- 无标题文档
查看论文信息

论文中文题名:

 涉水岸坡开挖卸荷岩体力学特性研究    

姓名:

 陈莉丽    

学号:

 19204209110    

保密级别:

 保密(3年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 岩土工程    

第一导师姓名:

 陈兴周    

第一导师单位:

 西安科技大学    

第二导师姓名:

 邓成进    

论文提交日期:

 2022-06-15    

论文答辩日期:

 2022-05-29    

论文外文题名:

 Study on mechanical properties of excavated unloaded rock mass in wading bank slope    

论文中文关键词:

 库岸边坡 ; 开挖卸荷岩体 ; 干湿循环 ; 承压浸泡 ; 力学特性    

论文外文关键词:

 reservoir area slope ; excavated unloaded rock mass ; wet-dry cycle ; pressure immersion ; mechanical properties    

论文中文摘要:

水电资源是可持续利用的清洁能源。大型水电工程建设与运行期所涉及的岩质边坡开挖支护及变形失稳问题,是制约水工岸坡工程设计与安全运行的重要课题。本文依托国家自然科学基金面上项目《季冻区水库边坡消落带开挖卸荷岩体力学特性及其变形破坏机理研究,51979218》,根据水工开挖岸坡的赋存环境,以开挖扰动区卸荷岩体为对象,考虑了分步开挖、干湿循环、承压浸泡等因素影响岸坡变形的作用机理;综合采用理论分析、室内试验与细观测试相结合的研究方法,开展涉水岸坡开挖卸荷岩体力学特性分析方面的研究工作。主要研究成果如下:

1)结合库岸岩质边坡施工过程实施了室内三轴分级卸荷试验,获取了不同初始应力水平和不同卸荷量级下的卸荷试样;基于应力路径和卸荷量级及破裂特征,将卸荷损伤试样加卸载过程划分为五个阶段。结果表明,卸围压是引起试样损伤的主要因素,初始围压与卸荷量级控制着试样的卸荷损伤程度;初始围压越大,卸荷量级越大,卸荷响应越显著。同时,室内冻融试验表明,冻结时间越长,卸荷损伤越明显,冻结作用加剧了试件卸围压过程的损伤幅度。

2)以卸荷损伤试样为对象,依次开展了干湿循环试验、波速测定、核磁共振分析,以及三轴再加载试验。结合试样的孔隙结构、力学特性及破裂特征,分析了干湿循环作用对卸荷损伤试样物理力学性质的影响。研究了试样质量、波速、核磁T2谱分布及谱面积,随干湿循环次数变化的相关性。

3)以冻结后卸荷损伤试样为对象,依次开展了变幅承压浸泡循环试验、波速测定、核磁共振测试及单三轴再加载试验。综合分析了试样全应力应变曲线与力学参数伴随冻结天数的变化规律,获取了质量、波速、核磁T2谱分布与谱面积伴随冻融循环次数的演化规律,对比研究了应力应变曲线、宏观力学参数随循环次数的变化规律与试样破裂特征,探究了承压浸泡作用影响下冻结试样物理力学性质的变化规律。

4)结合干湿循环条件下卸荷损伤三轴再加载试验结果,推导了“卸荷-干湿循环”条件下的统计损伤本构模型;根据承压浸泡环境下冻结后卸荷试样的单三轴再加载试验数据,构建了“冻结-卸荷-承压浸泡”条件下的统计损伤本构模型;结合试验所得应力应变曲线,进行了所建本构模型的验证及改进工作,模型曲线与试验结果吻合效果较好。

论文外文摘要:

Hydropower resources are sustainable and clean energy. The problems of rock slope excavation support and deformation instability involved in the construction and operation of large-scale hydropower projects are important issues that restrict the design and safe operation of hydraulic bank slope projects. In this paper, relying on the National Natural Science Foundation of China's project "Research on the mechanical properties and deformation and failure mechanism of rock mass during excavation and unloading of the slope of the seasonally frozen reservoir slope, 51979218". According to the occurrence environment of the hydraulic excavation bank slope, taking the unloading rock mass in the excavation disturbed area as the object, the action mechanism of partial excavation, dry-wet cycle, pressure soaking and other factors affecting the deformation of the bank slope is considered. Comprehensive theoretical analysis, laboratory test, meso-test and numerical simulation are adopted to study the mechanical characteristics analysis and stability analysis of excavated unloading rock mass on wading bank slope. The main research results are as follows:

1) Combined with the construction process of reservoir bank rock slope, the triaxial graded unloading test was carried out, and the unloaded samples under different initial stress levels and different unloaded orders were obtained; Based on the stress path, unloading magnitude and fracture characteristics, the loading and unloading process of unloaded damaged samples was divided into five stages. The results show that the unloaded confining pressure is the main factor causing the damage of the samples, the initial confining pressure and the unloading magnitude control the unloaded damage degree of the samples. The greater the initial confining pressure, the greater the unloading magnitude and the more significant the unloading response. At the same time, the freezing-thawing test shows that the longer the freezing time, the more obvious the unloaded damage, and the freezing effect intensifies the damage amplitude in the process of unloading confining pressure.

