- 无标题文档
查看论文信息

论文中文题名:

 FeS2/石墨烯复合材料设计构筑及其储锂过程机理研究    

姓名:

 张展瑞    

学号:

 19213211027    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085216    

学科名称:

 工学 - 工程 - 化学工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工程    

研究方向:

 碳基纳米材料制备及应用研究    

第一导师姓名:

 张亚婷    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-25    

论文答辩日期:

 2022-06-05    

论文外文题名:

 Design and Construction of FeS2/Graphene Composites and Their Mechanism of Lithium Storage Process    

论文中文关键词:

 锂离子电池 ; 负极材料 ; FeS2 ; 石墨烯 ; 氮/硫掺杂    

论文外文关键词:

 Lithium-ion Batteries ; Anode material ; FeS2 ; Graphene ; N/S doping    

论文中文摘要:

作为新型储能装置,锂离子电池因其具有高能量密度、高功率密度及无记忆效应等优点而备受关注。目前,商用锂离子电池石墨负极还存在理论容量较低(仅为372 mAh·g-1)无法满足大型用电设备的问题,开发绿色、安全、高效的负极材料是锂离子电池大规模应用的关键。本文利用石墨烯与FeS2复合形成的限域效应,设计并构筑了系列FeS2/硫掺杂石墨烯复合材料,并考察其作为锂离子电池负极材料的储锂性能,探讨了复合材料在储锂过程中的储锂动力学。主要的研究工作总结如下:

(1)以氧化石墨烯(GO)为基底,通过水热法结合硫化法成功制备得到FeS2和硫掺杂石墨烯(SG)复合材料(FeS2/SG),进一步考察复合材料的储锂性能并研究储锂过程动力学。所制备的复合材料具有较大的比表面积和丰富的介孔结构,这将有利于Li+的快速传输。电化学测试结果表明:FeS2/SG电极在0.1 A·g-1的电流密度下循环充放电60圈后的放电容量可达1033.4 mAh·g-1;在2.5 A·g-1的电流密度下循环充放电400圈后容量依然保持在247.2 mAh·g-1。但FeS2/SG依然存在诸多问题,其主要是由于碳材料的相对含量较低。

(2)以FeOOH作为前驱体,通过聚吡咯(PPy)和石墨烯包覆成功制备得到氮硫共掺杂碳(NSC)包覆FeS2和硫掺杂石墨烯(SG)复合材料(FeS2@NSC/SG)。该复合材料具有较大的比表面积和多级孔结构,这为储锂反应提供了更多的活性位点,促进了储锂反应的发生。电化学测试结果表明:FeS2@NSC/SG复合材料具有优异的循环性,在0.1 A·g-1下进行120圈循环后的可逆容量可达944.6 mAh·g-1;在2.5 A·g-1下进行400圈循环后的可逆容量为387.6 mAh·g-1;在5 A·g-1下进行500圈循环后的可逆容量依然保持为270.8 mAh·g-1,此外FeS2@NSC/SG电极也表现出优异的倍率性能。通过碳材料的相对含量增加,FeS2@NSC/SG复合材料的电化学性能相较于FeS2/SG复合材料大大提高。

(3)储锂动力学研究表明:FeS2/SG和FeS2@NSC/SG的离子扩散速率均大于FeS2,并且FeS2@NSC/SG的离子扩散速率要大于FeS2/SG;FeS2/SG和FeS2@NSC/SG的Rs(欧姆电阻)和Rct(电荷转移电阻)均小于FeS2,同时FeS2@NSC/SG的Rs和Rct也要小于FeS2/SG;FeS2/SG的电化学行为由扩散控制主导,而FeS2@NSC/SG的电化学行为由电容控制主导,同一扫速下FeS2@NSC/SG的电容贡献占比要大于FeS2/SG,这归因于碳材料的相对含量增加,更多的电容贡献占比可以促进离子参与转化反应并提高电化学性能。

论文外文摘要:

As a new type of energy storage device, lithium-ion batteries are attracting attention because of their high energy density, high power density and no memory effect. At present, the graphite anode of commercial lithium-ion batteries also has a low theoretical capacity (only 372 mAh·g-1), which cannot meet the problem of large-scale electrical equipment. The development of green, safe and efficient anode materials is the key to large-scale application of lithium-ion batteries. In this paper, a series of FeS2/sulfur-doped graphene composites were designed and constructed by using the confinement effect formed by the composite of graphene and FeS2, and their lithium storage properties as anode materials for lithium ion batteries were investigated, and also explore the lithium storage kinetics of the composite during lithium storage. The main research work is summarized as follows:

