- 无标题文档
查看论文信息

论文中文题名:

 综掘工作面矿工肌肉骨骼劳损风险评价方法及应用研究    

姓名:

 潘相旭    

学号:

 20203077021    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 煤矿安全管理    

第一导师姓名:

 高晓旭    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-26    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Risk evaluation method and application study of musculoskeletal strain injury for miners at the fully mechanized heading face    

论文中文关键词:

 综掘工作面矿工 ; 肌肉骨骼劳损 ; 快速上肢评价价 ; JACK 仿真 ; 风险评价    

论文外文关键词:

 Miner at the fully mechanized heading face ; Musculoskeletal strain injury ; Rapid upper limb assessment ; JACK simulation ; Risk assessment    

论文中文摘要:

在“双碳”目标大背景下,煤炭行业积极推进向高质量发展行业转型,对作业过程的安全性、舒适性和环保性提出了越来越高的要求,井下作业场所存在的严重职业危害已成为煤矿安全面临的又一挑战。肌肉骨骼劳损作为一种常被管理者忽视的矿工高发职业性疾病,造成的后果往往更加严重,给个体乃至社会都带来巨大负担,严重制约了“健康中国”发展。综掘工作面手工操作作业多、劳动负荷大,已成为煤矿肌肉骨骼劳损高发场所之一。目前,国内相关领域对综掘工作面矿工肌肉骨骼劳损的研究主要集中于发生情况、影响因素等方面,对评价方法的研究较少。因此,深入研究综掘工作面矿工肌肉骨骼劳损诱发机理,建立风险评价方法,对煤矿职业健康安全管理具有重要意义。

研究采用理论分析、现场调研、回归分析、数值模拟、室内实验和现场应用的方法展开,通过收集陕北 7 家煤矿综掘工作面矿工肌肉骨骼劳损相关数据,综合探索综掘工作面矿工肌肉骨骼劳损诱发机制,得到肌骨劳损发生模式为“颈-肩-上背-腰背-上臂-前臂-手及腕”劳损模式,影响因素为年龄段、工龄段、搬/提举作业等 14个因素;在此基础上,建立综掘工作面矿工肌肉骨骼劳损风险评价指标体系,运用决策实验室-网络层次分析法(DEMATEL-ANP)求得指标权值,以快速上肢评价法(RULA)为风险评价方法建立基础模型,增加主要评价指标弓步蹲姿、蹲/半蹲姿、搬/提举作业、搬运作业和次要评价指标工龄、年龄、噪声、湿度,并应用 JACK 仿真模拟法、室内实验法结合国家标准给出各新增指标评级准则,共同构建综掘工作面矿工肌肉骨骼劳损风险评价方法(RULA-HF);利用信效度检验证实 RULA-HF 法具有良好可靠性和有效性,同时通过多种方法比较检验,说明 RULA-HF 法在评价综掘工作面矿工肌肉骨骼劳损风险时最优。经在陕煤集团 X 煤矿的现场应用,对该矿综掘工作面矿工肌肉骨骼劳损风险进行量化评价,得出高风险工种为帮部支护工(Ⅳ级风险)、顶部支护工(Ⅳ级风险)、运料工(Ⅲ级风险)和清煤工(Ⅲ级风险),针对上述 4 类高风险工种,从作业姿势、作业流程和管理层三方面提出综合防治措施,有效减轻了综掘工作面矿工肌肉骨骼劳损风险值,降低了肌肉骨骼劳损发生率。

研究成果为综掘工作面矿工肌肉骨骼劳损伤害提供了一种风险评价方法,评价结果可为煤矿推进肌肉骨骼劳损防治工作提供理论与技术指导,改善煤矿职业危害现状,提高企业职工健康水平。

论文外文摘要:

In the context of the "carbon peaking and carbon neutrality goals", the coal industry is actively promoting the transformation to the high-quality development industry, which has put forward higher and higher requirements for the safety, comfort and environmental protection of the operation process, and the serious occupational hazards in underground workplaces have become another challenge for coal mine safety. Musculoskeletal strain injury, as a kind of occupational disease that is often ignored by managers, often causes more serious consequences, bringing a huge burden to individuals and even society, and seriously restricting the development of "Healthy China". The high number of manual operations and heavy labor load at the fully mechanized heading face have made it one of the places with high incidence of musculoskeletal strain injuries in coal mines. At present, the research on musculoskeletal strain injury of miners at the heading face in China mainly focuses on the occurrence and influencing factors, but there is less research on the evaluation methods. Therefore, an in-depth study on the mechanism of musculoskeletal strain injury induced by miners at the fully mechanized heading face and the establishment of risk evaluation methods are of great significance for the occupational health and safety management of coal mines.

