- 无标题文档
查看论文信息

论文中文题名:

 四轮独立驱动电动汽车 驱动力分配策略研究    

姓名:

 张荣博    

学号:

 18205020032    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080204    

学科名称:

 工学 - 机械工程 - 车辆工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 车辆工程    

研究方向:

 智能车辆    

第一导师姓名:

 张传伟    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-25    

论文答辩日期:

 2021-06-02    

论文外文题名:

 Study on Driving Force Allocation Strategy of Four-wheel Independent Drive Electric Vehicle    

论文中文关键词:

 四轮独立驱动电动车 ; 模糊神经网络 ; 驱动力分配 ; 操纵稳定性 ; 硬件在环    

论文外文关键词:

 Four-wheel independent driving vehicle ; Fuzzy neural network ; Driving force distribution ; Handling stability ; Hardware-in-the-loop.    

论文中文摘要:

为了降低人类生活对石油资源的依赖程度,改善人类生存的环境质量,世界各国都在提倡大力发展新能源汽车。而四轮独立驱动电动汽车作为新能源汽车的一种新型布置形式,简化了整车传动系统,提高了传动效率和整车的可控自由度。通过对各轮毂电机输出转矩进行精确控制,以此改善车辆行驶过程中的操纵稳定性是四轮独立驱动电动汽车亟需解决的一项关键技术问题。本文针对该关键技术问题,通过以下具体工作完成驱动力分配策略设计和实验验证。

首先,对四轮独立驱动电动汽车多自由度非线性系统进行简化,在Simulink中搭建七自由度车辆动力学模型,与Carsim中成熟的车辆模型进行结构和性能参数匹配,通过相同工况下的仿真,验证所搭建车辆仿真平台的准确性和有效性。

    其次,采用分层结构对驱动力分配策略进行设计,其中上层利用神经网络的学习能力,对模糊控制器的模糊规则和隶属度函数等相关参数进行优化,计算出车辆稳定行驶所需的附加横摆力矩和需求纵向力,下层根据行驶工况的不同分别采用基于规则分配方法和以轮胎负荷率最小为目标的优化分配方法进行驱动力矩分配。

然后,依据GB/T6362-2014汽车操纵稳定性试验方法,通过Carsim/Simulink联合仿真,对所设计的驱动力分配策略进行高附着路面上的方向盘阶跃工况、双移线工况以及低附着路面上的蛇形工况仿真验证。

最后,通过实时仿真平台dSPACE和控制器DSP28335搭建硬件在环测试平台,控制器采集驾驶员的操纵信息以及dSPACE车辆实时模型中输出的车辆状态信息,进行方向盘阶跃输入工况下的硬件在环测试。

论文外文摘要:

In order to reduce the dependence on petroleum resource and improve the environmental quality of human existence, countries all over the world are advocating the development of new energy vehicles strongly. As a new layout of new energy vehicle, the four-wheel independent drive electric vehicle simplifies the vehicle transmission system, improves the transmission efficiency and the controllability of the vehicle. It is a key technical problem that four-wheel independent drive electric vehicles need to solve urgently by controlling the output torque of each in-wheel motor accurately to improve the handling stability of the vehicle during the driving process. Aiming at this key technical issue, this paper completes the driving force distribution strategy design and experimental verification through the following specific work.

Firstly, the multi-degree-of-freedom nonlinear system of four-wheel independent drive electric vehicle is simplified and a seven-degree-of-freedom vehicle dynamics model is built in Simulink. The structure and performance parameters are matched with the mature vehicle model in Carsim. The accuracy and effectiveness of the vehicle simulation platform are verified by simulation under the same working conditions.

Secondly, the driving force distribution strategy is designed with the hierarchical structure. By leveraging the learning ability of the neural network in upper layer, the parameters of the fuzzy rules and membership function in the fuzzy controller are optimized, and the additional yaw moment and longitudinal force required for the stable driving of the vehicle are calculated. In the lower layer, the distribution method and the optimal distribution method targeted for the minimum tire load rate are adopted in specific driving conditions to distribute the driving torque.

Then, according to the GB/T6362-2014 automobile handling stability test method, the designed driving force distribution strategy is simulated and vertified through Carsim/Simulink co-simulation in the steering wheel step condition, double-line shifting condition on the high-adhesion road and snake-shape conditions on the low-adhesion road.

