论文中文题名: | 铁电智能器件用钛酸钡基材料微结构调控与性能优化研究 |
姓名: | |
学号: | 16105301005 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 080202 |
学科名称: | 工学 - 机械工程 - 机械电子工程 |
学生类型: | 博士 |
学位级别: | 工学博士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 机械电子工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-01-11 |
论文答辩日期: | 2022-12-09 |
论文外文题名: | Microstructure modulation and performance optimization of barium titanate-based materials for ferroelectric smart device |
论文中文关键词: | |
论文外文关键词: | BaTiO3-based materials ; Microstructure modulation ; Dielectric relaxation characteristics ; Energy storage properties ; Electrostrain performance |
论文中文摘要: |
随着机械工程装备自动化和智能化的快速发展,以多功能耦合为特点的铁电智能器件在未来以电子系统为主导的机械装备的研发与应用中扮演着不可或缺的角色。具有力、电、热、磁等多种特殊功能的铁电材料可从材料的角度实现器件性能的发展,是铁电智能器件的核心。BaTiO3(BT)基材料因较好的压电、铁电以及介电性能,具有优异的介质储能和力电耦合等应用特性,在铁电储能器和致动器件中应用广泛。随着科技的进步,环保、高性能、小型化与轻薄化的性能要求是铁电储能器和致动器发展的必然趋势。而BT基材料因较小的击穿场强和较大的剩余极化强度使器件在以上性能的提升中遇到瓶颈。因此,本文以BT基材料为研究对象,通过构筑BaTiO3-BiMeO3弛豫铁电陶瓷材料,开展其晶粒结构、相结构和畴结构的调控与变化规律的分析与研究,探究在电场和温度场下该陶瓷的组成-结构-性能之间的关联性,以此作为设计、制备具有优异储能和电致应变性能的弛豫铁电陶瓷的理论基础,具有重要的科学意义和实用价值。主要研究内容和结果如下: 制备了一种可作为制备储能器件和致动器件的理想候选材料BT-BiYO3(BT-BY),研究了材料的微结构调控及其电学性能。该材料晶粒尺寸减小,晶格发生畸变。晶格畸变导致相结构由四方相逐渐转变为赝立方相,畴尺寸减小,获得较细的电滞回线和蝴蝶曲线。其中储能效率较BT提高,应变迟滞减小。 制备了一种在高温应用中具有优异介电和铁电综合性能的陶瓷材料BT-Bi(Y1/3Ti1/2)O3(BT-BYT),研究了材料的微结构调控与宽温域介电、铁电性能。该材料晶格发生膨胀,相结构从四方相转变为赝立方相。长程偶极子相互作用被打破,出现组分无序,使得介电常数的变化趋势从比较依赖于温度逐渐转变为对温度变化不敏感,居里峰弥散,在25 ~ 400 ℃的温度区间内表现出的良好温度稳定性能(TCC ≤ 15%)。 设计并制备了具有优异的储能性能和温度稳定性的高温铁电储能器材料BT-Bi(Zn1/2Nb2/5)O3(BT-BZN)和BT-Bi(Zn1/2Zr1/2)O3(BT-BZZ),系统研究了微观形貌、相结构、畴结构及其储能性能。材料晶粒细化,晶格发生畸变,晶胞体积增大,材料内部无序度不断增大。BT-BZN材料的储能密度增大至1.85 J/cm3,储能效率为91.2%;在30 ~ 120 ℃的温度范围内,储能密度的变化率小于10%;储能效率变化率小于1%。BT-BZZ材料的储能密度增大为3.58 J/cm3,储能效率为90%;在30 ~ 120 ℃的温度范围内,储能密度和储能效率的变化小于5%和0.1%。 基于高熵理念,设计并制备了BT-Bi(Sc0.2Y0.2Al0.2Fe0.2Ga0.2)O3(BT-BSYAFG)弛豫铁电材料,为高精度致动器元件陶瓷功能材料的制备提供了一种有效崭新的思路和方法。该材料晶格畸变严重,电子结结合能发生变化。介电弛豫性能增强,温度稳定性提升。双极应变曲线为“V”形曲线,具有较大的应变值(0.28%)和较小应变迟滞 (0.45%)。与BT基、BCTZ基、BST基以及BZT基等陶瓷相比较,BT-BSYAFG陶瓷材料是一种不仅具有较大的应变,还具有很小应变迟滞的陶瓷材料。 最后,分析了BT-BiMeO3弛豫铁电材料微结构(晶体结构、相结构和畴结构)的演变规律,探究了组成-结构-性能的之间的协同作用,提出了“双异价态离子替换”和“熵工程调控”作用机制,为新的铁电储能器以及致动器性能的优化提供了有效路径。 |
论文外文摘要: |
With the rapid development in automation and intelligence of mechanical engineering equipment, ferroelectric smart device characterized by multi-functional coupling will play an indispensable role in development and application of mechanical equipment dominated by electronic systems in the future. Ferroelectric materials with many special functions, such as force, electricity, heat and magnetism, can decide the device performances from the perspective of materials, and are the central role of ferroelectric intelligent devices. Due to the good piezoelectric, ferroelectric and dielectric properties, BaTiO3 (BT) based materials represent excellent dielectric energy storage and electromechanical coupling properties, and are widely used in ferroelectric energy storage devices and actuators. With the development of technology, the lower environmental