- 无标题文档
查看论文信息

论文中文题名:

 加载超表面的宽带高增益微带天线研究与设计    

姓名:

 赵盼    

学号:

 18207205073    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 超表面天线    

第一导师姓名:

 武风波    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-06-06    

论文外文题名:

 Research and Design of Broadband High Gain Microstrip Antenna Loaded with Metasurface    

论文中文关键词:

 高增益 ; 低剖面 ; 超表面天线 ; 开槽 ; 渐变式微带线    

论文外文关键词:

 High gain ; Low profile ; Metasurface antenna ; Slotting ; Gradual microstrip line    

论文中文摘要:

随着Wi-Fi和5G技术的迅速发展,对宽带、高增益、低剖面、小型化等高性能天线的需求日益迫切。超材料及其二维形式的超表面均可任意地调控入射电磁波的幅度、相位和极化等电磁参数,因此,高性能超表面天线的设计具有重要意义和应用价值。

(1)设计了一种加载超表面的WLAN天线。在矩形贴片天线的基础上,通过开槽实现双频WLAN天线,进一步加载对应于工作频段的双负超表面来提高天线的增益并改善其阻抗匹配水平。所设计的超表面天线工作带宽分别为2.27GHz~3.45GHz和5.32GHz~6.26GHz,相对带宽分别为41.2%和16.2%,最大增益为8.6dB,且在2.4GHz和5.8GHz两个频点处的增益较未加载超表面的天线分别提高了10.1dB和5.7dB,与同类天线相比,具有高增益的优势。

(2)设计了两种应用于Sub-6GHz频段的超表面天线。首先,通过在WLAN天线中心嵌入圆环来实现目标频率,并设计渐变式馈电结构来展宽带宽,所设计的天线工作带宽为3.08GHz~5.18GHz,相对带宽为50.8%,最大增益为3.6dB。其次,通过研究超表面对天线性能的影响机理,设计了一种正方形的双负超表面,使天线在4.28GHz~5.14GHz频段内最大增益提高至9.84dB。进一步通过改变该正方形双负超表面结构的排列和布阵方式,得到了一种多频双负超表面,将其加载在天线背板后的0.5mm处,使天线的工作带宽为3.02GHz~6.49GHz,相对带宽为73%,比未加载超表面的天线展宽了22.2%,且最大增益为5.8dB,超表面天线尺寸为70mm*70mm*4.1mm,剖面高度仅为0.04λ(λ为最低工作频率所对应的波长)。以上两种超表面天线与同类天线相比,分别具有高增益和宽带低剖面的优势。

基于超表面的高性能天线,同时具备结构紧凑、宽频带、低剖面、高增益和低成本等多个优点,为室内通信系统及宽带无线通信提供高质量的天线设计方法。

论文外文摘要:

With the rapid development of Wi-Fi and 5G technology, the demand for broadband, high gain, low profile and miniaturization antennas is increasingly urgent. Metamaterials and their two-dimensional metasurface can arbitrarily regulate the amplitude, phase and polarization of the incident electromagnetic wave. Therefore, the design of high-performance antennas assisted by the metasurface has important significance and practical value.

Firstly, A WLAN antenna via loading with a metasurface is designed. On the basis of the rectangular patch antenna, a dual-band WLAN slotting antenna is realized; and a double negative metasurface corresponding to the working frequency band is further loaded to increase the gain of the antenna and improve its impedance matching level. The designed antenna has working bandwidths of 2.27GHz~3.45GHz and 5.32GHz~6.26GHz, the relative bandwidths of 41.2% and 16.2%, maximum gain of 8.6dB, at 2.4GHz and 5.8GHz. Compared with the antenna without loading the metasurface, the gain of the antenna is increased by 10.1dB and 5.7dB, respectively. Compared with similar antennas, it has the advantage of high gain.

