- 无标题文档
查看论文信息

题名:

 K、Sn二元共掺BST铁电陶瓷制备及调控机理研究    

作者:

 孙兰兰    

学号:

 21201104019    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 070205    

学科:

 理学 - 物理学 - 凝聚态物理    

学生类型:

 硕士    

学位:

 理学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 理学院    

专业:

 物理学    

研究方向:

 铁电材料    

导师姓名:

 张涛    

导师单位:

 西安科技大学    

提交日期:

 2024-06-25    

答辩日期:

 2024-05-31    

外文题名:

 Mechanism and Study on the Preparation Regulation of K, Sn Binary Co-doped BST Ferroelectric Ceramics    

关键词:

 掺杂改性 ; BST ; 第一性原理 ; 固相烧结    

外文关键词:

 Doping Modification ; BST ; first principles ; solid phase sintering    

摘要:

      铁电陶瓷材料钛酸锶钡(化学式为Ba1-xSrxTiO3,简称BST)因其优良的铁电和介电属性,在动态存储器、微波调谐器和雷达相位调节器等领域显示出巨大应用潜力。不过,随着通信和微电子产业的快速发展,BST在满足高性能微波调谐设备需求方面存在局限,故通过掺杂技术改进BST的性质成了提高其工业应用能力的重要手段。在本项研究中,结合了第一性原理计算和实验上采用固相烧结法,对K和Sn元素掺杂BST系统的作用原理及调控效果进行了详细的研究分析。研究内容不限于对K和Sn掺杂BST的能带结构、电子态密度及介电特性的理论计算,还包括了利用X射线衍射(XRD)、扫描电子显微技术(SEM)、XPS(X射线光电子能谱)、拉曼光谱、阻抗特性分析以及对其介电与铁电性质的实验验证。

研究首先聚焦于K单掺杂BST的作用机制和调控效果,探究不同K掺杂比例x(0.05、0.08、0.10、0.125)下的(Ba0.6Sr0.4)1-xKxTiO3样品。通过分析K掺杂所导致的离子半径缩小对BST电子结构、相变、形貌、畴结构及氧空位行为的影响,发现K+的引入导致BST晶格拉伸,影响Ti-O八面体的畸变,从而扩大了能带间隙并加强了Ti-O的p-d轨道混合作用。理论与实验结果在介电和铁电性能上均显示出良好的一致性,其中第一性原理计算得到的静态介电常数6.08,而实验测得的介电常数为2231.17。

在本研究中,对单独掺杂Sn的BST材料进行了深入分析,探究不同比例的Sn掺杂(比例为0.05、0.10、0.15、0.20)对Ba0.6Sr0.4Ti(1-y)SnyO3样品性能的影响。当Sn4+取代Ti4+进行掺杂时,作为等价掺杂,造成钙钛矿晶格中发生晶格畸变,促进电畴偏转,K掺杂使得费米面向价带方向移动,能带宽度随之增大,同时增强了B-O原子间的共价作用和p-d轨道的混合效应。实验结果表明,Sn掺杂使BST陶瓷晶粒尺寸先增加后减小,表明晶体畸变程度降至最低。这可能是因为Sn掺杂引入的氧空位补偿电荷,以及晶界处SnO2的存在共同抑制了畴的转动,相当于在畴的运动上设置了“钉扎”,从而导致介电损耗和铁电矫顽场增加。这一系列研究揭示了Sn掺杂在调控BST铁电陶瓷性能中的复杂作用机制。

最后,本研究深入探讨了K-Sn共掺杂在BST体系中的调控效应,特别是在K掺杂比例x固定为0.05的前提 下,分析了不同Sn掺杂比例y(0.05、0.10、0.15、0.20)对(Ba0.6Sr0.4)1-xKxTi(1-y)SnyO3材料性能的影响。理论计算揭示,K和Sn共掺杂显著增加了能带宽度,这主要是由于K+半径缩小与Sn4+等价态掺杂的双重作用。在态密度方面,K、sn的贡献集中在-20-0 eV的能量范围内,从而在介电性能上实现了显著的增强。在实验层面,采用固相烧结法制备的K-Sn共掺杂BST陶瓷样品展现K、Sn掺杂作用还导致晶粒尺寸显著缩小至3μm,表明Sn掺杂使得BST陶瓷更密度。从氧空位机制的角度分析,K元素的挥发与Sn掺杂共同作用,最大化了氧空位的生成,而0.05的K掺杂量有效减小了电滞回线的展宽,从而保留了BST的部分铁电性质。综合实验结果表明,K-Sn共掺BST的介电与铁电性能虽不及单独掺K的BST,但优于单独掺Sn的BST,这体现了K和Sn共掺杂在调节材料介电及铁电性能方面的复合效应。

