- 无标题文档
查看论文信息

论文中文题名:

 LL轮胎供应链质量风险传播控制研究    

姓名:

 张越    

学号:

 20202230102    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 1256    

学科名称:

 管理学 - 工程管理    

学生类型:

 硕士    

学位级别:

 管理学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 工业工程与管理    

研究方向:

 质量管理与可靠性    

第一导师姓名:

 冯套柱    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-07    

论文外文题名:

 LL Tyre Supply Chain Quality Risk Propagation Control Study    

论文中文关键词:

 供应链 ; SIRS模型 ; 质量风险 ; 风险传播    

论文外文关键词:

 Supply Chain ; SIRS model ; Quality Risk ; Risk Propagation Mechanism    

论文中文摘要:

随着我国经济社会的快速发展和人民生活水平的不断提高,中国汽车轮胎市场已从卖方市场全面过渡到买方市场,轮胎质量已成为市场竞争的关键因素,加强研发、采购、生产和销售全过程质量管理是轮胎制造企业占领市场、保证竞争优势的重要抓手。基于供应链视角研究质量风险传播机理,从源头管控质量风险,对提升轮胎制造企业质量管理能力和水平,提高轮胎产品质量具有重要的理论和现实意义。

论文在归纳总结供应链质量风险及其传播等领域的国内外研究现状和相关理论的基础上,以LL轮胎为研究对象,分析其供应链管理现状和存在问题,运用Matlab构建该企业供应链网络;参考有关文献并结合企业实际,构建LL轮胎供应链质量风险传播评价指标体系,并分析指标体系与风险传播参数的关系,在调查问卷和专家打分的基础上,运用AHP法和模糊综合评价,对参数进行测度,运用SIRS模型对LL轮胎供应链质量风险传播机理进行分析和仿真模拟。结果表明:(1)LL轮胎供应链质量风险强度处于中高风险,风险抵抗能力、风险恢复能力以及风险学习能力均处于良好区间,并普遍偏低;(2)风险感染概率与风险传播范围和风险传播速度呈正相关关系;(3)风险消除概率与风险传播范围和风险传播速度呈负相关关系;(4)感染者淘汰概率与风险传播范围和风险传播速度呈负相关关系。基于此,分别从加强供应链质量风险监控、建立供应链质量风险预警和应急机制、优化供应链合作伙伴选择、构建供应链协同机制、提高供应链管理水平五个方面提出对策建议,对有效控制质量风险在LL轮胎供应链传播具有实际指导价值。

论文外文摘要:

With the rapid development of China’s economy and society and the continuous improvement of people’s living standards, the Chinese automotive tire market has transitioned from a seller’s market to a buyer’s market, and tire quality has become a key factor in market competition. Strengthening the quality management of the entire process of research and development, procurement, production, and sales is an important means for tire manufacturing companies to occupy the market and ensure competitive advantages. Based on the perspective of the supply chain, studying the mechanism of quality risk transmission, controlling quality risks from the source, and improving the quality management capabilities and levels of tire manufacturing companies have important theoretical and practical significance for improving tire product quality.

Based on the domestic and foreign research status and related theories of summarizing supply chain quality risks and their propagation, taking LL Tire as the research object, this paper analyzes its supply chain management status and existing problems, and uses Matlab to construct the enterprise’s supply chain network. Referring to relevant literature and combining with the actual situation of the enterprise, this paper constructs an evaluation index system for the propagation of LL Tire’s supply chain quality risks and analyzes the relationship between the index system and risk propagation parameters. Based on the survey questionnaire and expert scoring, the paper uses AHP method and fuzzy comprehensive evaluation to measure the parameters, and uses the SIRS model to analyze and simulate the propagation mechanism of LL Tire’s supply chain quality risks. The results show that: (1) The intensity of LL Tire’s supply chain quality risks is at a medium to high level, and its risk resistance, risk recovery, and risk learning abilities are all in the good range , yet tending towards lower values in general. (2) The probability of risk infection is positively correlated with the range and speed of risk propagation. (3) The probability of risk elimination is negatively correlated with the range and speed of risk propagation. (4) The probability of elimination of infected individuals is negatively correlated with the range and speed of risk propagation. Based on this, countermeasure suggestions were made in five aspects: strengthening supply chain quality risk monitoring, establishing supply chain quality risk early warning and emergency response mechanism, optimizing supply chain partner selection, building supply chain synergy mechanism, and improving enterprise supply chain management, which have practical guidance value for effectively controlling quality risk transmission in LL tyre supply chain.