Finally, a hardware-in-the-loop test platform is built through the real-time simulation platform dSPACE and the controller DSP28335. The controller collects the driver's manipulation information and the vehicle status information that outputs from the dSPACE vehicle real-time model, and performs hardware-in-the-loop tests under steering wheel step conditions.

参考文献:

[1] 王伟健.影响我国能源安全的主要因素及对策[J].电气时代, 2021(05):16-17.

[2] 陈秀娟. 全国汽车保有量达2.81亿辆[J]. 汽车观察, 2021(01): 7.

[3] 顾文娟. 我国汽车保有量快速增长对石油需求的影响研究[D]. 北京交通大学, 2016.

[4] 乞孟迪,柯晓明,王殿铭.交通领域清洁化、低碳化发展趋势研究[J].石油石化绿色低碳,2019,4(02):1-11.

[5] 王锦平. 城市汽车尾气排放与环境污染及其防治对策[J]. 科技信息, 2013(01): 445-446.

[6] 甘星星. 浅谈汽车尾气排放问题及节能减排的方法[J]. 内燃机与配件,2018(01): 254-255.

[7] 杭鹏, 陈辛波, 张榜, 史鹏飞, 唐廷举. 四轮独立转向-独立驱动电动车主动避障路径规划跟踪控制[J]. 汽车工程, 2019, 41(02): 170-176.

[8] Cao W, Lin C, Zhang L, et al. Fuzzy sliding mode control of networked control systems and applications to independent-drive electric vehicles[C]//2017 IEEE International Conference on Industrial Technology(ICIT). IEEE, 2017.

[9] 熊璐, 陈晨, 冯源. 基于Carsim/Simulink联合仿真的分布式驱动电动汽车建模[J]. 系 统仿真学报, 2014, 26(05): 1143-1148+1155.

[10]余卓平, 冯源, 熊璐. 分布式驱动电动汽车动力学控制发展现状综述[J]. 机械工程学报, 2013, 49(08): 105-114.

[11]WANG Chunyan,LI Wenkui,ZHAO Wanzhong,DUAN Tingting.Torque Distribution of Electric Vehicle with Four In-Wheel Motors Based on Road Adhesion Margin[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2019,36(01):181-188.

[12]Khan M A, Aftab M F, Ahmed E, et al. Robust Differential Steering Control System for an Independent Four Wheel Drive Electric Vehicle[J]. International Journal of Automotive Technology, 2019, 20(1): 87-97.

[13]贺志颖,王文格,黄龙.四轮独立驱动电动汽车直驶稳定性协调控制研究[J].机械设计与制造,2020(05):32-36.

[14]张一西, 马建, 唐自强, 刘晓东, 贺伊琳. 分布式驱动电动汽车直接横摆力矩控制策略与仿真验证[J]. 甘肃农业大学学报, 2018, 53(04): 159-167+176.

[15]Wang Y, Fujimoto H, Hara S. Driving force control for electric vehicles with fourin-wheel-motors on split-friction surfaces[C]//2017 American Control Conference (ACC). IEEE, 2017.

[16]Nan S, Danfeng S, Dejun Y. An integrated stability control system for decentralized drive electric vehicles[C]// 2017 36th Chinese Control Conference (CCC). IEEE, 2017.

[17]Guo L, Lin, Ge P, et al. Torque distribution for electric vehicle with four in-wheel motors by considering energy optimization and dynamics performance[C]//2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017.

[18]Jing H, Jia F, Liu Z. Multi-Objective Optimal Control Allocation for an Over-Actuated Electric Vehicle[J]. IEEE Access, 2018, PP(99): 1-1.

[19]Zhang Y , Zhao H , Lei Y , et al. Slip ratio estimation for electric vehicle with in-wheel motors based on EKF without detection of vehicle velocity[C]// 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016.

[20]林程, 徐志峰, 张虹, 孙圣雄. 分布式电驱动汽车驱动力矩优化控制分配[J].北京理工 大学学报, 2016, 36(07): 668-672.

[21]环球网. 2012巴黎车展日产全新Terra概念车发布[EB/OL]. https://auto.huanqiu.com/article/9CaKrnJxfcT

[22]新浪汽车. 通用Sequel定义未来汽车[EB/OL]. http://auto.sina.com.cn/news/2005-01-17/113195708.shtml.

[23]搜狐汽车.福特正开发eWheelDrive轮毂电机驱动技术[EB/OL].http://auto.sohu.com/20130502/n374572708.shtml

[24]同济大学. 春晖号承载着同济学子汽车梦[EB/OL]. https://www.tongji.edu.cn/info/1033/8228.htm.

