- 无标题文档
查看论文信息

题名:

 渗流-应力耦合下的断续双裂隙岩石力学特性及裂隙通道响应特征研究    

作者:

 刘子嘉    

学号:

 21220089020    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯灾害防治    

导师姓名:

 双海清    

导师单位:

 西安科技大学    

提交日期:

 2024-06-18    

答辩日期:

 2024-06-01    

外文题名:

 Mechanical properties of interrupted bifurcated rocks under seepage-stress coupling and characterization of fracture channel response    

关键词:

 煤岩力学特性 ; 渗透特性 ; 断续双裂隙 ; 三轴渗流 ; 渗流-应力耦合    

外文关键词:

 Coal rock mechanical properties ; Permeability properties ; Intermittent double slit ; Triaxial seepage ; Seepage-stress coupling    

摘要:

采动煤层覆岩往往处于不同应力状态并伴生不同的裂隙形态,并且裂隙煤岩体与瓦斯处于两相共存的渗流环境,渗流作用下复杂裂隙岩体的形变及失稳直接关系煤岩巷道的稳定性。所以,在探讨渗流-应力耦合下裂隙岩石的力学特性以及渗透能力方面,这一点显得极其关键。本文基于含瓦斯煤岩多场耦合试验系统,针对预制断续双裂隙岩石,开展了不同围压,瓦斯压力和裂隙角度组合下的断续双裂隙岩石全应力应变过程中形变及渗透率演化特征研究试验,得出以下结论:

通过开展断续双裂隙岩石不同裂隙角度下(10°、50°和90°)、不同围压(5MPa、7.5MPa和10MPa)、不同瓦斯压力(1MPa、2MPa和3MPa)的三轴渗流试验,研究了渗流-应力作用下的应力应变特征;得到了断续双裂隙岩石的峰值强度、弹性模量和泊松比随围压增长而增加;瓦斯压力减小了试样的峰值强度和弹性模量,加强了试件的泊松效应,裂隙角度与之相反。

通过分析不同试验条件下断续双裂隙岩石的渗透率演化特征,得到了渗透率随轴向应变变化呈现出缓慢降低、快速增加及急剧上升3个阶段演化规律,随体积应变变化呈缓慢降低、快速增加Ⅰ期、快速增加Ⅱ期、趋于平稳及急剧上升5个阶段演化规律。

通过正交试验研究,确定影响力学和渗透指标的关键因子。对于影响峰值强度、残余强度和泊松比程度的排序为裂隙角度>围压>瓦斯压力;弹性模量的影响程度排序为裂隙角度>瓦斯压力>围压;最小渗透率的影响程度排序为围压>瓦斯压力>裂隙角度,渗透率最大值的影响程度排序为裂隙角度>围压>瓦斯压力。

通过分析渗流-应力耦合作用下能量储存与耗散特征,得到了围压会加强岩石能量积聚,而瓦斯压力起到降低岩石储能能力的作用。裂隙角度和围压越大,弹性应变能在峰后破坏阶段能量释放越剧烈。围压越大,峰前所需的耗散能就越多,在峰后阶段所激增的耗散能量值越大。瓦斯压力越大,峰后阶段所激增的耗散能量值越小。

通过分析裂纹表观特征,得到不同工况条件下断续双裂隙岩石的破坏形式,随着围压的增加,岩桥处翼裂纹扩展路径将逐渐向试件端面靠近。随着裂隙角度的增加,破坏类型由拉破坏转为拉剪破坏,再到劈裂拉破坏的演变,破坏的剧烈程度也相应地从弱变化到较强,最后到强的转变。研究结果可为深化采动影响下含裂隙煤岩体的失稳破坏机制研究提供理论参考。

外文摘要:

The overlying rocks of mining coal seams are often in different stress states and accompanied by different fissure patterns, and the fissured coal rock body and gas are in a two-phase coexistence of seepage environment, the deformation and destabilization of the complex fissured rock body under the seepage effect are directly related to the stability of the coal roadway. Therefore, it is especially important to study the strength, deformation and permeability of fissured rocks under Seepage-stress coupling. Based on the multi-field coupling test system of gas-containing coal rock, this paper carries out the characterization of the deformation and permeability evolution of interrupted double-fractured rock under different combinations of perimeter pressure, gas pressure and fracture angle in the full stress-strain process for prefabricated interrupted double-fractured rock, and draws the following conclusions:

The stress-strain characteristics under seepage-stress were investigated by carrying out triaxial seepage tests with different fracture angles, different perimeter pressures, and different gas pressures in interrupted bifurcated rocks; positive correlations were obtained between the perimeter pressures and the strength-deformation parameters of the specimens; the gas pressures reduced the peak strengths and elastic moduli of the specimens and enhanced the Poisson effect of the specimens, and the fracture angles were inversely correlated with each other.