The study was conducted by using theoretical analysis, field research, regression analysis, numerical simulation, laboratory test and field application methods. On this basis, the risk evaluation index system of musculoskeletal strain injury for miners at the fully mechanized heading face was established, and the index weights were obtained by using the DEMATEL-ANP, and the Rapid Upper Limb Assessment was used as the risk evaluation method. The evaluation method is based on the Rapid Upper Limb Assessment, which adds the main evaluation indexes of bow squatting, squatting/semi-squatting, lifting work, handling work and the secondary evaluation indexes of working age, seniority, noise and humidity, and applies the JACK simulation and laboratory test method to give the rating guidelines of each new index in combination with the national standards, and jointly constructs the risk evaluation method of musculoskeletal strain injury of miners at the fully mechanized heading face (RULA-HF); The reliability and validity of the RULA-HF were confirmed by the reliability test, and the comparative test of various methods showed that the RULA-HF was optimal in evaluating the risk of musculoskeletal strain injury of miners at the fully mechanized heading face. After the field application in X coal mine of Shaanxi Coal Group, the risk of musculoskeletal strain injury of miners at the fully mechanized heading face of the mine was quantitatively evaluated, and the high-risk work types were Bolt supporter (level IV risk), roof supporter (level IV risk), material carrier (level III risk) and coal clean worker (level III risk), and comprehensive prevention and control measures were proposed for the above four high-risk work types in terms of work posture, work flow and management, which effectively reduced the risk of musculoskeletal strain injury of miners at fully mechanized heading face. The study has effectively reduced the risk value and incidence of musculoskeletal strain injury among miners at the fully mechanized heading face.

The results of the study provide a risk evaluation method for musculoskeletal strain injuries of miners in the fully mechanized heading face, and the evaluation results can provide theoretical and technical guidance for coal mines to promote the prevention and treatment of musculoskeletal strain injuries, improve the current situation of occupational hazards in coal mines, and enhance the health level of workers in enterprises.

参考文献:

[1] 王国法, 任世华, 庞义辉, 等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术, 2021, 49(9): 1-8.

[2] 康红普, 王国法, 王双明, 等. 煤炭行业高质量发展研究[J]. 中国工程科学, 2021, 23(5): 130-138.

[3] 张英慧, 高星, 王伟, 等. 中国省域煤矿事故时空分异特征及影响因素研究[J]. 地球信息科学学报, 2018, 20(3): 311-320.

[4] 张培森, 牛辉, 朱慧聪, 等. 2019—2020年我国煤矿安全生产形势分析[J]. 煤矿安全, 2021, 52(11): 245-249.

[5] 刘海滨, 李春贺. 智慧矿山职业健康安全监管信息系统研究[J]. 煤炭科学技术, 2019, 47(3): 87-92.

[6] 袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报, 2020, 45(1): 1-7.

[7] 张会杰, 孙新, 张华东, 等. 我国重点行业职业人群下背痛影响因素分析[J]. 中国职业医学, 2021, 48(5): 481-487.

[8] 别凤赛, 李晓光, 郭金玉, 等. 煤矿工人工作相关肌肉骨骼疾患研究进展[J]. 中国职业医学, 2021, 48(4): 468-471.

[9] Yue P, Xu G, Li L, et al. Prevalence of musculoskeletal symptoms in relation to psychosocial factors[J]. Occupational Medicine, 2014, 64(3): 211-216.

[10] 张科学. 综掘工作面智能化开采技术研究[J]. 煤炭科学技术, 2017, 45(7): 106-111.

[11] 刘青林. 综掘工作面作业疲劳及合理轮班方式研究[D]. 徐州: 中国矿业大学, 2019.

[12] 闫少宏, 徐刚, 范志忠. 我国综合机械化开采50年发展历程与展望[J]. 煤炭科学技术, 2021, 49(11): 1-9.

[13] 尹学龙. 综掘工作面手工搬运作业姿势与表面肌电信号特征研究[D]. 徐州: 中国矿业大学, 2022.

[14] 杨帅. 综掘工作面支护工作业能力衰减特征研究[D]. 徐州: 中国矿业大学, 2021.

[15] Yong X, Li F, Ge H, et al. A Cross-Sectional Epidemiological Survey of Work-Related Musculoskeletal Disorders and Analysis of Its Influencing Factors among Coal Mine Workers in Xinjiang[J]. BioMed Research International, 2020: 1-9.