Secondly, two metasurface antennas for Sub-6GHz frequency band are designed. The target frequency is achieved by embedding a circular ring in the center of the WLAN antenna, and a gradual feeding structure is designed to broaden the bandwidth. The designed antenna working bandwidth is 3.08GHz~5.18GHz, the relative bandwidth is 50.8%, and the maximum gain is 3.6dB. Secondly, by studying the influence mechanism of the metasurface on the antenna performance, a square double negative metasurface was designed to increase the maximum gain of the antenna to 9.84dB in the 4.28GHz~5.14GHz frequency band. Further by changing the arrangement of the square double negative metasurface structure And the array method, a multi-frequency double-negative metasurface is obtained, which is loaded at 0.5mm behind the antenna backplane, so that the working bandwidth of the antenna is 3.02GHz~6.49GHz , and the relative bandwidths are 73% , which are 22.2% wider than the antenna without a metasurface, and the maximum gain is 5.8dB. The size of the metasurface antenna is 70mm*70mm*4.1mm, and the profile height is only 0.04λ(λof the lowest operating frequency point Wavelength). Compared with similar antennas, the above two metasurface antennas have the advantages of high gain and broadband low profile respectively.

The high-performance antenna assisted by the metasurface has the advantages of compact structure, wide-band, low profile, high gain and low cost. It provides the high-quality antenna design solutions for indoor communication systems and broadband wireless communications.

参考文献:

[1]钟顺时.微带天线理论与应用[M].西安电子科技大学出版社,1991.

[2]Lin F H, Chen Z N. Low-profile wideband metasurface antennas using characteristic mode analysis[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1706-1713.

[3]Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature communications, 2010, 1(1): 1-6.

[4]Wang J, Li Y, Jiang Z H, et al. Metantenna: When metasurface meets antenna again[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1332-1347.

[5]Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics express, 2013, 21(22): 27438-27451.

[6]Zhao Y, Cao X, Gao J, et al. Broadband low-RCS metasurface and its application on antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 2954-2962.

[7]Erfani E, Niroo-Jazi M, Tatu S. A high-gain broadband gradient refractive index metasurface lens antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1968-1973.

[8]Tang M C, Chen Z, Wang H, et al. Mutual coupling reduction using meta-structures for wideband, dual-polarized, and high-density patch arrays[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 3986-3998.

[9]Li P C, Zhao Y, Alu A, et al. Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface[J]. Applied Physics Letters, 2011, 99(22): 221106.

[10]Bhattacharyya S, Ghosh S, Chaurasiya D, et al. Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber[J]. Applied Physics A, 2015, 118(1): 207-215.

[11]Ni C, Chen M S, Zhang Z X, et al. Design of frequency-and polarization-reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(1): 78-81.

[12]李文强, 曹祥玉, 高军,等. 一种斜三角开口对环结构的双频段左手材料[J]. 西安电子科技大学学报(自然科学版), 2012, 039(004):167-171.

[13]Chen X, Han L, Chen X, et al. Dual-band circularly polarized antenna using mu-negative transmission lines[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7): 1190-1194.

[14]Zhou B, Cui T J. Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 326-329.

[15]Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10-35.

[16]Liu W, Chen Z N, Qing X. Metamaterial-based low-profile broadband mushroom antenna[J]. IEEE Transactions on Antennas and Propagation, 2013, 62(3): 1165-1172.

[17]Ge Y, Esselle K P, Bird T S. The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas[J]. IEEE Transactions on Antennas and Propagation, 2011, 60(2): 743-750.

[18]Li H, Wang G, Liang J, et al. Single-layer focusing gradient metasurface for ultrathin planar lens antenna application[J]. IEEE Transactions on Antennas and Propagation, 2016, 65(3): 1452-1457.

[19]Zhu H L, Liu X H, Cheung S W, et al. Frequency-reconfigurable antenna using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2013, 62(1): 80-85.

[20]Zheng Q, Guo C, Ding J. Wideband low-profile aperture-coupled circularly polarized antenna based on metasurface[J]. International Journal of Microwave and Wireless Technologies, 2018, 10(7): 851-859.

[21]Juan Y, Yang W, Che W. Miniaturized low-profile circularly polarized metasurface antenna using capacitive loading[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3527-3532.

[22]Zhao Y, Cao X, Gao J, et al. Broadband low-RCS metasurface and its application on antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 2954-2962.

[23]Wang J, Wong H, Ji Z, et al. Broadband CPW-fed aperture coupled metasurface antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 517-520.

[24]Yang Z Z, Liang F, Yi Y, et al. Metasurface‐based wideband, low‐profile, and high‐gain antenna[J]. IET Microwaves, Antennas & Propagation, 2019, 13(4): 436-441.

[25]Yao W, Yang H, Huang X, et al. An X-band parabolic antenna based on gradient metasurface[J]. AIP advances, 2016, 6(7): 075013.

[26]Samantaray D, Bhattacharyya S. A gain-enhanced slotted patch antenna using metasurface as superstrate configuration[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6548-6556.