By analyzing the permeability evolution characteristics of the interrupted bifurcated rocks under different test conditions, it was obtained that the permeability with axial strain changes showed three stages of evolution laws of slow decrease, rapid increase and sharp increase, and five stages of evolution laws of slow decrease, rapid increase Ⅰ, rapid increase Ⅱ, leveling off and sharp increase with volumetric strain changes.

The main factors affecting each mechanical index and permeability performance were identified through orthogonal test analysis. The influences on peak strength, residual strength and Poisson's ratio are, in descending order, fissure angle>peripheral pressure>gas pressure; the influences on modulus of elasticity are, in descending order, fissure angle>gas pressure>peripheral pressure; the factors affecting the minimum permeability are, in descending order, peripheral pressure>gas pressure>fissure angle; and the factors affecting the maximum value of permeability are, in descending order, fissure angle>peripheral pressure>gas pressure.

By analyzing the characteristics of energy storage and dissipation under seepage-stress coupling, it was obtained that the peripheral pressure enhances the rock energy accumulation, while the gas pressure plays a role in reducing the rock energy storage capacity. The larger the fracture angle and the surrounding pressure, the more drastic the energy release of elastic strain energy in the post-peak damage stage. The greater the confining pressure, the more dissipation energy is required before the peak, and the greater the value of dissipation energy that is surged during the post-peak phase. The higher the gas pressure, the smaller the value of dissipated energy surged in the post-peak phase.

By analyzing the apparent characteristics of the cracks, the damage forms of the interrupted bifid rock under different working conditions are obtained, and with the increase of the circumferential pressure, the extension path of the wing cracks at the rock bridge will be close to the end face of the specimen. With the increase of angle, the damage type changes from pull damage to pull-shear damage, and then to the evolution of cleavage pull damage, and the degree of damage changes from weak to stronger and finally to strong accordingly. The results of the study can provide a reference for the study of destabilization and damage mechanism of coal rock body containing fissures under the influence of mining.

参考文献:

[1] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019,44(5):1283-1305.

[2] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[R]. 2023.

[3] 吴占伟, 黄炳香, 赵兴龙, 等. 我国煤系共伴生矿产赋存特征及分布规律[J]. 采矿与安全工程学报, 2024,41(1):29-46.

[4] 薛熠. 采动影响下损伤破裂煤岩体渗透性演化规律研究[D]. 中国矿业大学, 2017.

[5] Cheng G, Ma T, Tang C, et al. A zoning model for coal mining-induced strata movement based on micro-seismic monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2017,94(3):123-138.

[6] 李振. 老空区破碎煤岩体变形与渗流特性研究及在煤层气抽采中的应用[D]. 太原理工大学, 2018.

[7] 张纯旺. 废弃矿井采空区覆岩裂隙导通机理及多尺度渗流特性研究[D]. 太原理工大学, 2022.

[8] 孔洋, 朱珍德, 阮怀宁. 三向应力作用下节理岩体渗流-应力耦合特性[J]. 岩土力学, 2018,39(6):2008-2016.

[9] 张晗, 张晓平, 张旗, 等. 含双裂隙试样裂纹贯通细观机理研究[J]. 工程地质学报, 2023,31(3):968-980.

[10] Mohamed KM, Murphy MM, Lawson HE, et al. Analysis of the currentrib support practices and techniques in U.S. coal mines[J]. International Journal of Mining Science and Technology, 2016,26(1): 77-87.

[11] Wen Z, Wang X, Li Q, et al. Simulation analysis on strength and acoustic emission characteristics of jointed rock mass[J]. Tehnički Vjesnik-Technical Gazette, 2016,23(5): 1277-1284.

[12] 宋勇军, 程柯岩, 孟凡栋. 冻融作用下裂隙岩石损伤破坏声发射特性研究[J]. 采矿与安全工程学报, 2023,40(2):408-419.

[13] Bobet A, Einstein H H. Fracture coalescence in rock-type material under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998,35(7):863-888.

[14] Wang R H C, Chau K T . Crack coalescence in a rock-like material containing two cracks[J]. International Journal of Rock Mechanics and Mining Sciences, 1998,35(2):147-164.