[16] Dhara Chavda, Neela Soni, Urmi Bhatt. Cross Cultural Adaptation and Assessment of Nordic Musculoskeletal Questionnaire Gujarati Versio[J]. International Journal of Science and Research, 2020, 9(11): 194-197.

[17] 邓乾旺, 王泳朝, 王长文. 汽车装配工人肌肉骨骼疾患危害程度评价研究[J]. 中国安全科学学报, 2014, 24(4): 50-55.

[18] 张建萍, 鲁世金. 煤矿井下工人腰背痛流行病学调查及相关因素分析[J]. 实用医学杂志, 2010, 26(3): 487-490.

[19] Currie S R, Wang J. Chronic back pain and major depression in the general Canadian population[J]. Pain, 2004, 107(1): 54-60.

[20] 马晓凡. 新疆煤矿工人职业卫生现况的流行病学调查[D]. 乌鲁木齐: 新疆医科大学, 2020.

[21] 李雪, 易孝婷, 刘继文. 新疆某煤矿作业人员职业紧张及心理健康状况对工作相关肌肉骨骼疾患的影响[J]. 环境与职业医学, 2022, 39(8): 863-870.

[22] 韩凤, 王东升, 邹建芳, 等. 煤矿工人职业紧张与职业性肌肉骨骼疾患相关性研究[J]. 中国职业医学, 2018, 45(2): 188-193.

[23] Vieira E R, Kumar S. Working Postures: A Literature Review[J]. Journal of Occupational Rehabilitation, 2004, 14(2): 143-159.

[24] Petit A, Ha C, Bodin J, et al. Risk factors for carpal tunnel syndrome related to the work organization: A prospective surveillance study in a large working population[J]. Applied Ergonomics, 2015, 47: 1-10.

[25] Satheeshkumar M, Krishnakumar K. Study on Work-Related Musculoskeletal Disorders among Coir Industry Workers in the State of Kerala, India[M]//Ray P K, Maiti J. Ergonomic Design of Products and Worksystems - 21st Century Perspectives of Asia. Singapore: Springer Singapore, 2018: 117-130.

[26] Bhattacherjee A, Bertrand J P, Meyer J P, et al. Relationships of Physical Job Tasks and Living Conditions with Occupational Injuries in Coal Miners[J]. Industrial Health, 2007, 45(2): 352-358.

[27] Das S, Krishna Moorthy M, Shanmugaraja K. Analysis of Musculoskeletal Disorder Risk in Cotton Garment Industry Workers[J]. Journal of Natural Fibers, 2023, 20(1), 2162182.

[28] 徐光兴. 煤矿工人肌肉骨骼损伤的调查研究[D]. 汕头: 汕头大学, 2011.

[29] 刘凤英, 李丽萍, 徐光兴, 等. 某煤矿工作相关肌肉骨骼疾患现状及危险因素分析[J]. 中华疾病控制杂志, 2011, 15(6): 470-472.

[30] 崔琦. 综掘工作面支护工静态负重作业与肌肉损伤评估研究[D]. 徐州: 中国矿业大学, 2022.

[31] 安道根. 综掘工作面搬运作业及其损伤研究[D]. 徐州: 中国矿业大学, 2019.

[32] 陈晓琳, 陈立, 郭鑫禾, 等. 井下支护作业人员颈部肌肉疲劳特性研究[J]. 中国安全生产科学技术, 2022, 18(6): 92-97.

[33] 王雪涛, 别凤赛, 李晓光, 等. 煤矿作业工人肌肉骨骼疾患及其相关因素的调查与研究[J]. 中国工业医学杂志, 2020, 33(3): 211-216.

[34] 谢尔瓦妮古丽·阿卜力米提, 郑帅印, 马翔宇, 等. 煤矿企业员工多部位工作相关肌肉骨骼疾患症状发生情况及影响因素[J]. 环境与职业医学, 2022, 39(6): 617-624.

[35] Borg G. Perceived exertion: a note on “history” and methods[J]. Medicine and science in sports, 1973, 5(2): 90-93.

[36] 白正宗. 建筑工人危险因素工效学分析与评估研究[D]. 大连: 大连理工大学, 2018.

[37] 杨磊, VH. Hildebrandt, 余善法, 等. 肌肉骨骼疾患调查表介绍附调查表[J]. 工业卫生与职业病, 2009, 35(1): 25-31.

[38] Karhu O, Kansi P, Kuorinka I. Correcting working postures in industry: A practical method for analysis[J]. Applied Ergonomics, 1977, 8(4): 199-201.

