- 无标题文档
查看论文信息

论文中文题名:

 铁电智能器件用钛酸钡基材料微结构调控与性能优化研究    

姓名:

 马翠英    

学号:

 16105301005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 机械电子工程    

第一导师姓名:

 杜慧玲    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-01-11    

论文答辩日期:

 2022-12-09    

论文外文题名:

 Microstructure modulation and performance optimization of barium titanate-based materials for ferroelectric smart device    

论文中文关键词:

 BaTiO3基材料微结构调控介电弛豫铁电储能性能电致应变性能    

论文外文关键词:

 BaTiO3-based materials ; Microstructure modulation ; Dielectric relaxation characteristics ; Energy storage properties ; Electrostrain performance    

论文中文摘要:

随着机械工程装备自动化和智能化的快速发展,以多功能耦合为特点的铁电智能器件在未来以电子系统为主导的机械装备的研发与应用中扮演着不可或缺的角色。具有力、电、热、磁等多种特殊功能的铁电材料可从材料的角度实现器件性能的发展,是铁电智能器件的核心。BaTiO3(BT)基材料因较好的压电、铁电以及介电性能,具有优异的介质储能和力电耦合等应用特性,在铁电储能器和致动器件中应用广泛。随着科技的进步,环保、高性能、小型化与轻薄化的性能要求是铁电储能器和致动器发展的必然趋势。而BT基材料因较小的击穿场强和较大的剩余极化强度使器件在以上性能的提升中遇到瓶颈。因此,本文以BT基材料为研究对象,通过构筑BaTiO3-BiMeO3弛豫铁电陶瓷材料,开展其晶粒结构、相结构和畴结构的调控与变化规律的分析与研究,探究在电场和温度场下该陶瓷的组成-结构-性能之间的关联性,以此作为设计、制备具有优异储能和电致应变性能的弛豫铁电陶瓷的理论基础,具有重要的科学意义和实用价值。主要研究内容和结果如下:

制备了一种可作为制备储能器件和致动器件的理想候选材料BT-BiYO3(BT-BY),研究了材料的微结构调控及其电学性能。该材料晶粒尺寸减小,晶格发生畸变。晶格畸变导致相结构由四方相逐渐转变为赝立方相,畴尺寸减小,获得较细的电滞回线和蝴蝶曲线。其中储能效率较BT提高,应变迟滞减小。

制备了一种在高温应用中具有优异介电和铁电综合性能的陶瓷材料BT-Bi(Y1/3Ti1/2)O3(BT-BYT),研究了材料的微结构调控与宽温域介电、铁电性能。该材料晶格发生膨胀,相结构从四方相转变为赝立方相。长程偶极子相互作用被打破,出现组分无序,使得介电常数的变化趋势从比较依赖于温度逐渐转变为对温度变化不敏感,居里峰弥散,在25 ~ 400 ℃的温度区间内表现出的良好温度稳定性能(TCC ≤ 15%)。

设计并制备了具有优异的储能性能和温度稳定性的高温铁电储能器材料BT-Bi(Zn1/2Nb2/5)O3(BT-BZN)和BT-Bi(Zn1/2Zr1/2)O3(BT-BZZ),系统研究了微观形貌、相结构、畴结构及其储能性能。材料晶粒细化,晶格发生畸变,晶胞体积增大,材料内部无序度不断增大。BT-BZN材料的储能密度增大至1.85 J/cm3,储能效率为91.2%;在30 ~ 120 ℃的温度范围内,储能密度的变化率小于10%;储能效率变化率小于1%。BT-BZZ材料的储能密度增大为3.58 J/cm3,储能效率为90%;在30 ~ 120 ℃的温度范围内,储能密度和储能效率的变化小于5%和0.1%。

基于高熵理念,设计并制备了BT-Bi(Sc0.2Y0.2Al0.2Fe0.2Ga0.2)O3(BT-BSYAFG)弛豫铁电材料,为高精度致动器元件陶瓷功能材料的制备提供了一种有效崭新的思路和方法。该材料晶格畸变严重,电子结结合能发生变化。介电弛豫性能增强,温度稳定性提升。双极应变曲线为“V”形曲线,具有较大的应变值(0.28%)和较小应变迟滞 (0.45%)。与BT基、BCTZ基、BST基以及BZT基等陶瓷相比较,BT-BSYAFG陶瓷材料是一种不仅具有较大的应变,还具有很小应变迟滞的陶瓷材料。

最后,分析了BT-BiMeO3弛豫铁电材料微结构(晶体结构、相结构和畴结构)的演变规律,探究了组成-结构-性能的之间的协同作用,提出了“双异价态离子替换”和“熵工程调控”作用机制,为新的铁电储能器以及致动器性能的优化提供了有效路径。

论文外文摘要:

With the rapid development in automation and intelligence of mechanical engineering equipment, ferroelectric smart device characterized by multi-functional coupling will play an indispensable role in development and application of mechanical equipment dominated by electronic systems in the future. Ferroelectric materials with many special functions, such as force, electricity, heat and magnetism, can decide the device performances from the perspective of materials, and are the central role of ferroelectric intelligent devices. Due to the good piezoelectric, ferroelectric and dielectric properties, BaTiO3 (BT) based materials represent excellent dielectric energy storage and electromechanical coupling properties, and are widely used in ferroelectric energy storage devices and actuators. With the development of technology, the lower environmental pollution, higher performance and miniaturization are the development requirements of the smart devices in the future. However, the smaller breakdown field strength and larger residual polarization strength become bottleneck problems of BT based materials in improving device performance. Therefore, in this paper, the microstructure, phase evolution, and domain structure were studied of BaTiO3-BiMeO3 (where Me is a metal element) relaxor ferroelectric materials. Additionally, the relationship of composition-structure-properties under electric and temperature fields were also discussed. These results will provide theoretical basis for designing and preparing relaxor ferroelectric ceramics with excellent energy storage and electrostriction properties, which is important scientific significance and practical value. The main research contents and results are as follows:

The as-prepared BT-BY materials can be used as an ideal candidate material for energy storage device and actuators, and the microstructure modulation and electrical properties are studied. The grain size of material is smaller than that of BT, and the lattice is distortion. This distortion of lattice lead to the gradual transformation of the phase structure from tetragonality to pseudo-cubic phase, and the reduction of domain size. Thus, thinner hysteresis loops and strain-electric field curves are obtained. The energy storage efficiency is higher than that of BT, the strain hysteresis is reduced, and the piezoelectric property is weakened.