外文摘要:

This study investigates the microstructural modification patterns and experimental preparation of BST (60/40) ferroelectric materials with varying proportions of K and Sn, both singly and in combination. Employing first-principles calculations, we analyzed the crystallographic parameters, electronic structures, dielectric, and optical properties of these materials. Additionally, the microstructures, dielectric, and ferroelectric properties of ceramic target materials were studied. Samples of doped thin films were fabricated using the RF magnetron sputtering technique, and their microstructures and ferroelectric properties were characterized. Key findings of this study are presented as follows:

The research primarily focuses on the mechanism and regulatory effects of K doping in BST, examining samples with different K doping ratios x (0.05, 0.08, 0.10, 0.125) of (Ba0.6Sr0.4)1-xKxTiO3. Analysis of the impact of the reduced ionic radius due to K doping on the electronic structure, phase transitions, morphology, domain structures, and oxygen vacancy behavior of BST revealed that the introduction of K+ causes lattice stretching and affects the distortion of the Ti-O octahedra, thereby widening the bandgap and enhancing the p-d orbital hybridization of Ti-O. Both theoretical and experimental results showed good consistency in dielectric and ferroelectric properties, with a theoretically calculated static dielectric constant of 6.08 and an experimentally measured dielectric constant of 2231.17.

In-depth analysis was conducted on BST materials singly doped with Sn, investigating the effects of different Sn doping ratios (0.05, 0.10, 0.15, 0.20) on the properties of Ba0.6Sr0.4Ti(1-y)SnyO3 samples. When Sn4+ replaces Ti4+, equivalent doping causes lattice distortions in the perovskite structure, promoting domain wall motion and enhancing the covalent interactions between B-O atoms and the p-d orbital hybridization. Experimental results indicated that Sn doping initially increases and then decreases the grain size of BST ceramics, suggesting minimized crystal distortions. This is likely due to the compensation charge from oxygen vacancies introduced by Sn doping and the presence of SnO2 at grain boundaries, which suppress domain rotation, akin to "pinning" the domain motion, thereby increasing dielectric loss and coercive field in ferroelectric properties.

Finally, the study thoroughly explored the regulatory effects of combined K-Sn doping in the BST system, particularly analyzing the impact of different Sn doping ratios y (0.05, 0.10, 0.15, 0.20) on the properties of (Ba0.6Sr0.4)1-xKxTi(1-y)SnyO3 materials under a fixed K doping ratio x of 0.05. Theoretical calculations revealed that combined K and Sn doping significantly increased the bandgap width, primarily due to the dual effect of the reduced radius of K+ and equivalent state doping of Sn4+. In terms of state density, contributions from K and Sn were concentrated in the -20 to 0 eV energy range, significantly enhancing the dielectric properties. Experimentally, solid-state sintering produced K-Sn co-doped BST ceramic samples showing a significant reduction in grain size to 3μm, indicating higher density of BST ceramics due to Sn doping. From the perspective of oxygen vacancy mechanisms, the volatilization of  K in conjunction with Sn doping maximized the formation of oxygen vacancies, while a K doping level of 0.05 effectively minimized the hysteresis loop broadening, thereby preserving some of BST's ferroelectric properties. Comprehensive experimental results demonstrated that although the dielectric and ferroelectric properties of K-Sn co-doped BST were not as high as those of BST doped solely with K, they were superior to those of BST doped solely with Sn, reflecting the combined effect of K and Sn co-doping in adjusting the material's dielectric and ferroelectric properties.

参考文献:

[1] Qiu C, Wang B, Zhang N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020, 577(7790): 350-354.

[2] Liu X, Tan P, Ma X, et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q- switches[J]. Science, 2022, 376(6591): 371-377.

[3] Georgakilas V, Tiwari J N, Kemp K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9): 5464-5519.

[4] Hu X, Huang Z, Li F, et al. Nacre-inspired crystallization and elastic “brick-and-mortar” structure for a wearable perovskite solar module[J]. Energy & Environmental Science, 2019, 12(3): 979-987.

[5] Shi J, Dong R, He J, et al. Regulating ferroelectric polarization and dielectric properties of BT-based lead-free ceramics[J]. Journal of Alloys and Compounds, 2023, 933: 167746.

[6] Zhang F, Zhao X, Liu H, et al. Study of the properties of SBT ceramics doped with different concentrations of Ca[J]. Ceramics International, 2018, 44(17): 21914-21920.

