题名: | 煤分子关键活性基团氧化过程中氧落位及锚定特性研究 |
作者: | |
学号: | 22220226182 |
保密级别: | 保密(2年后开放) |
语种: | chi |
学科代码: | 085700 |
学科: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学位年度: | 2025 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
导师姓名: | |
导师单位: | |
提交日期: | 2025-06-26 |
答辩日期: | 2025-06-06 |
外文题名: | Construction of coal molecular structure model and study on oxygen positioning and anchoring characteristics in coal-oxygen interaction |
关键词: | |
外文关键词: | Coal molecular model ; Structural optimization ; Molecular dynamics ; Settling tendency ; Anchoring characteristics |
摘要: |
煤分子结构的复杂性使得反应机制呈现多样化特征,实验手段的局限性使得微观特性难以全面解析。通过构建煤大分子结构模型,可从分子层面深入分析结构特征,即氧原子落位及活性位点特征在煤氧复合反应中的表现,由此获得新的研究视角。煤自燃(CSC)现象的潜在微观作用机制借助分子模型进行探究,为研究煤自燃化学靶向阻化材料提供理论基础,同时在完善煤自燃理论和开发煤自燃高效阻化技术方面,具有重要的科学和实际指导意义。 本研究选取陕北侏罗纪时期聚隆(JL)煤矿易自燃煤层的烟煤为研究对象,通过多尺度表征技术与模拟相结合,系统解析煤分子结构。先采用核磁共振仪、傅里叶红外光谱、X射线光电子能谱等技术手段获取煤分子结构参数,基于Chem Draw构建煤分子初始平面模型,借助MestReNova软件将13C NMR模拟谱图与实验谱图进行对比校准,得到符合实际的平面结构模型。利用Chem 3D软件构建三维结构模型,运用分子力学MM2方法进行能量最小化预处理过程,再利用Material Studio(MS)软件模拟出能量最低、密度最优的三维结构模型。结合Gaussian 16模拟煤氧复合过程,分析静电势分布特征与分子轨道特性,探讨氧原子的落位倾向及锚定原子特性。最后通过TG-DSC和原位FTIR实验验证热效应及活性位点演变,实现从微观结构特征到宏观性质表现的关联性分析。 通过分析芳香骨架的构成、脂肪族链的键合及杂原子的赋存特征,并将其与分子力学模拟和分子动力学计算相结合,研究表明:(1)JL煤大分子结构中芳香族桥碳与周质碳之比(XBP)为0.304,萘和蒽构成芳香碳骨架主体,芳香族簇呈线性正链化连接,侧链−CH3占脂肪烃结构主导地位。拉曼光谱中G和D1特征峰的积分综合强度比(ID1/IG)超过1.5阈值,表明芳香片层堆叠有序性较低,结晶度较低,碳结构以无序态为主,大量活性位点分布于芳香环边缘区域。(2)JL煤分子式为C197H159O23N3,总相对分子质量为2936.44,经分子力学和分子动力学优化,模型结构更加紧凑与稳定,体系能量从10366.289(kcal/mol)显著降低至705.971(kcal/mol)。煤分子结构最优密度为1.4 g/cm³,晶胞尺寸为16.957Å*16.957Å*16.957Å。(3)煤氧复合反应过程中,氧原子落位倾向于带正电荷的基团(−COOH > −CH3 > −CH2− > 长链烷基),引发结构活化将烷烃基团转化为含氧基团(−OH、−C=O−等),最后分解成CO、CO2等小分子气体,导致活性位点持续消耗;发现电子离域效应促进了LOMO轨道的电子在分子片段中的自由移动,O2作为亲核试剂,优先与LOMO轨道中电荷密度最大的锚定原子反应,其切片结构反应强度顺序为F.a=F.b>F.c>F.d,其中含氧官能团及芳香环上的特定取代位点可作为锚定原子参与煤氧复合反应。 |
外文摘要: |
The complexity of the coal molecular structure results in a diverse range of reaction mechanisms, and the limitations of experimental methods make it difficult to analyse the microscopic characteristics comprehensively. However, by constructing a model of the macromolecular structure of coal, the structural features of the coal-oxygen complex reaction, such as the landing of oxygen atoms and the active site features, can be analysed in depth at a molecular level. This provides new research perspectives. Molecular models can investigate the potential microscopic mechanisms of the spontaneous combustion of coal (CSC) phenomenon, providing a theoretical basis for the study of materials for the chemical targeting inhibition of CSC. At the same time, this is of great significance in improving the theory of CSC and developing high-efficiency inhibition technology for CSC. This study analyzes bituminous coals from the Jurassic-era Julong (JL) coal mine in northern Shaanxi Province using multiscale characterisation and simulation. Nuclear magnetic resonance (13C NMR), Fourier infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) determine coal molecular structural parameters. Chem