The as-prepared materials of BT-Bi(Y1/3Ti1/2)O3 (BT-BYT) with excellent dielectric and ferroelectric properties for high temperature applications, and the microstructure modulation and wide temperature range dielectric and ferroelectric properties are studied. The lattice of material has expanded, and the phase structure of ceramics has changed from tetragonal phase to pseudo-cubic phase. The long-range dipole interaction is broken, and the composition is disordered, which make the change trend of dielectric constant gradually change from relatively temperature dependent to insensitive to temperature change, and the Curie peak become dispersive. The as-prepared BT-BYT shows excellent temperature stability (TCC ≤ 15%) in the temperature range of 25 ~ 400℃. The conduction mechanism of materials at high temperature gradually changes from the inherent conductivity to the conduction mechanism dominated by oxygen vacancy.

The as-prepared two ceramics of BT-Bi(Zn1/2Nb2/5)O3 (BT-BZN) and BT-Bi(Zn1/2Zr1/2)O3 (BT-BZZ) relaxor ferroelectric materials have excellent energy storage properties and temperature stability, which are potential energy storage materials for high-temperature capacitors, and the morphologies, phase structure and energy storage properties are studied. The grains are refined, the lattices are distorted, the cell volume are increased, and the disorder inside the material increase continuously. The maximum energy storage density of BT-BZN materials can reach to 1.85 J/cm3, and the energy storage efficiency is 91.2%. Within the temperature range of 30 ~ 120 ℃, the change rate of energy storage density was less than 10%, and the change rate of energy storage efficiency was less than 1%. The maximum energy storage density of BT-BZZ materials was 3.58 J/cm3, and the energy storage efficiency is 90%. In the temperature range of 30 ~ 120℃, the minimum change of energy storage density and energy storage efficiency are less than 5% and 0.1%.

Based on the concept of high entropy ceramics, BT-Bi(Sc0.2Y0.2Al0.2Fe0.2Ga0.2)O3 (BT-BSYAFG) relaxor ferroelectric materials are designed and prepared, which provides an effective new strategy for preparing functional ceramic materials for high-precision actuator elements. The lattices of as-prepared materials are severe distorted. Due to the large average ion radii of high-entropy compounds, the cell volume expands. Meanwhile, the valence state of the electronic structures is changed. The dielectric relaxation properties of materials are enhanced, and the temperature stabilities are improved. The bipolar strain curve exhibits a “V” shaped curve, which corresponding to the ergodic relaxor ferroelectric phase, revealing that it possesses a large strain value (0.28%) and a small strain hysteresis. Compare with BT-based ceramics, BCTZ-, BST-, BZT-based and other materials, BT-BSYAFG materials not only have high strain, but also have very small strain hysteresis.

Finally, the evolution of BT-BiMeO3 relaxor ferroelectric material synergistic mechanism between composition, structure and performance is analyzed, and the mechanisms of “double-heterovalent ion replacement” and “entropy-engineering modulation” are proposed to optimize the performance of energy storage devices and actuators.

参考文献:

[1] 付广洋. 局部层合微构件力学和力电耦合特性尺寸依赖性研究 [D]. 济南: 山东大学, 2020.

[2] 范鹏元. 大电致应变钛酸铋钠基无铅陶瓷的制备及性能研究 [D]. 武汉: 华中科技大学, 2018.

[3] WANG S P, RONG W B, WANG L F, et al. A survey of piezoelectric actuators with long working stroke in recent years: Classifications, principles, connections and distinctions [J]. Mechanical Systems and Signal Processing, 2019, 123: 591-605.

[4] SIDDIQUE A, MAHMUD S, VAN HEYST B. A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms [J]. Energy Conversion and Management, 2015, 106: 728-747.

[5] 黄佳鹏. 储能脉冲电容器用PLZST介电性能研究 [D]. 成都: 电子科技大学, 2017.

[6] 范鹏元. 大电致应变钛酸铋钠基无铅陶瓷的制备及性能研究 [D]. 合肥: 华中科技大学, 2018.

[7] 刘凯, 孙策, 史玉升. 增材制造压电陶瓷的现状与展望 [J]. 无机材料学报, 2022, 37(3): 278-288.

[8] HONG K, LEE T H, SUH J M, et al. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics [J]. Journal of Materials Chemistry C, 2019, 7.

[9] PALNEEDI H, PEDDIGARI M, HWANG G T, et al. High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook [J]. Advanced Functional Materials, 2018, 28(42): 1803665.

[10] LI Q, YAO F Z, LIU Y, et al. High-Temperature Dielectric Materials for Electrical Energy Storage [J]. Annual Review of Materials Research, 2018, 48(1): 219-243.

[11] 董久锋, 邓星磊, 牛玉娟, 等.面向高温介电储能应用的聚合物基电介质材料研究进展[J].物理学报,2020,69(21):43-58.

[12] 杨敏铮, 江建勇, 沈洋. 高能量密度介电储能材料研究进展 [J]. 硅酸盐学报, 2021, 49(7): 1249-1262.

[13] 张小冰, 古梦圆, 叶壮, 等.BaTiO3基XNR系列多层陶瓷电容器陶瓷材料的研究进展[J].黄河科技学院学报,2022,24(5):76-83.

[14] LIU B B, WANG X H, ZHAO Q C, et al. Improved Energy Storage Properties of Fine-Crystalline BaTiO3 Ceramics by Coating Powders with Al2O3 and SiO2 [J]. Journal of The American Ceramic Society, 2015, 98(8): 2641-2646.

[15] WU J Y, MAHAJAN A, RIEKEHR L, et al. Perovskite Srx (Bi1-xNa0.97xLi0.03 )0.5TiO3 ceramics with polar nano regions for high power energy storage [J]. Nano Energy, 2018, 50: 723-732.

[16] YANG H, YAN F, LIN Y, et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition [J]. Journal of the European Ceramic Society, 2018, 38(4): 1367-1373.

[17] ZHANG G F, LIU H X, YAO Z H, et al. Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics [J]. Journal of Materials Science Materials in Electronics, 2015, 26(5): 2726-2732.