[7] Ding Y, Zheng T, Zhao C, et al. Structure and domain wall dynamics in lead-free KNN-based ceramics[J]. Journal of Applied Physics, 2019, 126(12): 124101.

[8] Kacem H, Dhahri A, Gdaiem M A, et al. Electrocaloric properties of lead-free ferroelectric ceramic near room temperature[J]. Applied Physics A, 2021, 127(6): 483.

[9] Song Z, Zhang S, Liu H, et al. Improved energy storage properties accompanied by enhanced interface polarization in annealed microwave-sintered BST[J]. Journal of the American Ceramic Society, 2015, 98(10): 3212 - 3222.

[10] Wannasut P, Jaiban P, Jaita P, et al. Improvement of electrical and energy harvesting properties of new lead-free BST modified 0.995BNKT-0.005LN ceramics[J]. Journal of Asian Ceramic Societies, 2023, 11(1): 88-97.

[11] Liu T, Zhang H, Wang F, et al. Three-dimensional supercapacitors composed of Ba0.65Sr0.35TiO3 (BST)/NiSi2/silicon microchannel plates[J]. Materials Science and Engineering: B, 2011, 176(5): 387-392.

[12] Dai Z, Liu W, Lin D, et al. Electrical properties of zirconium-modified BiScO3-PbTiO3 piezoelectric ceramics at re-designed phase boundary[J]. Materials Letters, 2018, 215: 46-49.

[13] Zhou X, Qi H, Yan Z, et al. Large energy density with excellent stability in fine-grained (Bi0.5Na0.5) TiO3-based lead-free ceramics[J]. Journal of the European Ceramic Society, 2019, 39(14): 4053-4059.

[14] Yan F, Yang H, Lin Y, et al. Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0. 5Nb0.5O3 lead-free ceramics for high-energy-storage applications[J]. Inorganic Chemistry, 2017, 56(21): 13510-13516.

[15] 张凡博. 钛酸铋钠基无铅陶瓷的制备及其储能特性研究[D]. 西安工业大学, 2022.

[16] Luo S, Zheng D. Y, Zhang C, Zhang Y, Li B. Effects of BLT doping on electrical properties and relaxation behavior of BCZT-BLT ceramics. Journal of materials science: materials in electronics. 2020, 31(23): 21005.

[17] Duran C, Trolier-Mckinstry S, Messing G. L. Fabrication and electrical properties of textured Sr0.53Ba0.47Nb2O6 ceramics by templated grain growth. Journal of the american ceramic society. 2010, 83(9): 2203.

[18] Zhu J, Chen X. B, Lu W. P, Mao X. Y. Properties of lanthanum-doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectrics. Applied physics letters. 2003, 83(9): 1818.

[19] Jaffe B, Roth R. S, Marzullo S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Journal of Applied Physics. 1954, 25(6): 809.

[20] Peng G. G, Zheng D. Y, Hu S. M, Chen C, Zhang J, Zhang H. Effects of PNN/PZT ratios on phase structure, electric properties and relaxation behavior of PZN-PNN-PZT ceramics. Journal of Materials Science: Materials in Electronics. 2016, 27(4): 3145.

[21] Peng Z H, Zheng D Y, Zhou T, et al. Effects of Co2O3 doping on electrical properties and dielectric relaxation of PMS-PNN-PZT ceramics[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(7): 5961-5968.

[22] Shrout T R, Chang Z P, Kim N, et al. Dielectric behavior of single crystals near the (1-x)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 Morphotropic Phase Boundary[J]. Ferroelectrics Letters Section, 1990, 12: 63.

[23] 李飞, 张树君, 李振荣, 等. 弛豫铁电单晶的研究进展-压电效应的起源研究[J]. 物理学进展, 2012, 32: 178.

[24] Shi J, Grinberg I, Wang X, et al. Atomic sublattice decomposition of piezoelectric response in tetragonal PbTiO3, BaTO3, and KNbO3[J]. Physical Review B, 2014, 89: 094105.

[25] Slater J. Wave Functions in A Periodic Potential[J]. Physical Review, 1937, 51: 846.

[26] Zhang Y, Li M, Li H, et al. Effects of CuO on KNN-based ceramics[J]. Inorganic Chemistry Communications, 2020, 122: 108299.

[27] Liu W, Zhou B, Wang H, et al. Small amount of Fe/Cu/Mn-doped KNN-based ceramics[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(33): 25232-25238.

[28] Kawashima S, Noshida M, Ueda I, Ouchi H. Ba(Zm1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies [J]. Journal of the American Ceramic Society, 1983, 66: 421-423.