[39] Buchholz B, Paquet V, Punnett L, et al. PATH: A work sampling-based approach to ergonomic job analysis for construction and other non-repetitive work[J]. Applied Ergonomics, 1996, 27(3): 177-187.

[40] McAtamney L, Nigel Corlett E. RULA: a survey method for the investigation of work-related upper limb disorders[J]. Applied Ergonomics, 1993, 24(2): 91-99.

[41] Hignett S, McAtamney L. Rapid Entire Body Assessment (REBA)[J]. Applied Ergonomics, 2000, 31(2): 201-205.

[42] 张智逵. 基于肌肉骨骼损伤评价的煤矿拣选作业人因改善研究[D]. 西安: 西安科技大学, 2020.

[43] 秦东亮, 金宪宁, 王世娟, 等. 作业人员姿势负荷评价信效度分析及与肌肉骨骼疾患关系[J]. 北京大学学报(医学版), 2018, 50(3): 488-494.

[44] 徐立云, 刘琨, 陈贻平, 等. 考虑作业人员疲劳度均衡的第一类装配线平衡[J]. 同济大学学报(自然科学版), 2019, 47(2): 241-247+290.

[45] 范文. 狭小工作舱人体疲劳特性分析及布局优化研究[D]. 西安: 西北工业大学, 2016.

[46] Kim S, Nussbaum M A. Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks[J]. Ergonomics, 2013, 56(2): 314-326.

[47] Chen J, Qiu J, Ahn C. Construction worker’s awkward posture recognition through supervised motion tensor decomposition[J]. Automation in Construction, 2017, 77: 67-81.

[48] AAR[Adot]S A, Veierød M B, Larsen S, et al. Reproducibility and stability of normalized EMG measurements on musculus trapezius[J]. Ergonomics, 1996, 39(2): 171-185.

[49] Park Y H, Park S H, Kim S H, et al. Relationship Between Isokinetic Muscle Strength and Functional Tests in Chronic Ankle Instability[J]. The Journal of Foot and Ankle Surgery, 2019, 58(6): 1187-1191.

[50] Nath N D, Akhavian R, Behzadan A H. Ergonomic analysis of construction worker’s body postures using wearable mobile sensors[J]. Applied Ergonomics, 2017, 62: 107-117.

[51] Dempsey P G. Usability of the revised NIOSH lifting equation[J]. Ergonomics, 2002, 45(12): 817-828.

[52] 徐红旗, 史冀鹏, 张欣, 等. 美国NIOSH手工提举方程在中国的验证研究[J]. 人类工效学, 2018, 24(3): 31-36.

[53] Waters T, Occhipinti E, Colombini D, et al. Variable Lifting Index (VLI): A New Method for Evaluating Variable Lifting Tasks[J]. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2016, 58(5): 695-711.

[54] 田水承, 陈盈, 邹元. 手工搬运作业下矿工腰部肌肉疲劳分析[J]. 矿业安全与环保, 2021, 48(5): 122-126.

[55] 袁志伟, 唐仕川, 王生, 等. 工效学负荷评价方法研究进展[J]. 环境与职业医学, 2015, 32(9): 887-891.

[56] 李玉珍, 李珏, 李刚, 等. 汽车装配作业工人肌肉骨骼损伤与工效学负荷水平的相关性[J]. 环境与职业医学, 2015, 32(5): 393-398.

[57] Lee Y C, Lee C H. SEE: A proactive strategy-centric and deep learning-based ergonomic risk assessment system for risky posture recognition[J]. Advanced Engineering Informatics, 2022, 53, 101717.

[58] Zhang X, Fan J, Peng T, et al. A privacy-preserving and unobtrusive sitting posture recognition system via pressure array sensor and infrared array sensor for office workers[J]. Advanced Engineering Informatics, 2022, 53, 101690.

[59] Antwi-Afari M F, Qarout Y, Herzallah R, et al. Deep learning-based networks for automated recognition and classification of awkward working postures in construction using wearable insole sensor data[J]. Automation in Construction, 2022, 136, 104181.

[60] 杨杰. 综掘工作面搬运作业仿真与损伤评估研究[D]. 徐州: 中国矿业大学, 2021.

[61] 孙瑞山, 魏家兴, 陈毅. 基于JACK的机务人员上肢职业性损伤的仿真与评估[J]. 中国安全生产科学技术, 2022, 18(8): 222-227.

[62] Manchikanti L. CBT for low-back pain in primary care[J]. The Lancet, 2010, 375(9718): 869-870.