[18] ZHOU H Y, ZHU X N, REN G R, et al. Enhanced energy storage density and its variation tendency in CaZrxTi-xO3 ceramics [J]. Journal of Alloys and Compounds, 2016, 688: 687-691.

[19] YAN F, YANG H, LIN Y, et al. Dielectric and Ferroelectric Properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 Lead-Free Ceramics for High-Energy-Storage Applications [J]. Inorg Chem, 2017, 56(21): 13510-13516.

[20] ZHAO P, TANG B, FANG Z, et al. Structure, dielectric and relaxor properties of Sr0.7Bi0.2TiO3-K0.5Bi0.5TiO3 lead-free ceramics for energy storage applications [J]. Journal of Materiomics, 2021, 7(1): 195-207.

[21] MA R, CUI B, SHANGGUAN M, et al. A novel double-coating approach to prepare fine-grained BaTiO3@La2O3@SiO2 dielectric ceramics for energy storage application [J]. Journal of Alloys and Compounds, 2017, 690: 438-445.

[22] LUO B, WANG X, TIAN E, et al. Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: Experimental and first-principles calculations [J]. Journal of the European Ceramic Society, 2018, 38(4): 1562-1568.

[23] WU L W, WANG X H, GONG H L, et al. Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency [J]. Journal of Materials Chemistry C, 2015, 3(4): 750-758.

[24] RANG R R, WANG Z P, LOU X J, et al. Energy storage performance of Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with superior temperature stability under low electric fields [J]. Chemical Engineering Journal, 2021, 410(15): 128376.1-128376.10.

[25] A B M, KUMAR N, USHER T M , et al. Current Understanding of Structure-Processing-Property Relationships in BaTiO3-Bi(Me)O3 Dielectrics [J]. Journal of The American Ceramic Society, 2016, 99(9): 2849-2870.

[26] LI B, LIU Q, TANG X, et al. High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics [J]. Materials (Basel), 2017, 10(2): 143.

[27] XU C H, FU Z Q, LIU Z, et al. La/Mn Codoped AgNbO3 Lead-Free Antiferroelectric Ceramics with Large Energy Density and Power Density [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16151-16159.

[28] FAN X, WANG J, YUAN H, et al. Synergic Enhancement of Energy Storage Density and Efficiency in MnO2-Doped AgNbO3@SiO2 Ceramics via A/B-Site Substitutions [J]. ACS Applied Materials and Interfaces, 2022, 14(5): 7052-7062.

[29] ZHOU M X, LIANG R H, ZHOU Z Y, et al. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy [J]. Journal of Materials Chemistry A, 2018, 6(37): 17896-17904.

[30] GAO J, LIU Q, DONG J F, et al. Local Structure Heterogeneity in Sm-Doped AgNbO3 for Improved Energy-Storage Performance [J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6097-6104.

[31] JO W, DITTMER R, ACOSTA M, et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications- status and perspective [J]. Journal of Electroceramics, 2012, 29: 71-93.

[32] FAN P, LIU K, MA W, et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators [J]. Journal of Materiomics, 2021, 7(3): 508-544.

[33] LI J, FEI L, ZHANG S. Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures [J]. Journal of The American Ceramic Society, 2014, 97(1): 1-27.

[34] 方俊鑫 殷. 电介质物理学 [M]. 北京: 科学出版社, 1958.

[35] FEI L, ZHUO X, WEI X, et al. Domain switching contribution to piezoelectric response in BaTiO3 single crystals [J]. Applied Physics Letters, 2008, 93(19): 213-215.

[36] ANINDYA R, MASSIMILIANO S, DAVID V. First-principles study of high-field piezoelectricity in tetragonal PbTiO3 [J]. Physical Review B, 2010, 81(1): 014102.1-014102.7.

[37] GAO B, YAO Z H, LAI D Y, et al. Unexpectedly high piezoelectric response in Sm-doped PZT ceramics beyond the morphotropic phase boundary region [J]. Journal of Alloys and Compounds, 2020, 836: 155474.

[38] TANG H, ZHANG S, FENG Y, et al. Piezoelectric Property and Strain Behavior of Pb [J]. Journal of The American Ceramic Society, 2013, 96(9): 2857-2863.

[39] DONNELLY N J, SHROUT T R, RANDALL C A. Addition of a Sr, K, Nb (SKN) Combination to PZT(53/47) for High Strain Applications [J]. Journal of The American Ceramic Society, 2010, 90(2): 490-495.

[40] XIA X, SUN X, WANG J, et al. Improved strain and low hysteresis in (0.9-x)BaTiO3-xCaTiO3-0.1Ba(Zr0.7Sn0.3)O3 lead-free relaxor ferroelectrics [J]. Ceramics International, 2020, 46(15): 24231-24237.

[41] MURAKAMI S, WANG D W, A M. High strain (0.4%) Bi(Mg2/3Nb1/3)O3‐BaTiO3‐BiFeO3 lead‐free piezoelectric ceramics and multilayers [J]. Journal of The American Ceramic Society, 2018, 101(12): 5428-5442.

[42] MA C, GUO H Z, P.BECKMAN S, et al. Creation and Destruction of Morphotropic Phase Boundaries through Electrical Poling: A Case Study of Lead-Free (Bi1/2Na1/2)TiO3-BaTiO3 Piezoelectrics [J]. Physical Review Letters, 2012, 109(10): 107602.1-107602.5.

[43] JIA X L, ZHANG J J, XING H J, et al. Large electrostrain response in binary Bi1/2Na1/2TiO3-Ba(Mg1/3Nb2/3)O3 solid solution ceramics [J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018, 741: 7-13.

[44] HAILY E, BIH L, ELBOUARI A, et al. Effect of BaO-Bi2O3-P2O5 glass additive on structural, dielectric and energy storage properties of BaTiO3 ceramics [J]. Materials Chemistry and Physics, 2020, 241: 122434.1-122434.7.

[45] XU C, SU R, WANG Z, et al. Tuning the microstructure of BaTiO3@SiO2 core-shell nanoparticles for high energy storage composite ceramics [J]. Journal of Alloys and Compounds, 2019, 784: 173-181.

[46] MENG D, FENG Q, LUO N, et al. Effect of Sr(Zn1/3Nb2/3)O3 modification on the energy storage performance of BaTiO3 ceramics [J]. Ceramics International, 2021, 47(9): 12450-12458.