pollution, higher performance and miniaturization are the development requirements of the smart devices in the future. However, the smaller breakdown field strength and larger residual polarization strength become bottleneck problems of BT based materials in improving device performance. Therefore, in this paper, the microstructure, phase evolution, and domain structure were studied of BaTiO3-BiMeO3 (where Me is a metal element) relaxor ferroelectric materials. Additionally, the relationship of composition-structure-properties under electric and temperature fields were also discussed. These results will provide theoretical basis for designing and preparing relaxor ferroelectric ceramics with excellent energy storage and electrostriction properties, which is important scientific significance and practical value. The main research contents and results are as follows: The as-prepared BT-BY materials can be used as an ideal candidate material for energy storage device and actuators, and the microstructure modulation and electrical properties are studied. The grain size of material is smaller than that of BT, and the lattice is distortion. This distortion of lattice lead to the gradual transformation of the phase structure from tetragonality to pseudo-cubic phase, and the reduction of domain size. Thus, thinner hysteresis loops and strain-electric field curves are obtained. The energy storage efficiency is higher than that of BT, the strain hysteresis is reduced, and the piezoelectric property is weakened. The as-prepared materials of BT-Bi(Y1/3Ti1/2)O3 (BT-BYT) with excellent dielectric and ferroelectric properties for high temperature applications, and the microstructure modulation and wide temperature range dielectric and ferroelectric properties are studied. The lattice of material has expanded, and the phase structure of ceramics has changed from tetragonal phase to pseudo-cubic phase. The long-range dipole interaction is broken, and the composition is disordered, which make the change trend of dielectric constant gradually change from relatively temperature dependent to insensitive to temperature change, and the Curie peak become dispersive. The as-prepared BT-BYT shows excellent temperature stability (TCC ≤ 15%) in the temperature range of 25 ~ 400℃. The conduction mechanism of materials at high temperature gradually changes from the inherent conductivity to the conduction mechanism dominated by oxygen vacancy. The as-prepared two ceramics of BT-Bi(Zn1/2Nb2/5)O3 (BT-BZN) and BT-Bi(Zn1/2Zr1/2)O3 (BT-BZZ) relaxor ferroelectric materials have excellent energy storage properties and temperature stability, which are potential energy storage materials for high-temperature capacitors, and the morphologies, phase structure and energy storage properties are studied. The grains are refined, the lattices are distorted, the cell volume are increased, and the disorder inside the material increase continuously. The