[25]中国新闻网. 微型概念节能车“春晖三号”亮相工博会[EB/OL].https://www.chinanews.com/news/2004/2004-11-05/26/502622.shtml.

[26]王博. 四轮独立电驱动车辆试验平台及驱动力控制系统研究[D]. 清华大学, 2009.

[27]全球电动车网. 微型电动汽车风驰小城镇[EB/OL].https://www.qqddc.com/html/news/news_7357_1.html.

[28]陈国迎, 郑宏宇. 分布式全线控电动汽车的底盘集成控制[J]. 华南理工大学学报(自然科学版), 2015, 43(11): 87-95.

[29]周苏,陆一弘,吴楠,金杰.四轮独立驱动电动车自适应巡航滑模控制[J].汽车工程学报,2021,11(01):25-33.

[30]高时芳. 四轮独立驱动电动汽车的电子差速系统研究[D]. 西北工业大学, 2006.

[31]朱绍鹏,林鼎,谢博臻,俞小莉,韩松.电动汽车驱动力分层控制策略[J].浙江大学学报(工学版),2016,50(11):2094-2099.

[32]刘明. 复杂地面环境中四轮独立驱动车辆运动控制方法研究[D].山东大学,2020.

[33]太平洋汽车. 纯电动车的未来?聊轮毂电机技术[EB/OL]. https://www.pcauto.com.cn/tech/1105/11056055_1.html.

[34]搜狐.比亚迪明要来了!原型车月底正式公布[EB/OL]. https://www.sohu.com/a/227675507_99947877.

[35]Zhao Y, Zhang C. Electronic Stability Control for Improving Stability for an Eight In-Wheel Motor-Independent Drive Electric Vehicle[J]. Shock and Vibration, 2019, 2019: 1-21.

[36]Lenzo B, Bucchi F, Sorniotti A, etal. On the handling performance of a vehicle with different front-to-rear wheel torque distributions[J]. Vehicle System Dynamics, 2018: 1-20.

[37]Yim S. Vehicle Stability Control with Four-Wheel Independent Braking, Drive and Steering on In-Wheel Motor-Driven Electric Vehicles[J]. Electronics, 2020, 9(11): 1934.

[38]Eto R, Sakata K, Yamakawa J. Driving force distribution based on tyre energy for independent wheel-drive vehicle on rough ground[J]. Journal of Terramechanics, 2018, 76: 29-38.

[39]Youngjin Jang, Minyoung Lee, In-Soo Suh, Kwanghee Nam. Lateral handling improvement with dynamic curvature control for an independent rear wheel drive EV[J].International Journal of Automotive Technology, 2017, 18(3).

[40]Fuse Hiroyuki and Fujimoto Hiroshi. Driving force controller considering lateral slip based on brush model for traction control of independent‐four‐wheel‐drive electric vehicle[J]. Electrical Engineering in Japan, 2020, 214(1) : 52-61.

[41]李刚. 线控四轮独立驱动轮毂电机电动汽车稳定性与节能控制研究[D]. 吉林大学, 2013.

[42]Ren B , Hong C , Zhao H , et al. MPC-based yaw stability control in in-wheel-motored EV via active front steering and motor torque distribution[J]. Mechatronics, 2016, 38:103-114.

[43]谢宪毅. 分布式电动汽车操纵稳定性集成控制方法研究[D]. 吉林大学, 2018.

[44]Y.Chen, S.Chen, Y. Zhao, Z. Gao and C.Li. Optimized Handling Stability Control Strategy for a Four In-Wheel Motor Independent-Drive Electric Vehicle[J]. IEEE Access, 2019(7): 17017-17032.

[45]Xiong L, Teng G W, Yu Z P, etal. Novel stability control strategy for distributed drive electric vehicle based on driver operation intention[J]. International Journal of Automotive Technology, 2016, 17(4): 651-663.

[46]J.Wang, Z.Luo, Y.Wang, B.Yang and F.Assadian. Coordination Control of Differential Drive Assist Steering and Vehicle Stability Control for Four-Wheel-Independent-Drive EV[J]. IEEE Transactions on Vehicular Technology, 2018,67(12): 11453-11467.

[47]Li G, Yang Z. Energy saving control based on motor efficiency map for electric vehicles with four-wheel independently driven in-wheel motors[J]. Advances in Mechanical Engineering, 2018, 10(8).