2) Taking the unloading damaged specimen as the object, the dry-wet cycle test, wave velocity measurement, NMR analysis and triaxial reloading test were carried out in turn. Combined with the pore structure, mechanical properties and fracture characteristics of the specimen, the influence of dry-wet cycle on the physical and mechanical properties of the unloading damaged specimen was analyzed. The correlation of sample mass, wave velocity, T2 spectrum distribution and spectrum area of nuclear magnetic resonance with the change of dry-wet cycles was studied.

3) Taking the unloaded damaged samples after freezing as the object, the cyclic test of variable amplitude pressure soaking, wave velocity measurement, NMR test and uniaxial and triaxial reloading test were carried out in turn. The variation law of the total stress-strain curve and mechanical parameters with freezing days was comprehensively analyzed, and the evolution law of mass, wave velocity, T2 spectrum distribution and spectral area with the number of freezing-thawing cycles was obtained. The variation law of stress-strain curve, macroscopic mechanical parameters with the number of cycles and the fracture characteristics of samples were compared. The changes of physical and mechanical properties of frozen samples under the influence of pressure immersion were studied.

4) Based on the triaxial reloading test results of unloaded damage under the condition of dry-wet cycle, the statistical damage constitutive model under the condition of "unloading-dry-wet cycle" is derived. According to the data obtained from uniaxial and triaxial reloading tests of frozen unloaded samples under pressure immersion environment, a statistical damage constitutive model under the condition of "freezing-unloading-pressure immersion" is constructed. Combined with the stress-strain curve obtained from the test, the established constitutive model is verified and improved, and the model curve is in good agreement with the test results.

参考文献:

[1] 李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.

[2] 李建林,王乐华.卸荷岩体力学原理与应用[M].北京:科学出版社,2016.

[3] 李建林,王乐华.卸荷岩体的尺寸效应研究[J].岩石力学与工程学报,2003(12):2032-2036.

[4] 李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001(03):338-341.

[5] 王兰生,李文纲,孙云志.岩体卸荷与水电工程[J].工程地质学报,2008(02):145-154.

[6] 刘国霖.节理岩体的卸荷岩体力学理论要点[J].三峡大学学报(自然科学版),2002(03):193-197.

[7] 胡政,刘佑荣,武尚,等.高地应力区岩样在卸荷条件下的变形参数劣化试验研究[J].岩土力学,2014(S1):78-84.

[8] 张黎明,任明远,马绍琼,等.不同应力路径大理岩物理力学参数变化规律[J].地下空间与工程学报,2016(05):1288-1293+.

[9] 晏长根,林峰,伍法权,杨晓华.岩体扰动深度估算的应力场方法[J].长安大学学报(自然科学版),2011,31(04):68-72.

[10] 薄英鋆,王华宁,蒋明镜.深部节理岩体开挖卸荷动力破坏机制的离散元研究[J].岩土工程学报,2020,42(S2):196-201.

[11] 刘磊,贾洪彪,马淑芝.考虑卸荷效应的岩质边坡断裂损伤模型及应用[J].岩石力学与工程学报,2015,34(04):747-754.

[12] 王建明,王延廷,陈忠辉,周子涵.卸荷条件下不等长共线双裂隙相互作用规律分析[J].煤炭学报,2020,45(11):3759-3771.

[13] 陈兴周,李建林,朱岳明.单裂隙卸荷岩体力学特性分析[J].水力发电,2006(10):35-37.

[14] 郭建强,刘新荣,赵青.岩石卸荷力学特性的理论研究[J].岩土力学,2017,38(S2):123-130.

[15] Wu F, Liu J, Liu T, et al. A method for assessment of excavation damaged zone (EDZ) of a rock mass and its application to a dam foundation case[J]. Engineering Geology, 2009, 104(3):254-262.

[16] 黄达,谭清,黄润秋.高应力下脆性岩石卸荷力学特性及数值模拟[J].重庆大学学报,2012(06):72-79.

[17] 刘杰,李建林,黄宜胜,等.卸荷岩体本构关系研究[J].地球与环境,2005(03):112-116.

[18] 雷涛,周科平,胡建华,高峰.卸荷岩体力学参数劣化规律的细观损伤分析[J].中南大学学报(自然科学版),2013,44(01):275-281.