参考文献:

[1]Kaynak H, Hartley J L. A replication and extension of quality management into the supply chain [J]. Journal of Operations Management, 2008, 26(4): 468-489.

[2]Robinson C J, Malhotra M K. Defining the concept of supply chain quality management and its relevance to academic and industrial practice [J]. International Journal of Production Economics, 2005, 96(3): 315-337.

[3]Hietschold N, Reinhardt R, Gurtner S. Measuring critical success factors of TQM implementation successfully – a systematic literature review [J]. International Journal of Production Research, 2014, 52(21): 6254-6272.

[4]Hu J Y, Zhang J, Mei M, et al. Quality control of a four-echelon agri-food supply chain with multiple strategies [J]. Information Processing in Agriculture, 2019, 6(4): 425-437.

[5]Teng S G, Ho S M, Shumar D, et al. Implementing FMEA in a collaborative supply chain environment [J]. International Journal of Quality & Reliability Management, 2006, 23(2): 179-196.

[6]Chiarini, Andrea. Risk-based thinking according to ISO 9001:2015 standard and the risk sources European manufacturing SMEs intend to manage [J]. Tqm Journal, 2017, 29(2): 310-323.

[7]Manuj I, Mentzer J T. Global supply chain risk management strategies [J]. International Journal of Physical Distribution & Logistics Management, 2008, 38(3): 192-223.

[8]Rogala P. Identification of barriers to improving quality management systems [J]. Tqm Journal, 2016, 28(1): 79-88.

[9]Tse Y K, Zhang M, Tan K H, et al. Managing quality risk in supply chain to drive firm's performance: the roles of control mechanisms [J]. Journal of Business Research, 2018, 97: 291-303.

[10]Tse Y K, Zhang M, Zeng W, et al. Perception of supply chain quality risk: Understanding the moderation role of supply market thinness [J]. Journal of Business Research, 2021, 122.

[11]Wang Y. Specification vagueness and supply quality risk [J]. Naval Research Logistics, 2013, 60(3): 222-236.

[12]Ho W, Zheng T, Yildiz H, et al. Supply chain risk management: a literature review[J]. International Journal of Production Research, 2015, 53(16): 5031-5069.

[13]Liu C, Xiong W. Modelling and simulation of quality risk forecasting in a supply chain [J]. International Journal of Simulation Modelling, 2015, 2: 359-370.

[14]Zsidisin G A, Petkova B, Saunders L W, et al. Identifying and managing supply quality risk [J]. International Journal of Logistics Management, 2016, 27(3): 908-930.

[15]Wang H, Fang Z, Wang D, et al. An integrated fuzzy QFD and grey decision-making approach for supply chain collaborative quality design of large complex products [J]. Computers & Industrial Engineering, 2020,140: 106212.

[16]Gaonkar R S, Viswanadham N. Analytical Framework for the Management of Risk in Supply Chains [J]. IEEE Transactions on Automation Science & Engineering, 2007, 4(2): 265-273.

[17]Song J, Bai L, Yang C. Risk control research framework of supply chain of embeddedness structure based on perspective of risk conduction[C]//2012 Fifth International Joint Conference on Computational Sciences and Optimization. IEEE, 2012: 751-754.

[18]Zhang J, Chen X, Fang C. Transmission of a supplier’s disruption risk along the supply chain: a further investigation of the Chinese automotive industry [J]. Production Planning & Control, 2018, 29(9): 773-789.

[19]Deng X, Yang X, Zhang Y, et al. Risk propagation mechanisms and risk management strategies for a sustainable perishable products supply chain [J]. Computers & Industrial Engineering, 2019, 135: 1175-1187.

[20]Guo H, Cheng Y. Supply chain risk propagation model considering the herd mentality mechanism and risk preference [J]. Physica A: Statistical Mechanics and its Applications, 2019, 529: 121400.

[21]Li T, Chen H, Yuan J, et al. Quality risk propagation of complex product collaborative manufacturing supply chain network based on CN and SoV [J]. Discrete Dynamics in Nature and Society, 2020(4):1-16.

[22]Guo J, Xu J, He Z, et al. Research on risk propagation method of multimodal transport network under uncertainty[J]. Physica A: Statistical Mechanics and its Applications, 2021, 563: 125494.

[23]Ghadge A, Dani S, Kalawsky R. Systems thinking for modeling risk propagation in supply networks[C]//2011 IEEE International Conference on Industrial Engineering and Engineering Management. IEEE, 2011: 1685-1689.

[24]Marle F, Vidal L A. Project risk management processes: improving coordination using a clustering approach [J]. Research in Engineering Design, 2011, 22(3): 189-206.