[48]Zhang C , Wang R ,Zhang D , et al. Design of four-wheel independent drive EV direct yaw moment controller based on dSPACE[J]. UPB Scientific Bulletin, Series D:Mechanical Engineering, 2020,82(1):55-68.

[49]Yuan L, Chen H, Ren B, et al. Model predictive slip control for electric vehicle with four in-wheel motors[C]//2015 34th Chinese Control Conference(CCC). IEEE, 2015.

[50]季昌健. 基于模糊神经网络的电动车再生制动力分配方法研究[D]. 吉林大学, 2020.

[51]孙文,王庆年,王军年.基于横摆力矩控制的电动轮汽车转弯节能控制[J].吉林大学学报(工学版),2018,48(01):11-19.

[52]Jun Wang et al.Stability Control for Four-wheel Independent Drive Electric Vehicle Based on Variable Universe Fuzzy Control[C]. Wuhan,China,2016.

[53]胡志华. 分布式驱动电动汽车AFS/DYC协同控制策略研究[D]. 重庆大学, 2018.

[54]余志生. 汽车理论[M]. 北京:机械工业出版社,2009, 3.130-159.

[55]喻凡, 林逸. 汽车系统动力学[M]. 北京:机械工业出版社, 2016, 9.38-75.

[56]李一君,牛志刚,郭晨星,候玉波.四轮轮毂电机电动汽车驱动力矩分配研究[J].机械设计与制造,2019(08):135-138.

[57]王锁. 四轮毂驱动电动汽车驱动容错控制策略研究[D]. 安徽工程大学, 2019.

[58]Wang J, Wang Q, Jin L, etal. Independent wheel torque control of 4WD electric vehicle for differential drive assisted steering[J]. Mechatronics, 2011, 21(1): 63-76.

[59]赵彬. 四轮驱动电动汽车操纵稳定性与节能集成优化控制[D]. 吉林大学, 2019.

[60]秦钢. 四轮轮毂电动车操纵稳定性控制方法研究[D]. 电子科技大学, 2015.

[61]Lin C , Xu Z . Wheel Torque Distribution of Four-Wheel-Drive Electric Vehicles Based on Multi-Objective Optimization[J]. Energies, 2015, 8(5):3815-3831.

[62]余卓平, 高晓杰, 张立军. 用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J]. 汽车工程, 2006(09): 844-848.

[63]张恺城. 分布式驱动电动汽车驱动力分配控制策略研究[D]. 北京理工大学, 2016.

[64]贺劲松. 分布式驱动电动汽车直驶工况驱动控制策略研究[D]. 北京理工大学, 2015.

[65]张雷,赵宪华,王震坡.四轮轮毂电机独立驱动电动汽车轨迹跟踪与横摆稳定性协调控制研究[J].汽车工程,2020,42(11):1513-1521.

[66]潘汉明. 基于模糊神经网络的电动汽车电子差速控制系统的研究与开发[D]. 浙 江农林大学, 2016.

[67]唐焱, 赵宇鹏, 蒋占四, 肖蓬勃. 模糊神经网络在汽车稳定性控制中的应用[J]. 机械设计与制造, 2020(03): 81-84+89.

[68]Lin Y C, Nguyen H L T. Adaptive Neuro-Fuzzy Predictor-Based Control for Cooperative Adaptive Cruise Control System[J]. IEEE Transactions on Intelligent Transportation Systems, 2019: 1-10.

[69]胡金芳,颜春辉,赵林峰,梁修天,谢有浩.分布式驱动电动汽车转向工况转矩分配控制研究[J].中国公路学报,2020,33(08):92-101.

[70]于树友,李文博,刘艺,陈虹.四轮独立驱动电动汽车转向稳定控制[J/OL].控制理论与应用:1-10[2021-06-07].http://kns.cnki.net/kcms/detail/44.1240.TP.20210112.1302.032.html.

[71]王普. 基于Carsim的某SUV整车操纵稳定性分析[D]. 西华大学, 2018.

[72]许林娜. 四轮独立驱动电动汽车的转向稳定性控制研究[D]. 大连理工大学, 2019.

[73]陈攀,张承瑞,罗映.利用MATLAB/RTW的嵌入式代码自动生成与整合[J].小型微型计算机系统,2018,39(04):738-741.

中图分类号:

 U469.72    

开放日期:

 2021-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式