[19] Xie S J, Hang L, Wang Y X, et al. A statistical damage constitutive model considering whole joint shear deformation[J]. International Journal of Damage Mechanics, 2020, 29(6). 988-1008.

[20] Cao P, Wu Y D, Wu Y X, et al. Study on nonlinear damage creep constitutive model for high-stress soft rock[J]. Environmental Earth Sciences, 2016, 75(10):900.

[21] Yang H Q, Liu J F, Zhou X P. Effects of the loading and unloading conditions on the stress relaxation behavior of Pre-cracked granite[J]. Rock Mechanics and Rock Engineering, 2017, 50(5). 1157-1169.

[22] Shen C, Gu W. An improved analytical approach for analyzing a circular opening excavated in a strain-softening rock mass[J]. Arabian Journal of Geosciences, 2021, 14(19):1-14.

[23] 丛宇,冯夏庭,郑颖人,等.脆性岩石宏细观破坏机制的卸荷速率影响效应研究[J].岩石力学与工程学报,2016(S2):3696-3705.

[24] 朱子涵,蔚立元,李景龙,等.峰前卸荷大理岩变形演化规律及破坏耗能特征[J].煤炭学报,2020(S1):181-190.

[25] 孟庆彬,钱唯,浦海,黄炳香,王从凯,孙稳,王杰.损伤与破裂岩样力学特性试验研究[J].岩石力学与工程学报,2020,39(08):1534-1546.

[26] 王乐华,牛草原,张冰祎,等.不同应力路径下深埋软岩力学特性试验研究[J].岩石力学与工程学报,2019(05):973-981.

[27] 张培森,赵成业,侯季群,等.不同初始卸荷水平下红岩样波速变化及能量耗散规律试验研究[J].煤炭学报:2020(1):1-16.

[28] Meng Q B, Zhang M W, Han L J, et al. Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(10). 3873–3886.

[29] Peng K, Zhou J Q, Zou Q L, et al. Effects of stress lower limit during cyclic loading and unloading on deformation characteristics of sandstones[J]. Construction and Building Materials, 2019, 217. 202-215.

[30] 曾韦,刘向君,梁利喜,庄大琳.页岩卸荷能量演化特征试验研究[J].地下空间与工程学报,2019,15(03):719-726.

[31] 刘崇岩,赵光明,许文松.加卸荷条件下岩石力学特性与声发射特征[J].中国安全生产科学技术,2019(04):109-114.

[32] 周科平,胡振襄,李杰林,等.基于核磁共振技术的大理岩卸荷损伤演化规律研究[J].岩石力学与工程学报,2014(S2):3523-3530.

[33] Du K, Ming T, Li X B, et al. Experimental study of slabbing and rockburst induced by True-Triaxial unloading and local dynamic disturbance[J]. Rock Mechanics and Rock Engineering, 2016, 49(9). 3437-3453.

[34] Liang Y P, Li Q M, Gu Y L, et al. Mechanical and acoustic emission characteristics of rock: Effect of loading and unloading confining pressure at the postpeak stage[J]. Journal of Natural Gas Science and Engineering, 2017, 44. 54-64.

[35] Zhou K P, Liu T Y, Hu Z X. Exploration of damage evolution in marble due to lateral unloading using nuclear magnetic resonance[J]. Engineering Geology, 2018, 244.75-85.

[36] Ren J X, X Chen, Chen X Z, et al. Effect of porewater pressure on the mechanical properties of red sandstone with different unloading rates[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2020: qjegh2019-101.

[37] Zhou J J, Fu H, Zhang Y, et al. Strength attenuation and post failure behaviour of fine sandstone[J]. Advanced Materials Research, 2012, 446-449: 3538-3543.

[38] Ma Z T, Cui Y Q, Lu K Y, et al. Study on fracture and permeability characteristics of unloading rock with high water pressure[J]. Mathematical Problems in Engineering, 2021, 2021.

[39] Kou M M, Liu X R, Wang Z Q, Mohsen Nowruzpour, Mechanical properties, failure behaviors and permeability evolutions of fissured rock-like materials under coupled hydro-mechanical unloading[J]. Engineering Fracture Mechanics, 2021, 254.107979.

[40] 刘新荣,李栋梁,张梁,王震.干湿循环对泥质岩样力学特性及其微细观结构影响研究[J].岩土工程学报,2016,38(07):1291-1300.

[41] 邓华锋,段玲玲,支永艳,潘登,李建林,宛良朋.干湿循环作用下节理面剪切力学特性演化规律[J].岩石力学与工程学报,2018,37(S2):3958-3967.

[42] Yang X J, Wang J M, Hou D G, Zhu C, He M C. Effect of dry-wet cycling on the mechanical properties of rocks: A Laboratory-Scale Experimental Study[J]. Processes,2018,6(10).