(1) FeS2 and sulfur-doped graphene (SG) composite (FeS2/SG) were successfully prepared by hydrothermal method combined with vulcanization method using graphene oxide (GO) as a substrate, and the lithium storage properties of the composite was further investigated and the kinetics of the lithium storage process were studied. The prepared composite has large specific surface area and abundant mesoporous structure, which will facilitate the rapid transfer of Li+. The electrochemical test results show that the FeS2/SG electrode has a discharge capacity of 1033.4 mAh·g-1 after 60 cycles at a current density of 0.1 A·g-1 and a capacity of 247.2 mAh·g-1 after 400 cycles at a current density of 2.5 A·g-1. However, FeS2/SG still has many problems, mainly due to the relatively low content of carbon materials.

(2) Nitrogen-sulfur co-doped carbon (NSC) coated FeS2 and sulfur-doped graphene (SG) composite (FeS2@NSC/SG) were successfully prepared by coating with polypyrrole (PPy) and graphene using FeOOH as a precursor. The composite has a large specific surface area and a hierarchical porous structure, which provides more active sites for the lithium storage reaction and promotes the occurrence of the lithium storage reaction. The electrochemical test results show that the FeS2@NSC/SG composite has excellent cycling performance and fast charge/discharge characteristics, with a reversible capacity of 944.6 mAh·g-1 after 120 cycles at 0.1 A·g-1, 387.6 mAh·g-1 after 400 cycles at 2.5 A·g-1 and 270.8 mAh·g-1 after 500 cycles at 5 A·g-1. The FeS2@NSC/SG electrode also exhibited excellent rate performance. The electrochemical performance of FeS2@NSC/SG composite is greatly improved compared with FeS2/SG composite by increasing the relative content of carbon materials.

(3) The lithium storage kinetics study shows that the ion diffusion rate of both FeS2/SG and FeS2@NSC/SG are greater than that of FeS2, and the ion diffusion rate of FeS2@NSC/SG is greater than that of FeS2/SG. The Rs (ohmic resistance) and Rct (charge transfer resistance) of FeS2/SG and FeS2@NSC/SG are both smaller than those of FeS2, while the Rs and Rct of FeS2@NSC/SG are also smaller than those of FeS2/SG. The electrochemical behaviour of FeS2/SG is dominated by diffusion control, while that of FeS2@NSC/SG is dominated by capacitive control. At the same scan rate, the capacitive contribution of FeS2@NSC/SG is larger than that of FeS2/SG, which is attributed to the increase in the relative content of carbon materials,more capacitance contribution can promote the participation of ions in the conversion reaction and improve the electrochemical performance.

参考文献:

[1] Han Y, Qi P, Li S, Feng X, Zhou J, Li H, Su S, Li X, Wang B. A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries [J]. Chemical Communications, 2014, 50(59): 8057-8060.

[2] Huang Y, Wu D, Dianat A, Bobeth M, Huang T, Mai Y, Zhang F, Cuniberti G, Feng X. Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries [J]. Journal of Materials Chemistry A, 2017, 5(4): 1588-1594.

[3] 张凯博. ZIFs基石墨烯复合材料的构筑及储锂机理研究 [D]:西安科技大学,2020.

[4] Jiang Y, Liu H, Tan X, Guo L, Zhang J, Liu S, Guo Y, Zhang J, Wang H, Chu W. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries [J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25239-25249.

[5] Zhang C, Wang X, Liang Q, Liu X, Weng Q, Liu J, Yang Y, Dai Z, Ding K, Bando Y. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries [J]. Nano Letters, 2016, 16(3): 2054-2060.

[6] 任绍昭. Fe2O3/煤基炭纳米复合材料制备及其储锂性能研究 [D]:西安科技大学,2018.

[7] Liu Y, Dai Y, Jiang X, Li X, Yan Z, He G. Fe3O4 quantum dots embedded in porous carbon microspheres for long-life lithium-ion batteries [J]. Materials Today Energy, 2019, 12: 269-276.

[8] 金晓茜. 锂离子电池富锂层状正极材料Li[Li0.2Ni0.16Co0.08Mn0.56]O2的改性研究 [D]:厦门大学,2013.