[63] Passier L, McPhail S. Work related musculoskeletal disorders amongst therapists in physically demanding roles: qualitative analysis of risk factors and strategies for prevention[J]. BMC Musculoskeletal Disorders, 2011, 12(1): 24.

[64] Robertson M M, Ciriello V M, Garabet A M. Office ergonomics training and a sit-stand workstation: Effects on musculoskeletal and visual symptoms and performance of office workers[J]. Applied Ergonomics, 2013, 44(1): 73-85.

[65] 郑盼, 李丽萍, 徐光兴, 等. 煤矿工人工作相关肌肉骨骼疾患的干预效果评估[J]. 人类工效学, 2013, 19(2): 19-22.

[66] 黄冬梅, 王键, 韩丽青, 等. 职业健康教育对站立作业人群肌肉骨骼疾患干预的效果分析[J]. 工业卫生与职业病, 2020, 46(4): 265-267.

[67] 陈娜, 张华伟, 赵军, 等. 钢筋工工作姿势的生物力学分析及改善[J]. 工业安全与环保, 2017, 43(12): 37-40+54.

[68] 刘伟达, 王忠旭. 肌肉骨骼损伤及其工效学[J]. 环境与职业医学, 2008, 25(6): 605-608.

[69] 别凤赛, 徐洋, 佟林全, 等. 煤矿井下工人腰背痛影响因素及预防措施的研究进展[J]. 环境与职业医学, 2021, 38(6): 674-678.

[70] Ferguson S A,Marras W S,Allread W G,et al. Musculoskeletal disorder risk as a function of vehicle rotation angle during assembly tasks[J]. Applied Ergonomics, 2011, 42(5): 699-709.

[71] Leyshon R, Chalova K, Gerson L, et al. Ergonomic interventions for office workers with musculoskeletal disorders: A systematic review[J]. Work, 2010, 35(3): 335-348.

[72] Hess J A, Hecker S, Weinstein M, et al. A participatory ergonomics intervention to reduce risk factors for low-back disorders in concrete laborers[J]. Applied Ergonomics, 2004, 35(5): 427-441.

[73] Yan X, Li H, Li A R, et al. Wearable IMU-based real-time motion warning system for construction workers’ musculoskeletal disorders prevention[J]. Automation in Construction, 2017, 74: 2-11.

[74] 王越, 张驎. 矿工肌肉疲劳状况及事故预防研究[J]. 中国安全科学学报, 2021, 31(3): 191-196.

[75] 徐明伟. 有限空间人因参数对疲劳影响及防护研究[D]. 北京: 北京科技大学, 2021.

[76] 裴卉宁. 基于工效学负荷理论的民机客舱乘坐舒适度评价方法[D]. 西安: 西北工业大学, 2018.

[77] 秦东亮, 王生, 张忠彬, 等. 工作相关肌肉骨骼疾患判别标准研究进展[J]. 中国职业医学, 2017, 44(3): 362-364+370.

[78] 王富江, 金旭, 娜扎开提·买买提, 等. 制造业工人肌肉骨骼疾患发生模式及影响因素[J]. 北京大学学报(医学版), 2020, 52(3): 535-540.

[79] 赵琳, 边扬, 荣建, 等. 基于有序Logistic回归的城市人行道服务水平研究[J]. 交通运输系统工程与信息, 2014, 14(4): 131-138.

[80] 郭美君, 任明旸, 李仕明, 等. 基于γ-散度的稳健有序误标记logistic回归(英文)[J]. 中国科学院大学学报, 2022, 39(3): 289-301.

[81] 刘钢, 宋亚倩, 樊力硕, 等. 基于有序Logistic回归的水库移民住房感知实证研究[J]. 长江流域资源与环境, 2017, 26(4): 519-529.

[82] 李红霞, 张嘉琦, 陈磊, 等. 基于AHP-DEMATEL的煤矿安全管理水平评估研究[J]. 矿业研究与开发, 2021, 41(4): 118-123.

[83] 张科学, 闫星辰, 何满潮, 等. 基于ANP-MEA模型的智能化开采工作面适应性评价研究[J]. 采矿与岩层控制工程学报: 1-9.

[84] 葛华, 刘继文, 连玉龙. AET分析在职业紧张研究中的应用[J]. 新疆医科大学学报, 2010, 33(1): 41-43.

[85] 陈昌华, 许帅帅, 蒋玉香, 等. 多因子修正的补货作业负荷评估模型及仿真研究[J]. 中国安全科学学报, 2022, 32(8): 201-207.

中图分类号:

 TD79    

开放日期:

 2023-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式