[29] Zeng D, Nong P, Xu M Z, et al. Relaxor ferroelectric ceramics with excellent energy storage density obtained from BT-based ceramics[J]. Journal of Power Sources, 2023, 580: 233454.

[30] Li B, Li C, Zheng T, et al. Property regulation rrinciple in Mn-doped BF-BT ceramics: Competitive Control of Domain Switching By Defect Dipoles and Domain Configuration[J]. Advanced Electronic Materials, 2022, 8(11): 2200609.

[31] Peng P, Liu K, Li K, et al. Effect of doping Mn/Fe/Co on the ferroelectric properties and depolarization behavior of BNT ceramics[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(35): 2238.

[32] Bai W, Li L, Wang W, et al. Phase diagram and electrostrictive effect in BNT-based ceramics[J]. Solid State Communications, 2015, 206: 22-25.

[33] Halder S, Bhuyana S, Tripathy A, et al. Development of a capacitive temperature sensor using a lead-free ferroelectric Bi (Fe2/3Ta1/3) O3 Ceramic[J]. IEEE Sensors Journal, 2023.

[34] Laishram R, Singh K C, Prakash C. Enhanced dielectric loss of Mg doped Ba0.7Sr0.3TiO3 eramics [J]. Ceramics International, 2016, 42(13): 14970-5.

[35] Wu Y J, Huang Y H, Wang N, et al. Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics [J]. Journal of the European Ceramic Society, 2017, 37(5): 2099-104.

[36] Xie J, Hao H, Yao Z, et al. Energy storage properties of low concentration Fe-doped barium strontium titanate thin films[J]. Ceramics International, 2018, 44(6): 5867-73.

[37] Xing J, Huang Y, Xu Q, et al. Realizing high comprehensive energy storage and ultrahigh hardness in lead-free ceramics[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28472-28483..

[38] Metta P, Sae-Fu P, Thammada W, et al. Phase stability, electronic and local structures of Li-doped(K,Na)NbO3 under hydrostatic pressure from first principles calculation[J]. Applied Physics A, 2023, 129(4): 280.

[39] Zhang N, Lv X, Zhang X, et al. Low-temperature dielectric relaxation associated with NbO6 octahedron distortion in antimony modified potassium sodium niobate ceramics[J]. Journal of Materials Science & Technology, 2022, 115: 189-198.

[40] Gupta R, Gupta V, Tomar M. Structural and dielectric properties of PLD grown BST thin films[J]. Vacuum, 2019, 159: 69-75.

[41] Xu Z, Qiang H. Enhanced electrocaloric effect in Mn+Y co-doped BST ceramics near room temperature[J]. Materials Letters, 2017, 191: 57-60.

[42] Huang X, Yin J, Gao C, et al. Structure and dielectric property of CaTiSiO5 doped BST ceramics sintered at low temperature[J]. Ferroelectrics, 2016, 502(1): 43-48.

[43] Liu W, Zhao Y, Jin Y, et al. Enhanced dielectric tunability and reduced dielectric loss in various donor-acceptor co-doped Ba0. 675Sr0. 325TiO3 ceramics[J]. Materials Chemistry and Physics, 2022, 291: 126702.

[44] 肖定全. 钙钛矿型无铅压电陶瓷研究进展及今后发展思考[J]. 人工晶体学报, 2012, 41(S1): 58-67.

[45] Cole M W, Ngo E, Hubbard C, et al. Enhanced dielectric properties from barium strontium titanate films with strontium titanate buffer layers[J]. Journal of Applied Physics, 2013, 114(16):1323-19.

[46] Dong W, Liu J, Li S, et al. The dielectric and flexoelectric properties of Mg2+/K+ doped BST films[J]. Ceramics International, 2020, 46(16): 25164-25170.

[47] Zhou X, Liu K, Yan Z, et al. High energy storage efficiency of NBT-SBT lead-free ferroelectric ceramics[J]. Ceramics International, 2022, 48(16): 23266-23272.

[48] R. Laishram, K. C. Singh, C. Prakash. Enhanced Dielectric Loss of Mg Doped Ba0.7Sr0.3TiO3 Ceramics[J]. Ceramics International, 2019, 42(2016): 14970-14975.

[49] Emadi F, Nemati A, Hinterstein M, et al. Microstructural, optical, and electrical characteristics of Ni/C doped BST thin films[J]. Ceramics International, 2019, 45(5): 5503-5510.

[50] H. Q. Zhou, C. X. Yang, Y. G. Wang, et al. Effect of La2O3 doping on the microstructure and dielectric properties of BST/MgO composite ceramics[J]. Journal of Functional Materials, 2007, 38(12): 2093-2096.