[43] Fang J C, Deng H F, Li J L, Assefa E. Study on the seepage characteristics and degradation mechanism of a single-jointed sandstone under the cyclic dry–wet process in the Three Gorges reservoir[J]. Bulletin of Engineering Geology and the Environment,2021,80(10).

[44] Guo P Y, Gu J, Su Y, Wang J, Ding Z W. Effect of cyclic wetting–drying on tensile mechanical behavior and microstructure of clay-bearing sandstone[J]. International Journal of Coal Science and Technology, 2021,8(5):1-13.

[45] 王伟,李雪浩,朱其志,石崇,徐卫亚.水化学腐蚀对砂板岩力学性能影响的试验研究[J].岩土力学,2017,38(09):2559-2566+2573.

[46] Li H, Zhong Z L, Liu X R, Sheng Y, Yang D M. Micro-damage evolution and macro-mechanical property degradation of limestone due to chemical effects[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110:257-265.

[47] Lin Y, Zhou K P, Li J L, Ke B, Gao R G. Weakening laws of mechanical properties of sandstone under the effect of chemical corrosion[J]. Rock Mechanics and Rock Engineering,2019,53(3).

[48] Chen C C, Peng S J, Wu S K, Xu J. The effect of chemical erosion on mechanical properties and fracture of sandstone under shear loading: an experimental study[J]. Scientific reports,2019,9(1).

[49] Shang D L, Zhao Z H, Dou Z H, Yang Q. Shear behaviors of granite fractures immersed in chemical solutions[J]. Engineering Geology,2020,279.

[50] Wang W, Mei S Y, Cao Y J, Wang R B, Zhu Q Z. Experimental study on property modification of jointed rocks subjected to chemical corrosion[J]. European Journal of Environmental and Civil engineering,2020.

[51] Huang X, Pang J Y, Liu G C, Chen Y. Experimental study on physicomechanical properties of deep sandstone by coupling of dry-wet cycles and acidic environment[J]. Advances in Civil Enginerring, 2020, 2020(4):1-17.

[52] 韩铁林,师俊平,陈蕴生.化学腐蚀和干湿循环作用下岩样Ⅰ型断裂韧度及其强度参数相关性的研究[J].水利学报,2018,49(10):1265-1275.

[53] Luo Z S, Li J L, Jiang Q, Zhang Y C, Huang Y S, Eleyas A, Deng H F. Effect of the water-rock interaction on the creep mechanical properties of the sandstone rock[J]. Periodica Polytechnica Civil Engineering, 2018,62(2).

[54] Deng H F, Zhang Y C, Zhi Y Y, et al. Sandstone dynamical characteristics influenced by water-rock interaction of bank slope[J]. Advances in Civil Engineering, 2019, 2019(3):1-11.

[55] 丁梧秀,徐桃,王鸿毅,陈建平.水化学溶液及冻融耦合作用下灰岩力学特性试验研究[J].岩石力学与工程学报,2015,34(05):979-985.

[56] 肖树芳.岩体力学[M].北京:地质出版社,1987.

[57] 苏承东,翟新献,李永明,等.煤样三轴压缩下变形和强度分析[J].岩石力学与工程学报,2006,25(0z1):2963-2968.

[58] Jin P, Hu Y, Shao J, et al. Influence of temperature on the structure of pore–fracture of sandstone[J]. Rock Mechanics and Rock Engineering, 2020, 53(1):1-12.

[59] 王明芳.干湿循环作用下石膏质岩劣化特征与机制研究[D].中国地质大学,2018.

[60] 向力,王乐华,陈招军,李洁,马云彪.干湿循环作用下岩样的劣化及破坏特性研究[J].水利水电技术,2017,48(05):142-147.

[61] 宋朝阳,纪洪广,刘志强,谭杰.饱和水弱胶结岩样剪切断裂面形貌特征及破坏机理[J].煤炭学报,2018,43(09):2444-2451.

[62] 刘泉声,黄诗冰,康永水,崔先泽.裂隙岩体冻融损伤研究进展与思考[J].岩石力学与工程学报,2015,34(03):452-471.

[63] 杨更社,周春华,田应国,侯仲杰.软岩材料冻融过程中的水热迁移实验研究[J].煤炭学报,2006(05):566-570.

[64] 曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004(19):3226-3231.

[65] 刘红岩,王根旺,陈福刚.以损伤变量为特征的岩石损伤理论研究进展[J].爆破,2004(01):9-12.

[66] 张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报,2003(01):30-34.

[67] 张玉山.胶结充填体变形全过程损伤演化及本构模型研究[D].武汉科技大学,2019.

中图分类号:

 TU45    

开放日期:

 2025-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式