[15] 杨圣奇, 戴永浩, 韩立军, 等. 断续预制裂隙脆性大理岩变形破坏特性单轴压缩试验研究[J]. 岩石力学与工程学报, 2009,28(12):2391-2404.

[16] 杨圣奇, 徐卫亚, 韦立德, 等. 单轴压缩下岩石损伤统计本构模型与试验研究[J]. 河海大学学报(自然科学版), 2004,32(2):200-203.

[17] 陈新, 廖志红, 李德建. 节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J]. 岩石力学与工程学报, 2011,30(4):781-789.

[18] Xu J, Li Z X, et al. Damage evolution and crack propagation in rocks with dual elliptic flaws in compression[J]. Acta Mechanica Solida Sinica, 2017,30(6):573-582.

[19] Yang S Q , Tian W L , Huang Y H , et al. Experimental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compression[J]. Engineering Fracture Mechanics, 2018,194:154-174.

[20] 林鹏, 黄凯珠, 王仁坤, 等. 不同角度单裂纹缺陷试样的裂纹扩展与破坏行为[J]. 岩石力学与工程学报, 2005,24(A02):5652-5657.

[21] 肖桃李, 李新平, 郭运华. 三轴压缩条件下单裂隙岩石的破坏特性研究[J]. 岩土力学, 2012,33(11):3251-3256.

[22] Yang S Q, Jiang Y Z, Xu W Y, et al. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression[J]. International Journal of Solids and Structures, 2008,45(17):4796-4819

[23] Huang D, Gu D, Yang C, et al. Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression[J]. Rock Mechanics and Rock Engineering, 2016,49(2):375-399.

[24] 尹光志, 刘玉冰, 李铭辉, 等. 真三轴加卸载应力路径对原煤力学特性及渗透率影响[J]. 煤炭学报, 2018,43(1):131-136.

[25] 张后全, 徐建峰, 贺永年, 等. 脆性岩石真三轴能量强度准则研究[J]. 中国矿业大学学报, 2012,41(4):564-570.

[26] 张振华, 孙钱程, 李德忠, 等. 周期性渗透压作用下红砂岩渗透特性试验研究[J]. 岩土工程学报, 2015,37(5):937-943.

[27] Wang H L, Xu W Y, Jia C J, et al. Experimental research on permeability evolution with microcrack development in sandstone under different fluid pressures[J]. Journal of Ge-otechnical and Geoenvironmental Engineer-ing, 2016,142(6):1-9.

[28] Xu P, Yang S Q. Permeability evolution of sandstone under short-term and long-term triaxial compression[J]. Interna-tional Journal of Rock Mechanics and Mining Sciences, 2016,85(5):152-164.

[29] 刘伟韬, 杜衍辉, 于师建, 等. 陷落柱骨架砂岩三轴压缩渗流特性及声发射特征试验研究[J]. 岩石力学与工程学报, 2021,40(8):1580-1590.

[30] ALAM AKMB, Niioka M, Fujii Y,et al. Effects of confining pressure on the permeability of three rock types under compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2014,65(1):49-61.

[31] Xiao W J,Zhang D M,Wang X J. Experimental study on progressive failure process and permeability characteristics of red sandstone under seepage pressure[J]. Engineering Ge-ology, 2020,29(2):54-66.

[32] 赵延林, 唐劲舟, 王卫军, 等. 常规三轴压缩条件下茅口灰岩流固耦合破坏行为研究[J]. 采矿与安全工程学报, 2018,35(1):205-212.

[33] 王伟, 徐卫亚, 王如宾, 等. 低渗透岩石三轴压缩过程中的渗透性研究[J]. 岩石力学与工程学报, 2015,34(1):40-47.

[34] TAN X, KONIETZKY H, FRÜHWIRT T. Laboratory obser-vation and numerical simulation of permeability evolution during progressive failure of brittle rocks[J]. International Journal of Rock Mechanics and Mining Scienc-es, 2014,68(4):167-176.

[35] Zhao Y, Zhou H, Zhong J, et al. Study on the relation between damage and permeability of sandstone at depth under cy-clic loading[J]. International Journal of Coal Science & Technology, 2019,6(1):479-492.

[36] 尹光志, 李文璞, 李铭辉, 等. 不同加卸载条件下含瓦斯煤力学特性试验研究[J]. 岩石力学与工程学报, 2023,32(5):891-901.