[25]Shin K S, Shin Y W, Kwon J H, et al. Development of risk based dynamic backorder replenishment planning framework using Bayesian Belief Network [J]. Computers & Industrial Engineering, 2012, 62(3): 716-725.

[26]Zegordi S H, Davarzani H. Developing a supply chain disruption analysis model: Application of colored Petri-nets [J]. Expert Systems with Applications, 2012, 39(2): 2102-2111.

[27]Ojha R, Ghadge A, Tiwari M K, et al. Bayesian network modelling for supply chain risk propagation [J]. International Journal of Production Research, 2018, 56(17): 5795-5819.

[28]Huo L, Guo H, Cheng Y. Supply chain risk propagation model considering the herd mentality mechanism and risk preference [J]. Physica A: Statistical Mechanics and its Applications, 2019, 529: 121400.

[29]Cao S, Bryceson K, Hine D. An Ontology-based Bayesian network modelling for supply chain risk propagation[J]. Industrial Management & Data Systems, 2019, 119(8): 1691-1711.

[30]Huo L, Guo H, Cheng Y, et al. A new model for supply chain risk propagation considering herd mentality and risk preference under warning information on multiplex networks [J]. Physica A: Statistical Mechanics and its Applications, 2020, 545(16): 123506.

[31]Chen H H, Lin A M. Complex network characteristics and invulnerability simulating analysis of supply chain[J]. Journal of networks, 2012, 7(3): 591-597.

[32]Jiang J, Liu C, Huang H, et al. Risk communication and simulation of supply chain[C]//2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS). IEEE, 2017: 1-5.

[33]Zhao Z, Chen D, Wang L, et al. Credit Risk Diffusion in Supply Chain Finance: A Complex Networks Perspective [J]. Sustainability, 2018, 10(12): 4608.

[34]Wang J, Zhou H, Jin X. Risk transmission in complex supply chain network with multi-drivers [J]. Chaos, Solitons & Fractals, 2021, 143(5439): 110259.

[35]Lei Z, Lim M K, Cui L, et al. Modelling of risk transmission and control strategy in the transnational supply chain [J]. International Journal of Production Research, 2021, 59(1): 148-167.

[36]Wang H, Zhang X. Research on Supply Chain Risk Transmission Mechanism Based on Improved SIRS Model [J]. Mathematical Problems in Engineering, 2022, 2022: 1-9.

[37]Liang D, Bhamra R, Liu Z, et al. Risk Propagation and Supply Chain Health Control Based on the SIR Epidemic Model [J]. Mathematics, 2022, 10(16): 3008.

[38]Zhu J, Cheng Y, Zhang Y. Risk Propagation Mechanism Research Based on SITR Model of Complex Supply Networks [J]. International Journal of Information Systems and Supply Chain Management, 2021, 14(3): 18-38.

[39]徐晓芳,张伟,叶春明.基于供应链的企业质量管理[J].工业工程,2002,5(5):39-42.

[40]麻书城,唐晓青.供应链质量管理特点及策略[J].计算机集成制造系统-CIMS, 2001(09):32-35.

[41]张翠华,黄小原.供应链中的道德风险问题[J].东北大学学报,2003(07):703-706.

[42]张光明,朱青青.供应链质量管理及其对绩效的影响:文献综述[J].物流科技,2013, 36(11):71-73.

[43]江孝感,陈丰琳,王凤.基于供应链网络的风险分析与评估方法[J].东南大学学报, 2007(S2):355-360.

[44]颜忠娥.基于QFD的供应链质量风险传递模型研究[J].科技进步与对策,2013, 30(12):22-25.

[45]刘彩虹,徐福缘.基于模糊物元的制造业供应链质量风险评价[J].上海理工大学学报, 2016,38(05):465-471.

[46]马丽,张光明,李平.供应链风险的传递机制与传递路径研究[J].图书情报导刊, 2007(31):96-98.

[47]程国平,刘勤.供应链风险传导路径变化研究[J].价值工程,2009,28(04):1-3.

[48]李刚.供应链风险传导机理研究[J].中国流通经济,2011,25(01):41-44.

[49]晚春东,柏建成,陈常君.从风险后果角度探讨供应链风险传导机理[J].物流科技,2011, 34(03):45-48.

[50]肖依永,常文兵,张人千.基于质量供需链的质量风险传递模型研究[J].项目管理技术, 2009,7(08):13-18.

[51]程国平,张剑光.基于产品基因理论的供应链产品质量风险传导研究[J].改革与战略, 2009,25(07):145-148.