[9] Song Y, Liao J, Chen C, et al. Controllable morphologies and electrochemical performances of self-assembled nano-honeycomb WS2 anodes modified by graphene doping for lithium and sodium ion batteries [J]. Carbon, 2019, 142: 697-706.

[10] 贺勇, 唐子龙, 张中太. 负载Cr2O3的H2Ti2O5·H2O纳米管的制备及其作为锂离子电池正极材料的电化学性能 [J]. 物理化学学报, 2010, 26(11): 2962-2966.

[11] 孟祥贺, 唐卯星, 方玉成, 等. Fe2O3空心球的简易合成及其储锂性能研究 [J]. 化学研究与应用, 2020, 32(8): 156-163.

[12] 王捷, 李圆, 赵海雷. 纳米颗粒组装三维Co3O4微米花材料制备及储锂性能研究 [J]. 化工学报, 2020, 71(4): 1844-1850

[13] 安玉良, 任玉杰, 闫杭亮, 等. 四氧化三铁/石墨烯复合锂离子电池负极材料制备及性能研究 [J]. 化学与粘合, 2020, 42(3): 159-161.

[14] Whittingham M S. Intercalation chemistry and energy storage [J]. Journal of Solid State Chemistry, 1979, 29(3): 303-310.

[15] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0

[16] Nagaura T. Lithium ion rechargeable battery [J]. Progress in Batteries & Solar Cells, 1990, 9: 209.

[17] Yang J, Zeng Z, Kang J, Betzler S, Czarnik C, Zhang X, Ophus C, Yu C, Bustillo K, Pan M. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates [J]. Nature Materials, 2019, 18(9): 970-976.

[18] Xu Y, Zhu K, Liu P, Wang J, Yan K, Liu J, Zhang J, Li J, Yao Z. Controllable synthesis of 3D Fe3O4 micro-cubes as anode materials for lithium ion batteries [J]. CrystEngComm, 2019, 21(34): 5050-5058.

[19] Li L, Kovalchuk A, Fei H, Peng Z, Li Y, Kim N D, Xiang C, Yang Y, Ruan G, Tour J M. Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials [J]. Advanced Energy Materials, 2015, 5(14): 1500171.

[20] Luo J, Liu J, Zeng Z, et al. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability [J]. Nano Letters, 2013, 13(12): 6136-6143.

[21] 孔华彬. 高性能钴基负极材料的设计制备及储锂/储钠性能研究 [D]:哈尔滨工业大学,2021.

[22] 郝晓光. 锂离子电池三元复合正极材料的改进与性能研究 [D]:重庆大学,2009.

[23] Sandu I, Moreau P, Guyomard D, Brousse T, Roue L. Synthesis of nanosized Si particles via a mechanochemical solid-liquid reaction and application in Li-ion batteries [J]. Solid State ionics, 2007,178(21): 1297-1303.

[24] Liu C, Li F, Ma L-P, et al. Advanced materials for energy storage [J]. Advanced Materials, 2010, 22(8): E28-E62.

[25] Palacín M R. Recent advances in rechargeable battery materials: a chemist’s perspective [J]. Chemical Society Reviews, 2009, 38(9): 2565-2575.

[26] Ng S-H, Wang J, Wexler D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries [J]. Angewandte Chemie International Edition, 2006, 45(41): 6896-6899.

[27] 陈逸凡. 硅碳复合纳米材料的制备及作为锂离子电池负极材料的应用 [D]:浙江大学,2017.

[28] Courtney I A, Dahn J. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites [J]. Journal of the Electrochemical Society, 1997, 144(6): 2045.

[29] Kishore M S, Varadaraju U V. Phosphides with zinc blende structure as anodes for lithium-ion batteries[J]. Journal of power sources, 2006, 156(2): 594-597.

[30] Du H, Huang K, Dong W, et al. A general gelatin-assisted strategy to hierarchical porous transition metal oxides with excellent lithium-ion storage[J]. Electrochimica Acta, 2018, 279: 66-73.

[31] Wang S, Li L, Shao Y, et al. Transition-metal oxynitride: a facile strategy for improving electrochemical capacitor storage[J]. Advanced Materials, 2019, 31(10): 1806088.

[32] Rui X, Tan H, Yan Q. Nanostructured metal sulfides for energy storage [J]. Nanoscale, 2014, 6(17): 9889-924.