[27]Feng D, Zhai H, Xi L, et al. A broadband low-profile circular-polarized antenna on an AMC reflector[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2840-2843.

[28]Yang W, Meng Q, Che W, et al. Low-profile wideband dual-circularly polarized metasurface antenna array with large beamwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(9): 1613-1616.

[29]Chen X, Zhang W, Han L, et al. Miniaturised wideband antenna with low profile based on dual-layer metasurface[J]. IET Microwaves, Antennas & Propagation, 2020, 14(6): 498-504.

[30]Li K, Li L, Cai Y M, et al. A novel design of low-profile dual-band circularly polarized antenna with meta-surface[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1650-1653.

[31]Pan Y M, Hu P F, Zhang X Y, et al. A low-profile high-gain and wideband filtering antenna with metasurface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 2010-2016.

[32]Liu W E I, Chen Z N, Qing X, et al. Miniaturized wideband metasurface antennas[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7345-7349.

[33]孙继平, 陈晖升. 智慧矿山与 5G 和 WiFi6[J]. 工矿自动化, 2019, 45(10):1-4.

[34]王明凯. 5G 终端 LTE 和 Sub-6G MIMO 天线关键技术研究[D].上海:上海大学.2020.

[35]李谟超. Sub-6 GHz 宽带基站天线设计[D].广州:广东工业大学.2020.

[36]沈东麟.小型移动终端天线及 MIMO 天线的设计[D].西安:西安电子科技大学.2019.

[37]魏文元.天线原理[M].北京:国防工业出版社,1985.

[38]Kurra L, Abegaonkar M P, Basu A, et al. FSS properties of a uniplanar EBG and its application in directivity enhancement of a microstrip antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1606-1609.

[39]Wong K L, Lin Y F. Microstrip‐line‐fed compact broadband circular microstrip antenna with chip‐resistor loading[J]. Microwave and Optical Technology Letters, 1998, 17(1): 53-55.

[40]任学施.平面印刷天线分析与设计[D].西安:西安电子科技大学.2011.

[41]Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[42]Erfani E, Niroo-Jazi M, Tatu S. A high-gain broadband gradient refractive index metasurface lens antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1968-1973.

[43]Zhai H, Zhang K, Yang S, et al. A low-profile dual-band dual-polarized antenna with an AMC surface for WLAN applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2692-2695.

[44]Ratni B, Merzouk W A, de Lustrac A, et al. Design of phase-modulated metasurfaces for beam steering in Fabry–Perot cavity antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 1401-1404.

[45]Zhang Q L, Zhang Q, Chen Y. Spoof surface plasmon polariton leaky-wave antennas using periodically loaded patches above PEC and AMC ground planes[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3014-3017.

[46]郭林燕, 杨河林, 李敏华,等. 单方环结构左手材料微带天线[J]. 物理学报, 2012(01):000135-139.

[47]Wu S, Yi Y, Yu Z, et al. A zero-index metamaterial for gain and directivity enhancement of tapered slot antenna[J]. Journal of ElEctromagnEtic WavEs and applications, 2016, 30(15): 1993-2002.

[48]Varamini G, Keshtkar A, Naser-Moghadasi M. Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification[J]. AEU-International Journal of Electronics and Communications, 2018, 83: 213-221.

[49]Yang P. Reconfigurable 3-D slot antenna design for 4G and sub-6G smartphones with metallic casing[J]. Electronics, 2020, 9(2): 216.

[50]Chen Q, Lin H, Wang J, et al. Single ring slot-based antennas for metal-rimmed 4G/5G smartphones[J]. IEEE Transactions on Antennas and Propagation, 2018, 67(3): 1476-1487.

[51]Juan Y, Yang W, Che W. Miniaturized low-profile circularly polarized metasurface antenna using capacitive loading[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3527-3532.

[52]Wan W, Xue M, Cao L, et al. Low-Profile Broadband Patch-Driven Metasurface Antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1251-1255.

[53]Feng G, Chen L, Xue X, et al. Broadband surface-wave antenna with a novel nonuniform tapered metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2902-2905.

[54]Jia Y, Liu Y, Gong S, et al. A low-RCS and high-gain circularly polarized antenna with a low profile[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2477-2480.

[55]Long M, Jiang W, Gong S. Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2534-2537.

中图分类号:

 TN826    

开放日期:

 2021-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式