[37] Yin G, Li M, Wang J G, et al. Mechanical behavior and permeability evolution of gas in filtrated coals during pro-tective layer mining[J]. International Journal of Rock Me-chanics and Mining Sciences, 2015,80:292-301.

[38] Wang S, Elsworth D, Liu J. Permeability evolution in fractured coal: The roles of fracture geometry and water-content[J]. International Journal of Coal Geology, 2011,87(1):13-25.

[39] 朱卓慧, 冯涛, 谢东海. 不同应力路径下含瓦斯煤渗透特性的实验研究[J]. 采矿与安全工程学报, 2012,29(4):570-574.

[40] 魏建平, 位乐, 王登科. 含水率对含瓦斯煤的渗流特性影响试验研究[J]. 煤炭学报, 2014,39(1):97-103.

[41] 袁曦, 姜德义. 煤岩不同含水状态下瓦斯渗流特性试验研究[J]. 采矿与安全工程学报, 2018,35(3):649-656.

[42] 赵亮. 低温处理煤岩力学渗流及声发射特性试验研究[D]. 太原理工大学, 2020.

[43] 任崇鸿. 不同开采条件下煤岩损伤演化过程中渗透特性研究[D]. 贵州大学, 2020.

[44] 张旭阳. 层理煤岩的水渗透性及单轴循环力学特性试验研究[D]. 郑州大学, 2020.

[45] 杜锋. 受载含瓦斯煤岩组合体耦合失稳诱发复合动力灾害机制[D]. 中国矿业大学(北京), 2019.

[46] 张保勇, 于洋, 高霞, 等. 轴向应力加卸载过程含瓦斯水合物煤体渗透率变化规律研究[J]. 岩石力学与工程学报, 2022,41(11):2283-2298.

[47] 张磊, 阚梓豪, 薛俊华, 等. 循环加卸载作用下完整和裂隙煤体渗透性演变规律研究[J]. 岩石力学与工程学报, 2021,40(12):2487-2499.

[48] 谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008,27(9):1729-1740.

[49] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005(17):3003-3010.

[50] Xie H, Li L, Ju Y, et al. Energy analysis for damage and catastrophic failure of rocks[J]. Science China Technological Sciences, 2011,54(1S):199-209.

[51] 鞠杨, 李业学. 节理岩石的应力波动与能量耗散[J]. 岩石力学与工程学报, 2006,12(5):2426-2434.

[52] 彭瑞东, 谢和平, 鞠杨. 砂岩拉伸过程中的能量耗散与损伤演化分析[J]. 岩石力学与工程学报, 2007,26(12):2526-2531.

[53] 赵延林, 万文, 王卫军, 等. 随机形貌岩石节理剪切数值模拟和非线性剪胀模型[J]. 岩石力学与工程学报, 2013,32(8):1666-1676.

[54] 刘新荣, 涂义亮, 钟祖良, 等. 基于能量突变的强度折减法边坡失稳判据[J]. 中南大学学报, 2016,47(6):2065-2072.

[55] 张志镇, 高峰. 单轴压缩下岩石能量演化的非线性特性研究[J]. 岩石力学与工程学报, 2022,31(6):1198-1207.

[56] 王笑然, 王恩元, 刘晓斐, 等. 含雁行裂纹砂岩静态加载速率效应实验研究[J]. 煤炭学报, 2017,42(10):2582-2591.

[57] Ning J, Wang J, Jiang J, et al. Estimation of crack initiation and propagation thresholds of confined brittle coal specimens based on energy dissipation theory[J]. Rock Mechanics and Rock Engineering. 2017,51(5):1-16.

[58] Zhang Y, Feng X, Yang C, et al. Fracturing evolution analysis of Beishan granite under true triaxial compression based on acoustic emission and strain energy[J]. International Journal of Rock Mechanics and Mining Sciences, 2019,117:150-161.

[59] Yang Y, Ju Y, Li F, et al. The fractal characteristics and energy mechanism of crack propagation in tight reservoir sandstone subjected to triaxial stresses[J]. Journal of Natural Gas Science and Engineering, 2016,32:415-422.

[60] 张尧, 李波波, 许江, 等. 基于能量耗散的煤岩三轴受压损伤演化特征研究[J]. 岩石力学与工程学报. 2021,40(8):1614-1627.

[61] 杨小彬, 程虹铭, 吕嘉琦. 三轴循环荷载下砂岩损伤耗能比演化特征研究[J]. 岩土力学, 2019,40(10):3751-3757+3766.