[33] Hwang H, Kim H, Cho J. MoS2 Nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials [J]. Nano Letters, 2011, 11(11): 4826-4830.

[34] Zu C-X, Li H. Thermodynamic analysis on energy densities of batteries [J]. Energy & Environmental Science, 2011, 4(8): 2614-2624.

[35] Hu Z, Liu Q, Chou S L, et al. Advances and challenges in metal sulfides/selenides for next‐generation rechargeable sodium-ion batteries [J]. Advanced Materials, 2017, 29(48): 1700606.

[36] Xu X, Liu W, Kim Y, et al. Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges [J]. Nano Today, 2014, 9(5): 604-630.

[37] Strauss E, Ardel G, Livshits V, et al. Lithium polymer electrolyte pyrite rechargeable battery: comparative characterization of natural pyrite from different sources as cathode material [J]. Journal of power sources, 2000, 88(2): 206-218.

[38] Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries [J]. Nano today, 2012, 7(5): 414-429.

[39] 蔡慧生. 水热法合成FeS2的性能研究 [D]:河北工业大学,2010.

[40] Zhang Z, Zhao H, Zeng Z, et al. Hierarchical architectured NiS@SiO2 nanoparticles enveloped in graphene sheets as anode material for lithium ion batteries [J]. Electrochimica Acta, 2015, 155: 85-92.

[41] He J, Chen Y, Li P, et al. Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dots-anchored graphene nanosheets as superior-capability anode for lithium-ion batteries [J]. Electrochimica Acta, 2015, 182: 424-429.

[42] Song H, Zhang C, Liu Y, et al. Facile synthesis of mesoporous V2O5 nanosheets with superior rate capability and excellent cycling stability for lithium ion batteries [J]. Journal of Power Sources, 2015, 294: 1-7.

[43] Zhang C, Chen Z, Guo Z, et al. Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties [J]. Energy & Environmental Science, 2013, 6(3): 974-978.

[44] 白玉慧. 硫化钼(铁)/碳复合材料的制备及电化学性能研究 [D]:吉林大学,2014.

[45] Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions [J]. Advanced materials, 2010, 22(35): E170-E92.

[46] David L, Thomas B R. Handbook of batteries [M]. McGraw-Hill Professional. 2001.

[47] Whittingham M S. Lithium batteries and cathode materials [J]. Chemical reviews, 2004, 104(10): 4271-4302.

[48] He J, Li Q, Chen Y, et al. Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries [J]. Carbon, 2017, 114: 111-116.

[49] Zhang Y, Wang N, Xue P, et al. Co9S8@ carbon nanospheres as high-performance anodes for sodium ion battery [J]. Chemical Engineering Journal, 2018, 343: 512-519.

[50] Komaba S, Mikumo T, Yabuuchi N, et al. Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α-Fe2O3 for rechargeable batteries [J]. Journal of The Electrochemical Society, 2009, 157(1): A60.

[51] Liu Z, Lu T, Song T, et al. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries [J]. Energy & Environmental Science, 2017, 10(7): 1576-80.

[52] Fan H-H, Li H-H, Huang K-C, et al. Metastable marcasite-FeS2 as a new anode material for lithium ion batteries: CNFs-improved lithiation/delithiation reversibility and Li-storage properties [J]. ACS applied materials & interfaces, 2017, 9(12): 10708-10716.

[53] Wen X, Yang L, Shen P K, et al. Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(5): 2090-2096.

[54] Tan R, Yang J, Hu J, et al. Core–shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries [J]. Chemical Communications, 2016, 52(5): 986-989.

[55] Liu Y, Wang W, Chen Q, et al. Resorcinol–formaldehyde resin-coated prussian blue core–shell spheres and their derived unique yolk–shell FeS2@C spheres for lithium-ion batteries [J]. Inorganic Chemistry, 2019, 58(2): 1330-1338.

[56] Bai J, Zhong X, Jiang S, et al. Graphene nanomesh [J]. Nature nanotechnology, 2010, 5(3): 190-194.

[57] Banhart F, Kotakoski J, Krasheninnikov A V. Structural defects in graphene [J]. ACS nano, 2011, 5(1): 26-41.

[58] Huang X, Qi X, Boey F, et al. Graphene-based composites [J]. Chemical Society Reviews, 2012, 41(2): 666-686.

[59] Huang X, Zeng Z, Fan Z, et al. Graphene-based electrodes [J]. Advanced Materials, 2012, 24(45): 5979-6004.