[47] OGIHARA H, RANDALL C A, K S T. Weakly Coupled Relaxor Behavior of BaTiO3–BiScO3 Ceramics [J]. Journal of The American Ceramic Society, 2010, 92(1): 110-118.

[48] LI Y, LIU Y, Y T M. Energy storage performance of BaTiO3 -based relaxor ferroelectric ceramics prepared through a two-step process [J]. Chemical Engineering Journal, 2021, 419: 129673.1-129673.12.

[49] ZHU L F, ZHANG B P, ZHAO L, et al. Large piezoelectric effect of (Ba,Ca)TiO3-xBa(Sn,Ti)O3 lead-free ceramics [J]. Journal of the European Ceramic Society, 2016, 36(4): 1017-1024.

[50] ZHAO C, WU W, WANG H, et al. Site engineering and polarization characteristics in (Ba1-yCay)(Ti1-xHfx)O3 lead-free ceramics [J]. Journal of Applied Physics, 2016, 119(2): 24101-24108.

[51] 祁核. 铌酸钠基准同型无铅压电陶瓷的介电弛豫调控、机电性能及其结构机理研究 [D]. 合肥: 合肥工业大学, 2017.

[52] ZHAO H, YANG X, PANG D. Enhanced energy storage efficiency by modulating field-induced strain in BaTiO3-Bi(Ni2/3Ta1/3)O3 lead-free ceramics [J]. Ceramics International, 2021, 47(16): 22734-22740.

[53] BUSCAGLIA V, RANDALL C A. Size and scaling effects in barium titanate. An overview [J]. Journal of the European Ceramic Society, 2020, 40(11): 3744-3758.

[54] XU D, ZHAO W, CAO W, et al. Role of A- and B-site excess doping on the improvement of the piezoelectric properties of BaTiO3 lead-free piezoceramics [J]. Journal of Materials Science Materials in Electronics, 2020, 31(10): 7831-7838.

[55] RéMY UL, MARCHET P, MAI P T, et al. Improved properties of doped BaTiO3 piezoelectric ceramics [J]. Physica status solidi, 2019, 216(22): 1900413.1-1900413.9.

[56] IANCULESCU A, MOCANU Z V, CURECHERIU L P, et al. Dielectric and tunability properties of La-doped BaTiO3 ceramics [J]. Journal of Alloys and Compounds, 2011, 509(41): 10040-10049.

[57] HAN H Y, CHEN E, ZHANG C. Advances in lead-free pyroelectric materials: a comprehensive review [J]. Journal of Materials Chemistry C, 2020, 8(5): 1494-1516.

[58] 李欣. BaTiO3-Ba(Fe0.5Nb0.5)O3基陶瓷宽温介电温度稳定性研究 [D]. 西安: 陕西科技大学, 2018.

[59] LIU W, REN X. Large Piezoelectric Effect in Pb-Free Ceramics [J]. Physical Review Letters, 2009, 103(25): 257602.1-257602.4.

[60] WEI M, ZHANG J H, WU K T, et al. Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics [J]. Ceramics International, 2017, 43(13): 9593-9599.

[61] LIU J, LIU L, ZHANG J, et al. Charge effects in donor doped perovskite ferroelectrics [J]. Journal of The American Ceramic Society, 2019, 103(9): 5392-5399.

[62] JEONG J, LEE E J, HAN Y H. Effects of Ho2O3 addition on defects of BaTiO3 [J]. Materials Chemistry and Physics, 2006, 100(2-3): 434-437.

[63] 师金华. 钙钛矿结构无铅压电陶瓷的研究进展 [J]. 河南科技, 2020, 39(31): 21-24.

[64] YANG H B, YAN F, LIN Y, et al. Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage [J]. Journal of the European Ceramic Society, 2017, 37(10): 3303-3311.

[65] ZHENG Q J, GUO Y Q, LEI F Y, et al. Microstructure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3-BaTiO3-Bi(Zn0.5Ti0.5)O3 lead-free multiferroic ceramics [J]. Journal of Materials Science Materials in Electronics, 2014, 25(6): 2638-2648.

[66] GUO H Y, LEI C, YE Z G. Dielectric and Ferroelectric Properties of (1-x)BaTiO3-xBiScO3 Solid Solution [J]. Ferroelectrics, 2009, 380(1): 63-68.

[67] KUMAR N, IONIN A, ANSELL T, et al. Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications [J]. Applied Physics Letters, 2015, 106(25): 252901.1-252901.4.

[68] GONG H, WANG X, ZHANG S, et al. Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs [J]. Journal of the European Ceramic Society, 2014, 34(7): 1733-1739.

[69] SONG Z, LIU H, ZHANG S, et al. Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics [J]. Journal of the European Ceramic Society, 2014, 34(5): 1209-1217.

[70] ZHANG Y C, WANG X H, KIM J Y, et al. High Performance BaTiO3-Based BME-MLCC Nanopowder Prepared by Aqueous Chemical Coating Method [J]. Journal of The American Ceramic Society, 2012, 95(5): 1628-1633.

[71] 王静. 钛酸钡基芯/壳结构粉体的液相法制备及其高介高稳定性研究 [D]. 武汉: 华中科技大学, 2013.

[72] KE B, BI M, HAO Y, et al. Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density [J]. Nano Energy, 2018, 51: 513-523.

[73] WU L, WANG X, LI L. core-shell BaTiO3@BiScO3 particles for local graded dielectric ceramics with enhanced temperature stability and energy storage capability [J]. Journal of Alloys and Compounds, 2016, 688(Part A): 113-121.

[74] DU X H, ZHENG J H, BELEGUNDU U, et al. Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary [J]. Applied Physics Letters, 1998, 72(19): 2421-2423.

[75] WU J G. BaTiO3-Based Piezoelectric Materials [J]. Advances in Lead-Free Piezoelectric Materials, 2018, (Chapter 5): 247-299.

[76] YAO Y G, ZHOU C, WANG D, et al. Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: The role of phase coexisting [J]. Europhysics Letters, 2012, 98(2): 27008.1-27008.6.

[77] ZHAO C, HUI W, JIE X, et al. Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1–xMx)O3 (M=Sn, Hf, Zr) lead-free ceramics [J]. Dalton Transactions, 2016, 45(15): 6466-6480.