[52]李赛,许爱强.装备供应链风险传递预防性研究[J].物流技术,2014,33(15):363-366.

[53]刘爱秋,杨春河,白兰.基于系统动力学的嵌入型食品供应链风险传导问题研究——以河北省保定市蔬菜供应链为例[J].物流技术,2014,33(17):305-307+334.

[54]刘彩虹,刘靖靖.以突发性关联性为特点的供应链质量风险传递研究[J].管理观察, 2015(02):72-74.

[55]欧阳喜军.乳制品供应链质量风险扩散机理与识别方法研究[D].北京交通大学,2016.

[56]辛玉红,孙延明.风险传导下的供应链鲁棒性分析与仿真研究[J].科技管理研究,2017, 37(14):245-253.

[57]汪金洲,陈洪转.基于复杂网络的复杂产品供应链风险传播模型[J].统计与决策,2021, 37(04):176-180.

[58]王道平,李淼.基于SIR模型的供应链知识服务网络形成模型研究[J].科技管理研究, 2013,33(19):176-179.

[59]李涵,赵一飞,罗逸仁.供应链视角下邮轮港口公共卫生事件模型分析[J].大连海事大学学报,2021,47(01):83-91.

[60]常冬雨.农产品流通供应链风险网络形成与防范控制策略[J].商业经济研究, 2019(17):127-130.

[61]杨康,张仲义.供应链网络风险传播SIS-RP模型及仿真[J].北京交通大学学报,2013, 37(03):122-126.

[62]吕波,韩健,凡新凯.新技术革命背景下基于SIR-SCR模型的供应链风险传导新机理研究[J].科技管理研究,2020,40(05):199-206.

[63]陈倬,景琦,王锐.大型粮商主导的粮食供应链整合研究——基于SIR模型的实证分析[J].江苏农业科学,2016,44(11):555-559.

[64]仇莉,曹娇娇,石佳楠.供应链网络金融风险扩散机制研究[J].物流工程与管理,2020, 42(09):90-94+105.

[65]傅培华,王秀丽,赵萌,等.基于复杂网络的建材供应链金融风险传播与防范研究[J].供应链管理,2020,1(09):21-35.

[66]张阐军.农产品供应链重构风险传导SIR建模与仿真研究[J].中国农业资源与区划,2020,41(01):98-104.

[67]王定祥,何乐佩,李伶俐.供应链金融中的信用风险传导机制及其仿真模拟[J].金融论坛,2021,26(09):15-25.

[68]张明,董利民.企业如何应对质量风险[J].理论月刊,2005(04):149-151.

[69]蔡圣熔.质量风险管理在烟草企业中的运用[J].黑龙江科技信息,2016(17):288.

[70]张敏,程幼明,胡伟,等.基于DEMATEL法的质量风险测评与改善分析[J].统计与决策, 2014(12):180-183.

[71]Watts D J, Strogatz S H. Collective dynamics of ‘small-world’networks[J]. nature, 1998, 393(6684): 440-442.

[72]Barabási A L, Albert R. Emergence of scaling in random networks[J]. science, 1999, 286(5439): 509-512.

[73]王娟.电子企业供应链管理研究[D].南京农业大学,2010.

[74]李全喜,孙磐石,金凤花.基于免疫视角的供应链质量管理模型研究[J].商业研究, 2010(07):72-76.

[75]孟劼.核心企业文化对供应链风险免疫力的影响[D].浙江大学,2012.

[76]金铌.基于本质安全的供应链风险识别方法研究[J].中国安全科学学报,2011, 21(03):145-149.

[77]何丽红,王星星.供应链柔性与弹性的比较分析[J].商业时代,2010(15):22-23.

[78]龚卫锋.应急供应链管理研究[J].中国流通经济,2014,28(04):50-55.

[79]王海军,谭洁,王天雨.供应链复原能力与供应链竞争力关系研究:基于动态能力的视角[J].管理评论,2018,30(11):223-233.

[80]陈伟,张旭梅.供应链中企业组织学习能力对合作绩效的影响——以知识获取为中介变量的实证研究[J].商业经济与管理,2009(08):36-42.

[81]郑丽娟.协同供应链企业知识共享中风险绩效管理研究[J].商业时代,2011(20):83-85.

[82]张树山,胡化广,孙磊,等.供应链数字化与供应链安全稳定——一项准自然实验[J].中国软科学,2021(12):21-30+40.

[83]唐丽.基于SIRS模型的生鲜电商供应链物流风险传播机制研究[D].重庆大学,2019.

中图分类号:

 F274    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式