[60] Neto A C, Guinea F, Peres N M, et al. The electronic properties of graphene [J]. Reviews of modern physics, 2009, 81(1): 109.

[61] Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites [J]. Macromolecules, 2010, 43(16): 6515-6530.

[62] Tsang C H A, Huang H, Xuan J, et al. Graphene materials in green energy applications: recent development and future perspective [J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109656.

[63] Korkmaz S, Kariper İ A. Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications [J]. Journal of Energy Storage, 2020, 27: 101038.

[64] Hassoun J, Bonaccorso F, Agostini M, et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode [J]. Nano Letters, 2014, 14(8): 4901-4906.

[65] Lavagna L, Meligrana G, Gerbaldi C, et al. Graphene and lithium-based battery electrodes: a review of recent literature [J]. Energies, 2020, 13(18): 4867.

[66] 彭博, 陈梓钧, 唐雁煌, 等. 石墨烯制备与改性的研究进展 [J]. 塑料科技, 2020, 48(343): 124-139.

[67] Lian P, Zhu X, Liang S, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries [J]. Electrochimica Acta, 2010, 55(12): 3909-3914.

[68] Xiao X, Liu P, Wang J S, et al. Vertically aligned graphene electrode for lithium ion battery with high rate capability [J]. Electrochemistry Communications, 2011, 13(2): 209-212.

[69] Wang G, Shen X, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries [J]. Carbon, 2009, 47(8): 2049-2053.

[70] Wu Z, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries [J]. Materials Letters, 2015, 160: 392-396.

[71] 陈兵. 掺杂石墨烯锂离子电池负极的制备和表征 [D]: 中国石油大学(北京), 2016.

[72] Panchakarla L, Subrahmanyam K, Saha S, et al. Synthesis, structure, and properties of boron-and nitrogen-doped graphene [J]. Advanced Materials, 2009, 21(46): 4726-4730.

[73] Yang S, Zhi L, Tang K, et al. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions [J]. Advanced Functional Materials, 2012, 22(17): 3634-3640.

[74] Wang H, Zhang C, Liu Z, et al. Nitrogen-doped graphene nanosheets with excellent lithium storage properties [J]. Journal of Materials Chemistry, 2011, 21(14): 5430-5434.

[75] Poh H L, Simek P, Sofer Z, et al. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas [J]. ACS nano, 2013, 7(6): 5262-5272.

[76] Li X, Geng D, Zhang Y, et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries [J]. Electrochemistry Communications, 2011, 13(8): 822-825.

[77] Yu X, Park H S. Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors [J]. Carbon, 2014, 77: 59-65.

[78] Qi H, Cao L, Li J, et al. High pseudocapacitance in FeOOH/rGO composites with superior performance for high rate anode in Li-ion battery [J]. ACS applied materials & interfaces, 2016, 8(51): 35253-35263.

[79] Zhu X, Zhu Y, Murali S, et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries [J]. ACS nano, 2011, 5(4): 3333-8.

[80] Chen X, Wang Z, Wang X, et al. Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties [J]. Inorganic chemistry, 2005, 44(4): 951-954.

[81] Han S, Hu L, Liang Z, et al. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity [J]. Advanced Functional Materials, 2014, 24(36): 5719-5727.

[82] Lu Z, Wang N, Zhang Y, et al. Metal–organic framework-derived sea-cucumber-like FeS2@C nanorods with outstanding pseudocapacitive Na-ion storage properties [J]. ACS Applied Energy Materials, 2018, 1(11): 6234-6241.

[83] Li S, Ge P, Jiang F, et al. The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: the influences of morphology structure, phase evolution and interface property [J]. Energy Storage Materials, 2019, 16: 267-280.

[84] Gao X, Wang B, Zhang Y, et al. Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage [J]. Energy Storage Materials, 2019, 16: 46-55.

[85] Zhang J, Nie N, Liu Y, et al. Boron and nitrogen codoped carbon layers of LiFePO4 improve the high-rate electrochemical performance for lithium ion batteries [J]. ACS applied materials & interfaces, 2015, 7(36): 20134-20143.

[86] Montoro L, Rosolen J. Gelatin/DMSO: a new approach to enhancing the performance of a pyrite electrode in a lithium battery [J]. Solid State Ionics, 2003, 159(3-4): 233-240.