[78] PAN H, LI F, LIU Y, et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design [J]. Science, 2019, 365(6453): 578-582.

[79] SHEN Z Y, LI J F. Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure [J]. Journal- Ceramic Society Japan, 2010, 118(1382): 940-943.

[80] YUAN Q B, LI G, YAO F Z, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics [J]. Nano Energy, 2018, 52: 203-210.

[81] NAUMOV I I, BELLAICHE L, FU H. Unusual phase transition in ferroelectric nanodisks and nanorods [J]. Nature, 2005, 432(7018): 737-740.

[82] LIU J, REN K, MA C Y, et al. Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic [J]. Ceramics International, 2020, 46(12): 20576-20581.

[83] Temperature stability of dielectric properties for xBiAlO3-(1-x)BaTiO3 ceramics[J].Journal of the European Ceramic Society,2015,35:2303-2311

[84] LEE H M, KIM W J, JEONG L K, et al. High-performance lead-free piezoceramics with high curie temperatures [J]. Advanced Materials, 2015, 27(43): 6976-6982.

[85] LV X, WU J, YANG S, et al. Identification of phase boundaries and electrical properties in ternary Potassium-Sodium Niobate-based ceramics [J]. ACS Appl Mater Interfaces, 2016, 8(29): 18943-18953.

[86] YANG Y, ZHOU Y, REN J, et al. Coexistence of three ferroelectric phases and enhanced piezoelectric properties in BaTiO3-CaHfO3 lead-free ceramics [J]. Journal of the European Ceramic Society, 2018, 38(2): 557-566.

[87] QI X, LIU H, LIN Z, et al. Structure and electrical properties of lead-free Bi0.5Na0.5TiO3-based ceramics for energy-storage applications [J]. RSC Advances, 2016, 6: 59280-59291.

[88] ZHANG W, YANG J, WANG F, et al. Enhanced dielectric properties of La-doped 0.75BaTiO3-0.25Bi(Mg0.5Ti0.5)O3 ceramics for X9R-MLCC application [J]. Ceramics International, 2021, 47(4): 4486-4492.

[89] CHEN X, CHEN J, MA D, et al. High Relative Permittivity, Low Dielectric Loss and Good Thermal Stability of BaTiO3-Bi(Mg0.5Zr0.5)O3 Solid Solution [J]. Ceramics International, 2015, 41(2): 2081-2088.

[90] ZHANG W H, CHEN L, TAO Y T, et al. Raman study of barium titanate with oxygen vacancies [J]. Physica B: Condensed Matter, 2011, 406(24): 4630-4633.

[91] DELUCA M, AL-JLAIHAWI Z G, REICHMANN K, et al. Remarkable impact of low BiYbO3 doping levels on the local structure and phase transitions of BaTiO3 [J]. Journal of Materials Chemistry A, 2018, 6(13): 5443-5451.

[92] 周明星. 铌酸钠基无铅铁电陶瓷的制备,结构及性能研究 [D]. 上海: 中国科学院上海硅酸盐研究所, 2020.

[93] PAN Z, YAO L, ZHAI J W, et al. Ultrafast discharge and enhanced energy density of polymer nanocomposites loaded with 0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 one-dimensional nanofibers [J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14337-14346.

[94] HONG C H, GUO H, TAN X, et al. Polarization reversal via a transient relaxor state in nonergodic relaxors near freezing temperature [J]. Journal of Materiomics, 2019, 5(4): 634-640.

[95] XU Q, LIU H X, SONG Z. A new energy-storage ceramic system based on Bi0.5Na0.5TiO3 ternary solid solution [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(1): 322-329.

[96] GUO H Z, LIU X M, XUE F, et al. Disrupting long-range polar order with an electric field [J]. Physical Review B, 2016, 93(17): 174114.1-174114.9.

[97] ZHOU M, LIANG R, ZHOU Z, et al. Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability [J]. Journal of Materials Chemistry C, 2018, 6: 8528-8537.

[98] LI Z T, HAN B, LI J T, et al. Ferroelectric and piezoelectric properties of 0.82(Bi0.5Na0.5)TiO3-(0.18-x)BaTiO3-x(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 lead-free ceramics [J]. Journal of Alloys and Compounds, 2018, 774: 948-953.

[99] ULLAH A, ALAM M, ULLAH A, et al. High strain response in ternary Bi0.5Na0.5TiO3-BaTiO3-Bi(Mn0.5Ti0.5)O3 solid solutions [J]. RSC Advances, 2016, 6: 63915-63921.

[100] BAI W, CHEN D, HUANG Y, et al. Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics [J]. Ceramics International, 2016, 42(6): 7669-7680.

[101] RYU G H, HUSSAIN A, LEE M H, et al. Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics [J]. Journal of the European Ceramic Society, 2018, 38(13): 4414-4421.

[102] LI T Y, LOU X J, KE X Q, et al. Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics [J]. Acta Materialia, 2017, 128: 337-344.

[103] LU X, WANG L, JIN L, et al. Ultra-low hysteresis electrostrictive strain with high thermal stability in Bi(Li0.5Nb0.5)O3-modified BaTiO3 lead-free ferroelectrics [J]. Journal of Alloys and Compounds, 2018, 753: 558-565.

[104] ZHU L F, ZHANG B P, LEI Z, et al. High piezoelectricity of BaTiO3-CaTiO3–BaSnO3 lead-free ceramics [J]. Journal of Materials Chemistry C, 2014, 2(24): 4764-4771.

[105] LI J, WANG F, LEUNG C M, et al. Large strain response in acceptor-and donor-doped Bi0.5Na0.5TiO3 based lead-free ceramics [J]. Journal of Materials Science, 2011, 46(17): 5702-5708.

[106] XIA X, JIANG X A, ZENG J T, et al. Critical state to achieve a giant electric field-induced strain with a low hysteresis in relaxor piezoelectric ceramics [J]. Journal of Materiomics, 2021, 7(5): 1143-1152.

[107] MALIK R A, KANG J K, HUSSAIN A, et al. High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3–SrTiO3 incipient piezoelectric ceramics [J]. Applied Physics Express, 2014, 7: 061502.1- 061502.4.

[108] LEE H B, HEO D J, MALIK R A, et al. Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 ceramics exhibiting large strain with small hysteresis [J]. Ceramics International, 2013, 39: S705-S708.