Draw builds the initial planar model, which is calibrated against experimental spectra using MestReNova. A 3D model is constructed with Chem 3D and optimized via MM2 molecular mechanics. Material Studio simulates the lowest-energy, optimal-density 3D structure. Gaussian 16 simulates coal-oxygen interactions, analyzing electrostatic potential and molecular orbitals to explore oxygen atom behavior. TG-DSC and in-situ FTIR experiments verify thermal effects and active site changes, linking microscopic features to macroscopic properties. The composition of the aromatic backbone, the bonding of the aliphatic chains, and the characteristics of the heteroatom assignments were analysed. These were then combined with molecular mechanics simulations and molecular dynamics calculations to demonstrate the following: (1) The ratio of aromatic bridge carbon to periplasmic carbon (XBP) in the macromolecular structure of JL coal is 0.304, naphthalene and anthracene constitute the main part of the aromatic carbon skeleton and aromatic clusters are connected by linear ortho linkages. The aliphatic hydrocarbon structure is dominated by the side chain -CH₃. The integrated intensity ratio (ID1/IG) of the G and D1 characteristic peaks in Raman spectra exceeds 1.5, indicating low aromatic lamellar stacking order and crystallinity, and a disordered carbon structure. A large number of active sites are distributed along the edge of the aromatic ring. (2) The molecular formula of JL coal is C197H159O23N3 and its total relative molecular mass is 2,936.44. Following optimisation using molecular mechanics and molecular dynamics, the model structure became more compact and stable, with the system's energy significantly reduced from 10,366.289 kcal/mol to 705.971 kcal/mol. The optimal density of the coal molecular structure is 1.4 g/cm³ and the cell size is 16.957Å*16.957Å*16.957Å. (3) During the coal-oxygen complex reaction, the fallout of oxygen atoms tends to favour positively charged groups (−COOH > −CH3 > −CH2− > long-chain alkyl groups), which triggers structural activation and the conversion of alkane groups into oxygen-containing groups (-OH, -C=O-, etc.). This process ultimately results in the decomposition of small molecule gases, such as CO and CO2, which leads to the continuous depletion of the active site. It has been found that the electron delocalisation effect promotes the free movement of electrons from the LOMO orbitals in the molecular fragments. Furthermore, it has been observed that O2, acting as a nucleophilic reagent, reacts preferentially with the anchored atoms exhibiting the highest charge density within the LOMO orbitals. The order of reaction strength of the sliced structure is F.a = F.b > F.c > F.d, in which the oxygen-containing functional groups and specific substitution sites on the aromatic rings can participate in the coal-oxygen complex reaction as anchoring atoms. |
参考文献: |