[51] Y. C. Lee, Y. L. Huang. Effects of CuO doping on the microstructural and dielectric properties of Ba0.6Sr0.4TiO3 ceramics[J]. Journal of the American Ceramic Society, 2009, 92(11): 2661-2667.

[52] X. Wang, R. Huang, Y. Zhao, et al. Dielectric and tunable properties of Zr doped BST ceramics prepared by spark plasma sintering[J]. Journal of Alloys & Compounds, 2012, 533(2012): 25-28.

[53] L. P. Zhao, W. H. Tao, X. H. Fu, et al. The influence of Mn doping on the dielectric properties of Ba0.5Sr0.5TiO3 ceramics[J]. Materials Science Forum, 2016, 2016(859): 18-23.

[54] Li L, Miao L, Zhang Z, et al. Recent progress in piezoelectric thin film fabrication via the solvothermal process[J]. Journal of Materials Chemistry A, 2019, 7(27): 16046-16067.

[55] R. E. Cohen. Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992, 358(6382): 136-138.

[56] B. C. Luo, X. H. Wang, E. K. Tian, et al. Mechanism of ferroelectric properties of (BaCa)(ZrTi)O3 from first Principles Calculations[J]. Ceramics International, 2018, 44(8): 9684-9688.

[57] 薛卫东,李言荣,杨春. BaxSr1-xTiO3精细结构的第一性原理研究[J]. 化学物理学报,2005,18(2):179-182.

[58] C. Sidar, M. N. Tripathi, P. K. Bajpai, Effect of Sr-doping on the band structure of BaTiO3 through density functional theoretical calculations[J]. Computational Condensed Matter, 2017, 2017(11): 27-32.

[59] C. Yang, T. Liu, Z. Cheng, et al. Study on Mn-doped SrTiO3 with first principle calculation[J]. Physica B Condensed Matter, 2012, 407(5): 844-848.

[60] Samantaray C B, Sim H, Hwang H. First-principles study of electronic structure and optical properties of barium strontium titanates (BaxSr1− xTiO3)[J]. Applied Surface Science, 2005, 250(1-4): 146-151.

[61] 李汉军,潘红亮,李腾. Ba(Ti1-xSnx)O3电子结构和光学特性的第一性原理研究[J]. 工矿自动化,2013(10):94-98.

[62] 徐光宪,黎乐民,王德民. 量子化学基本原理和从头计算法[M]. 北京:科学出版社,1985,749-751.

[63] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.

[64] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098-3100.

[65] Novak P, Kuneš J, Chaput L, et al. Exact exchange for correlated electrons[J]. Physica Status Solidi (b), 2006, 243(3): 563-572.

[66] J. Hafner. Ab-initio simulations of materials using VASP: Density-functional theory and beyond[J]. Journal of Computational Chemistry, 2010, 29(13): 2044-2078.

[67] Liu S Y, Liu S, Li D J, et al. Structure, Phase transition, and electronic properties of K(1−x)NaxNbO3 solid solutions from first‐principles theory[J]. Journal of the American Ceramic Society, 2014, 97(12): 4019-4023.

[68] 孔祥兰,侯芹英,苏希玉,等. Ba0.5Sr0.5TiO3电子结构和光学性质的第一性原理研究[J]. 物理学报,2009,2009(06):540-543.

[69] C. Sidar, M. N. Tripathi, P. K. Bajpai, Effect of Sr-doping on the band structure of BaTiO3 through density functional theoretical calculations[J]. Computational Condensed Matter, 2017, 2017(11): 27-32.

[70] C. Yang, T. Liu, Z. Cheng, et al. Study on Mn-doped SrTiO3 with first principle calculation[J]. Physica B Condensed Matter, 2012, 407(5): 844-848.

[71] 郝权,张蔚哲. 晶体衍射分析方法[J]. 现代物理知识,2014,26(5):17-21.

[72] T. H. P. Chang, M. G. R. Thomson, M. L. Yu, et al. Electron beam technology-SEM to microcolumn[J]. Microelectronic Engineering, 1996, 32(1-4): 113-130.

[73] Arshad M, Du H, Javed M S, et al. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics[J]. Ceramics International, 2020, 46(2): 2238-2246.

[74] Shandilya M, Kaur G A, Rai R. Low temperature consequence on structural and impedance properties of BST ceramics via sol-hydrothermal method[J]. Materials Chemistry and Physics, 2021, 263: 124422.

中图分类号:

 TQ174.1    

开放日期:

 2026-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式