[109] HU Q Y, TIAN Y, ZHU Q S, et al. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction [J]. Nano Energy, 2020, 67: 104264.1-11.

[110] SHEN Z B, WANG X H, LUO B C, et al. BaTiO3-BiYbO3 perovskite materials for energy storage applications [J]. Journal of Materials Chemistry A, 2015, 3(35): 18146-18153.

[111] HU Q Y, JIN L, WANG T, et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics [J]. Journal of Alloys and Compounds, 2015, 640: 416-420.

[112] MUHAMMAD A, DU H L, JAVED M S, et al. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics [J]. Ceramics International, 2020, 46(2): 2238-2246.

[113] ROUT D, MOON K S, KANG S, et al. Dielectric and Raman scattering studies of phase transitions in the (100-x)Na0.5Bi0.5TiO3-xSrTiO3 system [J]. Journal of Applied Physics, 2010, 108(8): 084102.1-084102.7.

[114] HAYASHI H, NAKAMURA T, EBINA T. In-situ Raman spectroscopy of BaTiO3 particles for tetragonal-cubic transformation [J]. Journal of Physics and Chemistry of Solids, 2013, 74(7): 957-962.

[115] RAJAN S, GAZZALI P M M, CHANDRASEKARAN G. Electrical and magnetic phase transition studies of Fe and Mn co-doped BaTiO3 [J]. Journal of Alloys and Compounds, 2016, 656: 98-109.

[116] FENG S, TANG B, X F Z, et al. Enhanced energy storage and fast charge-discharge properties of (1-x)BaTiO3-xBi(Ni1/2Sn1/2)O3 relaxor ferroelectric ceramics [J]. Ceramics International, 2019, 45(14): 17580-17590.

[117] HUANG X C, HAO H, ZHANG S J, et al. Structure and dielectric properties of BaTiO3-BiYO3 perovskite solid solutions [J]. Journal of The American Ceramic Society, 2014, 97(6): 1797-1801.

[118] LIM J B, ZHANG S J, SHROUT T R. High temperature capacitors using a BiScO3-BaTiO3-(K1/2Bi1/2)TiO3 ternary system [J]. Electronic Materials Letters, 2011, 7(1): 71-75.

[119] XU Q, LIU H X, SONG Z, et al. A new energy-storage ceramic system based on Bi0.5Na0.5TiO3 ternary solid solution [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(1): 322-329.

[120] LEE S, LEVI R D, QU W G, et al. Band-gap nonlinearity in perovskite structured solid solutions [J]. Journal of Applied Physics, 2010, 107(2): 5814.

[121] YAO Y Y, SONG C H, BAO P, et al. Doping effect on the dielectric property in bismuth titanate [J]. Journal of Applied Physics, 2004, 95(6): 3126-3130.

[122] YU H, YE Z G. Dielectric properties and relaxor behavior of a new (1-x)BaTiO3-xBiAlO3 solid solution [J]. Journal of Applied Physics, 2008, 103(3): 034114.1-034114.5.

[123] VIOLA G, NING H, REECE M J, et al. Reversibility in electric field-induced transitions and energy storage properties of bismuth-based perovskite ceramics [J]. Journal of Physics D-Applied Physics, 2012, 45(35): 355302.

[124] WANG Y, WANG L, YUAN Q, et al. Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization [J]. Nano Energy, 2018, 44: 364-370.

[125] TIAN J, WANG S, JIANG T, et al. Dielectric characterization of a novel Bi2O3-Nb2O5-SiO2-Al2O3 glass-ceramic with excellent charge-discharge properties [J]. Journal of the European Ceramic Society, 2019, 39(4): 1164-1169.

[126] LIU J, KE Y, ZHAI J, et al. Effects of crystallization temperature on phase evolution and energy storage properties of BaO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics [J]. Journal of the European Ceramic Society, 2018, 38(5): 2312-2317.

[127] REN P R, LIU Z C, WANG X, et al. Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.1TiO3 based ceramics [J]. Journal of Alloys and Compounds, 2018, 742(25): 683-689.

[128] 夏翔. PMN-PT基弛豫铁电陶瓷畴结构和性能关系的研究 [D]. 上海: 中国科学院大学, 2021.

[129] SHVARTSMAN V V, LUPASCU D C. Lead-Free Relaxor Ferroelectrics [J]. Journal of The American Ceramic Society, 2012, 95(1): 1-26.

[130] REN P H, FAN H Q, WANG X, et al. Phase transition, high figure of merit and polar nano-regions in dielectric tunable lanthanum substituted barium titanate [J]. Journal of Alloys and Compounds, 2014, 617: 337-344.

[131] CHEN X L, CHEN J, HUANG G S, et al. Relaxor Behavior and Dielectric Properties of Bi(ZnNb)O3-Modified BaTiO3 Ceramics [J]. Journal of Electronic Materials, 2015, 44(12): 4804-4810.

[132] JO W, DITTMER R, ACOSTA M, et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective [J]. Journal of Electroceramics, 2012, 29(1): 71-93.

[133] DONG X X, CHEN H W, WEI M, et al. Structure, dielectric and energy storage properties of BaTiO3 ceramics doped with YNbO4 [J]. Journal of Alloys and Compounds, 2018, 744: 721-727.

[134] LIU G, ZHANG L Y, WU Q K, et al. Enhanced energy storage properties in MgO-doped BaTiO3 lead-free ferroelectric ceramics [J]. Journal of Materials Science Materials in Electronics, 2018, 29(21): 18859-18867.

[135] WANG T, JIN L, LI C C, et al. Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application [J]. Journal of The American Ceramic Society, 2015, 98(2): 559-566.

[136] YANG H B, YAN F, LIN Y, et al. Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage [J]. Journal of the European Ceramic Society, 2017, 37: 3303-3311.

[137] ZHOU X F, QI H, YAN Z N, et al. Superior Thermal Stability of High Energy Density and Power Density in Domain Engineered Bi0.5Na0.5TiO3-NaTaO3 Relaxor Ferroelectrics [J]. ACS Applied Materials & Interfaces, 2019, 11: 43107-43115.

[138] LI W B, ZHOU D, PANG L X, et al. Novel barium titanate based capacitors with high energy density and fast discharge performance [J]. Journal of Materials Chemistry A, 2017, 5(37): 19607-19612.