[1]王双明, 申艳军, 宋世杰, 等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报, 2023, 48(7): 2599-2612. [2]王双明, 孙强, 胡鑫, 等. 煤炭原位开发地质保障[J]. 西安科技大学学报, 2024, 44(01): 1-11. [3]国家能源局: 今年我国将持续推动能源绿色低碳转型[J]. 中国设备工程, 2024, (08): 1. [4]苏志红. 煤矿智能化开采技术的创新与管理分析[J]. 矿业装备, 2024, (01): 93-95. [5]霍丙杰, 靳京爵, 胡依明等. 多煤层开采上覆采空区有害气体下泄定量化关系探讨[J]. 安全与环境学报, 2023. [6]杨峰峰, 王海晖, 龚恒敏, 等. 煤自燃倾向性测试及监测技术研究进展[J]. 煤, 2023, 32(2): 29-32. [17]崔修强, 王玉敬, 李其浩, 等. 火电厂1000 MW锅炉入炉煤分子模型构建及分析. 能源与节能, 2020(12): 114-116+182. [18]贾进章, 邢迎欢, 李斌. 山西阳煤无烟煤分子结构特征分析. 化学研究与应用, 2022, 34(10): 2311-2320. [19]张同浩, 陈明义, 田富超, 等.褐煤中CH4/O2/N2气体竞争吸附特性的分子模拟研究. 矿业科学学报, 2023, 8(06): 817-827. [20]陈嘉亮, 朱文耀, 常梦洁, 等. 煤油/油酸甲酯复配捕收剂浮选南梁煤矿煤泥的试验研究. 矿产保护与利用, 2023, 43(02): 20-26. [25]李霞, 曾凡桂, 司加康, 等. 不同变质程度煤的高分辨率透射电镜分析[J]. 燃料化学学报, 2016, 44(3): 279-286. [26]康倩楠, 张志强. 基于HRTEM的煤分子芳香片层结构表征[J]. 煤炭转化, 2017, 40(5): 1-6. [27]王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊, 2012, 27(3): 382-388. [29]Fuchs W, Sandoff AG. Theory of coal pyrolysis[J]. Indust Eng Chem, 1942, 34: 567-571. [34]张代钧, 鲜学福. 煤的大分子结构与超细物理结构研究(I)煤的大分子结构[J]. 煤炭转化, 1992, 015(003): 46-50. [35]李伍, 杨文斌, 战星羽, 等. 煤有机大分子碳结构石墨化机制[J]. 煤炭学报, 2023, 48(02): 855-868. [36]李金雨, 李懿欣, 白刚, 等. 构造煤结构缺陷对硫化氢吸附及扩散特性的影响研究[J]. 煤炭转化, 2024, 47(04): 1-10. [43]冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531. [44]张硕, 张小东, 杨延辉, 等. 溶剂萃取下构造煤的XRD结构演化特征[J]. 光谱学与光谱分析, 2017, 37(10): 3220-3224. [45]刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1438. [46]Nishioka M. The associated molecular nature of bituminous coal [J]. Fuel, 1992, 71(8): 223-256. [47]秦匡宗, 郭绍辉, 李术元. 煤结构的新概念与煤成油机理的再认识[J]. 科学通报, 1998, 43(18):7. [48]Mathews JP, Chaffee AL. The molecular representations of coal–A review[J]. Fuel, 2012, 96: 1-14. [51]贺丙飞, 韩生, 蔺华林, 等. 煤超分子结构及研究方法进展[J]. 煤炭技术, 2014(5):3. [52]蔺华林, 李克健, 章序文. 上湾煤及其惰质组富集物的结构表征与模型构建[J]. 燃料化学学报, 2013, 41(6): 641-648. [53]崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(4): 704-717. [55]秦志宏, 巩涛, 李兴顺, 等. 煤萃取过程的TEM分析与煤嵌布结构模型[J]. 中国矿业大学学报, 2008, 37(4):7. [58]李青蔚, 任立峰, 任帅京. 煤低温贫氧氧化放热特性研究[J]. 煤矿安全. 2020, 51(11): 34-38. [60]张玉涛, 张园勃, 李亚清, 等. 低瓦斯气氛下煤氧化热效应和关键基团演变特性[J]. 中国矿业大学学报, 2021, 50(04): 776-783. [64]吕志广, 徐永亮, 刘泽健, 等. 不同气体环境长焰煤氧化进程基团演化特性[J]. 煤矿安全, 2022, 53(2): 46-52. [67]邓军, 周佳敏, 白祖锦, 等. 瓦斯对煤低温氧化过程微观结构及热反应性的影响研究[J]. 煤炭科学技术, 2023, 51(01): 304-312. [68]袁迎春. 不同变质程度煤样自燃过程中微观结构变化特征及宏观表现研究[D]. 内蒙古科技大学,2022. [69]侯钦元, 翟小伟, 宋波波, 等. 煤微观基团与自然发火危险性相关分析[J]. 煤矿安全, 2022, 53(04): 13-19. [74]朱红青, 何欣, 霍雨佳, 等. 褐煤分子结构模型构建与优化[J]. 矿业科学学报, 2021, 6(4): 9. [75]贾廷贵, 李璕, 曲国娜, 等. 不同变质程度煤样化学结构特征FTIR表征[J]. 光谱学与光谱分析, 2021, 41(11): 3363-3369. [77]赵云刚, 李美芬, 曾凡桂, 等. 伊敏褐煤不同化学组分结构特征的红外光谱研究[J]. 煤炭学报, 2018, 43(2): 9. [78]梁虎珍, 王传格, 曾凡桂, 等. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J]. 燃料化学学报, 2014,42(02): 129-137. [79]王庆楠, 狄敬如, 何翀, 等. 墨西哥Sonora(索诺拉州)锌绿松石的矿物学及谱学特征[J]. 光谱学与光谱分析, 2019, 39(7):8. [86]李霞, 曾凡桂, 王威, 等. 低中煤级煤结构演化的拉曼光谱表征[J]. 煤炭学报, 2016, 41(09): 2298-2304. [96]张岩峰. 煤自燃热特性TG-DSC实验研究[J]. 能源与节能, 2023(09): 52-54. [97]解强, 梁鼎成, 何璐, 等. TG-DSC同步联用测定煤热解反应热[J]. 煤炭学报, 2017, 42(02): 538-546. |
中图分类号: | TD752.2 |
开放日期: | 2027-09-11 |