期:

 2025-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式