[139] ZHANG L, PU Y, CHEN M, et al. Novel Na0.5Bi0.5Ti0.5O3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability [J]. Chemical Engineering Journal, 2019, 383: 123154.1-123154.9.

[140] LI D X, SHEN Z Y, LI Z P. Optimization of polarization behavior in (1–x)BSBN-xNN ceramics for pulsed power capacitors [J]. Journal of Materials Chemistry, C, 2020, 8(23): 7650-7657.

[141] LU X P, XU J W, YANG L, et al. Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping [J]. Journal of Materiomics, 2016, 2(1): 87-93.

[142] CHEN X, CHEN J, MA D, et al. High relative permittivity, low dielectric loss and good thermal stability of novel (K0.5Na0.5)NbO3-Bi(Zn0.75W0.25)O3 solid solution [J]. Materials Letters, 2015, 145(15): 247-249.

[143] SI F, TANG B, FANG Z X, et al. Structural and dielectric relaxor properties of (1-x)BaTiO3–xBi(Zn1/2Zr1/2)O3 ceramics for energy storage applications [J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 2772–2782.

[144] LIMA K, SOUZA A G, AYALA A P, et al. A Raman study of morphotropic phase boundary in PbZr1-xTixO3 at low temperatures [J]. Physical Review B, 2001, 63(18): 145-155.

[145] LEE K W, KUMAR K S, HEO G, et al. Characterization of hollow BaTiO3 nanofibers and intense visible photoluminescence [J]. Journal of Applied Physics, 2013, 114(13): 1-5.

[146] FREEMAN C L, DAWSON J A, CHEN H R, et al. Energetics of donor-doping, metal vacancies, and oxygen-loss in A-Site rare-earth-doped BaTiO3 [J]. Advanced Functional Materials, 2013, 23(31): 3925-3928.

[147] LIU X, M G S, XU H. Green synthetic approach for Ti self-doped TiO2-x nanoparticles with efficient visible light photocatalytic activity [J]. Nanoscale, 2013, 5(5): 1870-1875.

[148] DUTTA D P, ROY M, MAITI N, et al. Phase evolution in sonochemically synthesized Fe doped BaTiO3 nanocrystallites: structural, magnetic and ferroelectric characterisation [J]. Physical Chemistry Chemical Physics, 2016, 18: 9758-9769.

[149] EHRE D, COHEN H, LYAHOVITSKAYA V, et al. X-ray photoelectron spectroscopy of amorphous and quasiamorphous phases of BaTiO3 and SrTiO3 [J]. Physical Review B, 2008, 77(18): 998-1002.

[150] SOUZA A E, TEIXEIRA S R, MORILLA-SANTOS C, et al. Photoluminescence activity of Ba1-xCaxTiO3:dependence on particle size and morphology [J]. Journal of Materials Chemistry C, 2014, 2(34): 7056-7070.

[151] YANG H, YAN F, LIN Y, et al. Enhanced Energy‐Storage Properties of Lanthanum‐Doped Bi0.5Na0.5TiO3‐Based Lead‐Free Ceramics [J]. Energy Technology, 2018, 6: 357-365.

[152] DONG G Z, FAN H Q, JIA Y X, et al. Dielectric temperature stability and energy storage performance of B-site Sn4+-doped BNKBST ceramics [J]. Journal of Materials Science Materials in Electronics, 2020, 31(16): 13620-13627.

[153] ZHANG F, QIAO X, ZHOU Q, et al. High energy and power density achieved in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with excellent thermal stability [J]. Journal of Alloys and Compounds, 2021, 875(21): 160005.1-160005.7.

[154] ZHANG G F, LIU H X, YAO Z H, et al. Effects of Ca doping on the energy storage properties of (Sr,Ca)TiO3 paraelectric ceramics [J]. Journal of Materials Science Materials in Electronics, 2015, 26(5): 2726-2732.

[155] XIE J, HUA H, LIU H, et al. Dielectric relaxation behavior and energy storage properties of Sn modified SrTiO3 based ceramics [J]. Ceramics International, 2016, 42(11): 12796-12801.

[156] YANG H, YAN F, LIN Y, et al. Improvement of dielectric and energy storage properties in SrTiO3-based lead-free ceramics [J]. Journal of Alloys and Compounds, 2017, 728: 780-787.

[157] LIU Z, LU J, MAO Y, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases [J]. Journal of the European Ceramic Society, 2018, 38: 4939-4945.

[158] XU Q, M L T, HAO H, et al. Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics [J]. Journal of the European Ceramic Society, 2015, 35: 545-553.

[159] PENG P, NIE H, ZHENG C, et al. High-energy storage density in NaNbO3-modified (Bi0.5Na0.5)TiO3-BiAlO3-based lead-free ceramics under low electric field [J]. Journal of The American Ceramic Society, 2021, 104(6): 2610-2620.

[160] WANG W, PU Y, GUO X, et al. Combining high energy efficiency and fast charge-discharge capability in calcium strontium titanate-based linear dielectric ceramic for energy-storage - ScienceDirect [J]. Ceramics International, 2020, 46(8): 11484-11491.

[161] JIANG X, HAO H, ZHANG S, et al. Enhanced Energy Storage and Fast Discharge Properties of BaTiO3 Based Ceramics Modified by Bi(Mg1/2Zr1/2)O3 [J]. Journal of the European Ceramic Society, 2018, 39(4): 1103-1109.

[162] 李 峰. 铋基钙钛矿无铅弛豫铁电陶瓷的 电卡效应与储能特性研究 [D]. 上海: 同济大学, 2019.

[163] GAO;X Y , YANG;J K, WU;J G, et al. Piezoelectric Actuators and Motors: Materials, Designs, and Applications [J]. Advanced Materials Technologies, 2020, 5(1): 1900716.2-26.

[164] TSAI M H, WANG C W, TSAI C W, et al. Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization [J]. Journal of the Electrochemical Society, 2011, 158(11): H1161-H1165.

[165] WU W H, YANG C C, YEH J W. Industrial development of high-entropy alloys [J]. European Journal of Control, 2006, 31(6): 737-747.

[166] LIU W M, YU Y, ZHANG T B. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution [J]. Metallurgical and Materials Transactions, A Physical Metallurgy and Materials Science, 2014, 45(1): 201-207.