[62] 刘建锋, 谢和平, 徐进, 等. 循环荷载下岩石变形参数和阻尼参数探讨[J]. 岩石力学与工程学报, 2022,31(4):770-777.

[63] 刘享华, 张科, 刘文连. 荷载与冻融共同作用对多裂隙砂岩能量转化与损伤特性的影响[J]. 应用基础与工程科学学报, 2023,31(3):715-730.

[64] 李地元, 万千荣, 朱泉企, 等. 不同加载方式下含预制裂隙岩石力学特性及破坏规律试验研究[J]. 采矿与安全工程学报, 2021,38(5):1025-1035.

[65] 赵宏刚, 张东明, 李文璞, 等. 瓦斯压力对砂岩力学特性影响的试验研究[J]. 岩石力学与工程学报, 2017,36(S1):3239-3246.

[66] 尹光志, 李文璞, 许江, 等. 多场多相耦合下多孔介质压裂-渗流试验系统的研制与应用[J]. 岩石力学与工程学报, 2016,35(S1):2853-2861.

[67] 黄彦华, 杨圣奇, 鞠杨, 等.断续裂隙类岩石材料三轴压缩力学特性试验研究[J]. 岩土工程学报, 2016,38(7):1212-1220.

[68] 中华人民共和国国家标准编写组. GB/T 50266-2013 工程岩体试验方法标准[S]. 北京:中国计划出版社, 2013.

[69] 张朝鹏, 高明忠, 张泽天, 等. 不同瓦斯压力原煤全应力应变过程中渗透特性研究[J]. 煤炭学报, 2015,40(4):836-842.

[70] 朱泽奇, 田铠玮, 徐启钟, 等. 水力耦合作用下玄武岩启裂机制与临界水压研究[J]. 岩土力学, 2023,44(S1):83-90.

[71] 赵延林, 付成成, 汪亦显, 等. 全应力-应变过程中裂隙灰岩的水-力耦合特性试验研究[J]. 岩石力学与工程学报, 2016,35(S2):3763-3773.

[72] 华涛, 申林方, 王志良, 等. 基于近场动力学的岩石水力压裂数值模拟及裂隙网络定量分析[J]. 岩土力学, 2024,45(2):612-622.

[73] 张震, 徐刚, 高晓进, 等. 采场支承压力全程动态演化特征及机理分析[J]. 采矿与安全工程学报, 2023,40(6):1219-1230.

[74] 宋彦琦, 李名, 王晓, 等. 基于高速摄影的单预制裂纹大理岩加卸载试验[J]. 中国矿业大学学报, 2014,43(5):773-781.

[75] 刘炜震, 郭忠平, 黄万朋, 等. 不同温度养护后胶结充填体三轴卸围压力学特性试验研究[J]. 岩石力学与工程学报, 2022,41(11):2268-2282.

[76] 张风达, 张玉军, 于秋鸽. 不同加卸载路径下岩石卸荷劣化特征及机制研究[J]. 煤炭科学技术, 2022,50(12):117-127.

[77] 张俊文, 宋治祥, 范文兵, 等. 应力-渗流耦合下砂岩力学行为与渗透特性试验研究[J]. 岩石力学与工程学报, 2019,38(7):1364-1372.

[78] 柴肇云, 武小玲, 刘向御, 等. 全应力-应变加载过程中砂质泥岩力学与渗透性演化规律研究[J/OL]. 煤炭学报:1-11[2023-12-21].

[79] 岳少飞, 王开, 张小强, 等. 不同加载速率无烟煤蠕变特性及能量演化规律[J]. 煤炭学报, 2023,48(8):3060-3075.

[80] 刘学伟, 刘泉声, 陈元, 等. 裂隙形式对岩体强度特征及破坏模式影响的试验研究[J]. 岩土力学, 2015,36(S2):208-214.

[81] 朱志洁, 姚振华, 王来贵, 等. 裂隙分布对煤岩体冲击倾向性影响机制试验研究[J]. 采矿与安全工程学报, 2023,40(3):554-562.

[82] 司余洁, 肖桃李, 袁浩, 等. 含共面双裂隙复合岩三轴力学行为及能量演化规律研究[J/OL]. 煤炭科学技术:1-17[2024-03-01].

[83] 李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报, 2014,39(8):1455-1462.

[84] 李树刚, 石平五, 钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理, 1999(Z1):44-46.

中图分类号:

 TD712    

开放日期:

 2028-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式