maximum energy storage density of BT-BZN materials can reach to 1.85 J/cm3, and the energy storage efficiency is 91.2%. Within the temperature range of 30 ~ 120 ℃, the change rate of energy storage density was less than 10%, and the change rate of energy storage efficiency was less than 1%. The maximum energy storage density of BT-BZZ materials was 3.58 J/cm3, and the energy storage efficiency is 90%. In the temperature range of 30 ~ 120℃, the minimum change of energy storage density and energy storage efficiency are less than 5% and 0.1%. Based on the concept of high entropy ceramics, BT-Bi(Sc0.2Y0.2Al0.2Fe0.2Ga0.2)O3 (BT-BSYAFG) relaxor ferroelectric materials are designed and prepared, which provides an effective new strategy for preparing functional ceramic materials for high-precision actuator elements. The lattices of as-prepared materials are severe distorted. Due to the large average ion radii of high-entropy compounds, the cell volume expands. Meanwhile, the valence state of the electronic structures is changed. The dielectric relaxation properties of materials are enhanced, and the temperature stabilities are improved. The bipolar strain curve exhibits a “V” shaped curve, which corresponding to the ergodic relaxor ferroelectric phase, revealing that it possesses a large strain value (0.28%) and a small strain hysteresis. Compare with BT-based ceramics, BCTZ-, BST-, BZT-based and other materials, BT-BSYAFG materials not only have high strain, but also have very small strain hysteresis. Finally, the evolution of BT-BiMeO3 relaxor ferroelectric material synergistic mechanism between composition, structure and performance is analyzed, and the mechanisms of “double-heterovalent ion replacement” and “entropy-engineering modulation” are proposed to optimize the performance of energy storage devices and actuators. |
参考文献: |
[1] 付广洋. 局部层合微构件力学和力电耦合特性尺寸依赖性研究 [D]. 济南: 山东大学, 2020. [2] 范鹏元. 大电致应变钛酸铋钠基无铅陶瓷的制备及性能研究 [D]. 武汉: 华中科技大学, 2018. [5] 黄佳鹏. 储能脉冲电容器用PLZST介电性能研究 [D]. 成都: 电子科技大学, 2017. [6] 范鹏元. 大电致应变钛酸铋钠基无铅陶瓷的制备及性能研究 [D]. 合肥: 华中科技大学, 2018. [7] 刘凯, 孙策, 史玉升. 增材制造压电陶瓷的现状与展望 [J]. 无机材料学报, 2022, 37(3): 278-288. [11] 董久锋, 邓星磊, 牛玉娟, 等.面向高温介电储能应用的聚合物基电介质材料研究进展[J].物理学报,2020,69(21):43-58. [12] 杨敏铮, 江建勇, 沈洋. 高能量密度介电储能材料研究进展 [J]. 硅酸盐学报, 2021, 49(7): 1249-1262. [13] 张小冰, 古梦圆, 叶壮, 等.BaTiO3基XNR系列多层陶瓷电容器陶瓷材料的研究进展[J].黄河科技学院学报,2022,24(5):76-83. [34] 方俊鑫 殷. 电介质物理学 [M]. 北京: 科学出版社, 1958. [51] 祁核. 铌酸钠基准同型无铅压电陶瓷的介电弛豫调控、机电性能及其结构机理研究 [D]. 合肥: 合肥工业大学, 2017. [58] 李欣. BaTiO3-Ba(Fe0.5Nb0.5)O3基陶瓷宽温介电温度稳定性研究 [D]. 西安: 陕西科技大学, 2018. [63] 师金华. 钙钛矿结构无铅压电陶瓷的研究进展 [J]. 河南科技, 2020, 39(31): 21-24. [71] 王静. 钛酸钡基芯/壳结构粉体的液相法制备及其高介高稳定性研究 [D]. 武汉: 华中科技大学, 2013. [92] 周明星. 铌酸钠基无铅铁电陶瓷的制备,结构及性能研究 [D]. 上海: 中国科学院上海硅酸盐研究所, 2020. [128] 夏翔. PMN-PT基弛豫铁电陶瓷畴结构和性能关系的研究 [D]. 上海: 中国科学院大学, 2021. [162] 李 峰. 铋基钙钛矿无铅弛豫铁电陶瓷的 电卡效应与储能特性研究 [D]. 上海: 同济大学, 2019. [196] 董福营. GdCoO3 化合物的掺杂与表征及Sr-K-Fe-Mo-O系列化合物的合成和表征 [D]. 保定: 河北大学, 2007. |
中图分类号: | TH145 |
开放日期: | 2023-03-21 |