[167] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides [J]. Nature Communications, 2015, 6: 8485-8493.

[168] BéRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides [J]. Journal of Materials Chemistry A, 2016, 4: 9536-9541.

[169] JIANG S, HU T, GILD J, et al. A new class of high-entropy perovskite oxides [J]. Scripta Materialia, 2018, 142: 116-120.

[170] CHEN K, PEI X, TANG L, et al. A new five-component entropy-stabilized fluorite oxide [J]. Journal of the European Ceramic Society, 2018, 38(11): 4161-4164.

[171] GILD J S, ZHANG Y Y, HARRINGTON T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics [J]. Scientific Reports, 2016, 6(1): 37946.1-10.

[172] GWALANI B, SALLOOM R, ALAM T, et al. High entropy alloys [J]. Microscopy & Microanalysis, 2019, 24(S1): 2214-2215.

[173] REN K, WANG Q K, CAO Y J, et al. Multicomponent rare-earth cerate and zirconocerate ceramics for thermal barrier coating materials [J]. Journal of the European Ceramic Society, 2021, 41(2): 1720-1725.

[174] X W H, Y W S, J C Y, et al. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500℃ [J]. Journal of Materials Science & Technology, 2021, 60: 147-155.

[175] WU C F, ARIFIN D, WANG C A, et al. Coalescence and split of high-entropy polymer lamellar cocrystals [J]. Polymer, 2018, 138: 188-202.

[176] LEI Z, LIU X, WANG H, et al. Development of advanced materials via entropy engineering [J]. Scripta Materialia, 2019, 165: 164-169.

[177] LIU J, MA C Y, WANG L L, et al. Single-phase formation mechanism and dielectric properties of sol-gel derived Ba(Ti0.2Zr0.2Sn0.2Hf0.2Ce0.2)O3 high-entropy ceramics [J]. Journal of Materials Science & Technology, 2022, 130: 103-111.

[178] DĄBROWA J, ZAJUSZ M, KUCZA W, et al. Demystifying the sluggish diffusion effect in high entropy alloys [J]. Journal of Alloys and Compounds, 2019, 783: 193-207.

[179] G L, Y L, H G J, et al. Structure evolution, ferroelectric properties, and energy storage performance of CaSnO3 modified BaTiO3-based Pb-free ceramics [J]. Journal of Alloys and Compounds, 2020, 826: 154160.1-13.

[180] ZHANG Y, GUO W M, JIANG Z B, et al. Dense high-entropy boride ceramics with ultra-high hardness [J]. Scripta Materialia, 2019, 164: 135-139.

[181] PU Y P, ZHANG Q W, LI R, et al. Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic [J]. Applied Physics Letters, 2019, 115(22): 223901.1-223901.5.

[182] YE B L, WEN T Q, HUANG K H, et al. First-principles study, fabrication and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic [J]. Journal of The American Ceramic Society, 2018, 102(7): 4344-4352.

[183] YE B L, WEN T Q, NGUYEN M C, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics [J]. Acta Materialia, 2019, 170: 15-23.

[184] LI Y, LIU Y, TANG M, et al. Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process [J]. Chemical Engineering Journal, 2021, 419(8): 129673.1-13.

[185] RAJAN S, GAZZALI P, CHANDRASEKARAN G. Electrical and Magnetic phase transition studies of Fe and Mn co-doped BaTiO3 [J]. Journal of Alloys and Compounds, 2016, 656: 98-109.

[186] LU D Y, CUI S Z. Defects characterization of Dy-doped BaTiO3 ceramics via electron paramagnetic resonance [J]. Journal of the European Ceramic Society, 2014, 34(10): 2217-2227.

[187] BAI W, CHEN D, ZHENG P, et al. NaNbO3 templates-induced phase evolution and enhancement of electromechanical properties in grain oriented lead-free BNT-based piezoelectric materials [J]. Journal of the European Ceramic Society, 2017, 37(7): 2591-2604.

[188] LI J, LUO W, LEI H, et al. High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in barium strontium titanate lead-free ferroelectrics [J]. Journal of the European Ceramic Society, 2019, 39(2-3): 295-304.

[189] LIU Y, CHANG Y, LI F, et al. Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba,Ca)(Ti,Zr)O3 through integrating crystallographic texture and domain engineering [J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29863-29871.

[190] HUANG Y, ZHAO C, YIN J, et al. Giant electrostrictive effect in lead-free barium titanate-based ceramics via A-site ion-pairs engineering [J]. Journal of Materials Chemistry A, 2019, 4(7): 17366-17375.

[191] JIN L, QIAO J, WANG L, et al. Ultra-low hysteresis electric field-induced strain with high electrostrictive coefficient in lead-free Ba(ZrxTi1-x)O3 ferroelectrics [J]. Journal of Alloys and Compounds, 2019, 784(5): 931-938.

[192] LI T Y, LIU C, KE X Q, et al. High electrostrictive strain in lead-free relaxors near the morphotropic phase boundary [J]. Acta Materialia, 2020, 182(1): 39-46.

[193] SHI H, ZHU Y, ZHAO Y, et al. Field-induced large strain and strong green photoluminescence in (Ho,Sb)-modified (Bi0.5Na0.5)0.945Ba0.065TiO3 multifunctional ferroelectric ceramics [J]. Journal of Alloys and Compounds, 2018, 767: 666-674.

[194] HUSSAIN A, MAQBOOL A, MALIK R A, et al. Electromechanical Properties of Lead‐Free Nb‐Doped 0.95Bi0.5Na0.5TiO3‐0.05BaZrO3 Piezoelectric Ceramics [J]. physica status solidi (a), 2018, 215(20): 1700942.1-1700942.5.

[195] WEI Q M, ZHU M K, QIN T H, et al. Composition-induced phase evolution and high strain response in Ba(Zn1/3Nb2/3)O3-modified (Bi0.5Na0.5)TiO3-based lead-free ferroelectrics [J]. RSC Advances, 2018, 8: 12269-12275.

[196] 董福营. GdCoO3 化合物的掺杂与表征及Sr-K-Fe-Mo-O系列化合物的合成和表征 [D]. 保定: 河北大学, 2007.

中图分类号:

 TH145    

开放日期:

 2023-03-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式