[87] Kar S, Chaudhuri S. Solvothermal synthesis of nanocrystalline FeS2 with different morphologies [J]. Chemical Physics Letters, 2004, 398(1-3): 22-26.

[88] Wang H, Pan Q, Cheng Y, et al. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries [J]. Electrochimica Acta, 2009, 54(10): 2851-2855.

[89] Zhang Y, Zhang Z, Zhang Y, et al. Preparation of a sulfur-doped graphene-wrapped FeS2 microsphere composite material for lithium-ion batteries [J]. Energy & Fuels, 2021, 35 (24), 20330-20338.

[90] Wu Z-S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS nano, 2010, 4(6): 3187-3194.

[91] Li T, Guo Z, Li X, et al. Colloidal synthesis of marcasite FeS2 nanoparticles with improved electrochemical performance [J]. RSC Advances, 2015, 5(120): 98967-98970.

[92] Zhang Y, Zhang Z, Zhu Y, et al. N-doped graphene encapsulated MoS2 nanosphere composite as a high-performance anode for lithium-ion batteries [J]. Nanotechnology, 2022, 33(23): 235703.

[93] Wang S, Yu J. Electrochemical mechanism for FeS2/C composite in lithium ion batteries with enhanced reversible capacity [J]. Energies, 2016, 9(4): 225.

[94] Wang J, Polleux J, Lim J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles [J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931.

[95] Brezesinski T, Wang J, Polleux J, et al. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors [J]. Journal of the American Chemical Society, 2009, 131(5): 1802-1809.

[96] Hu X, Li C, Lou X, et al. Hierarchical CuO octahedra inherited from copper metal-organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance[J]. Journal of Materials Chemistry A, 2017, 5(25): 12828-12837.

[97] Park J B, Lee S-J, Godbole R, et al. Simple and efficient method to synthesize ferric oxyhydroxide nanoparticles on carbon fiber fabric for environmental application [J]. Applied Surface Science, 2020, 531: 147363.

[98] Sheng J, Yang L, Zhu Y-E, et al. Oriented SnS nanoflakes bound on S-doped N-rich carbon nanosheets with a rapid pseudocapacitive response as high-rate anodes for sodium-ion batteries [J]. Journal of Materials Chemistry A, 2017, 5(37): 19745-19751.

[99] Ding Y, Zeng P, Fang Z. Spindle-shaped FeS2 enwrapped with N/S Co-doped carbon for high-rate sodium storage [J]. Journal of Power Sources, 2020, 450: 227688.

[100] Zhang K, Park M, Zhou L, et al. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries [J]. Angewandte Chemie International Edition, 2016, 55(41): 12822-12826.

[101] Ferrari A C, Robertson J. Interpretation of raman spectra of disordered and amorphous carbon [J]. Physical Review B, 2000, 61(20): 14095-14107.

[102] Wang Z, Xiong X, Qie L, et al. High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole [J]. Electrochimica Acta, 2013, 106: 320-6.

[103] Li X, Liu J, Zhang Y, et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application [J]. Journal of Power Sources, 2012, 197: 238-245.

[104] Shao M, Cheng Y, Zhang T, et al. Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions [J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33097-33104.

[105] Xiang J, Song T. One-pot synthesis of multicomponent (Mo, Co) metal sulfide/carbon nanoboxes as anode materials for improving Na-ion storage [J]. Chemical Communications, 2017, 53(78): 10820-10823.

[106] Xu J, Wang M, Wickramaratne N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams [J]. Advanced materials, 2015, 27(12): 2042-2048.

[107] Lu Z, Wang N, Zhang Y, et al. Metal-organic framework-derived sea-cucumber-like FeS2@C nanorods with outstanding pseudocapacitive Na-ion storage properties [J]. ACS Applied Energy Materials, 2018, 1(11): 6234-6241.

[108] Son S-B, Yersak T A, Piper D M, et al. A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte [J]. Advanced Energy Materials, 2014, 4(3): 1300961.

[109] Fei L, Lin Q, Yuan B, et al. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance [J]. ACS applied materials & interfaces, 2013, 5(11): 5330-5335.

[110] Xue H, Denis Y, Qing J, et al. Pyrite FeS2 microspheres wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes [J]. Journal of Materials Chemistry A, 2015, 3(15): 7945-7949.

[111] Chen C, Wen Y, Hu X, et al. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J]. Nature Communications, 2015, 6(1): 6929.

中图分类号:

 TQ152    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式