论文中文题名: |
上覆煤柱及坚硬顶板下开采的强矿压机理及控制技术研究
|
姓名: |
周海丰
|
学号: |
17103077007
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
0819
|
学科名称: |
工学 - 矿业工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
能源学院
|
专业: |
矿业工程
|
研究方向: |
矿山压力与岩层控制
|
第一导师姓名: |
黄庆享
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
余学义
|
论文提交日期: |
2022-06-27
|
论文答辩日期: |
2022-06-06
|
论文外文题名: |
Study on mechanism and control technology of strong ground pressure in mining under overlying coal pillar and hard roof
|
论文中文关键词: |
平行煤柱 ; 垂直煤柱 ; 叠加煤柱 ; 坚硬顶板 ; 强矿压 ; 扇形跷板 ; 水力压裂
|
论文外文关键词: |
parallel coal pillar ; vertical coal pillar ; strong ground pressure ; hard roof ; "fan-shaped seesaw" ; hydraulic fracturing
|
论文中文摘要: |
︿
在多煤层开采矿井中,上覆煤柱和层间坚硬顶板引发的下煤层工作面或巷道的强矿压问题日趋严重,威胁矿井安全开采。开展上覆煤柱及坚硬顶板下开采强矿压作用机理及控制技术研究具有重要的理论意义和工程实践价值。论文以神东布尔台煤矿4-2煤层综放工作面为研究对象,采用现场测试、理论研究、相似模拟和数值计算相结合的方法,研究了上覆2-2煤层平行煤柱、垂直煤柱和叠加煤柱通过层间坚硬顶板对4-2煤层综放工作面矿压显现的影响规律,提出了综放工作面过上覆平行煤柱和叠加煤柱开采的“扇形跷板”和“倒梯形”形结构模型,揭示了上覆煤柱及坚硬顶板耦合作用下的强矿压机理,研发了定向长钻孔分段水力压裂弱化坚硬顶板和应力集中区技术,工程实践取得了显著成效。主要研究成果如下:
(1)通过现场钻孔取芯、室内单轴压缩、巴西劈裂和CT扫描实验,测定了不同深度岩芯的力学指标及微观结构特性,实测了4-2煤层的原岩应力,分析了4-2煤层的顶板结构,进行了老顶板分级,确定了煤层上方厚度37.1m的致密粉砂岩属I级极坚硬顶板,为强矿压机理研究和控制奠定了基础。
(2)实测了上覆平行煤柱、垂直煤柱和端部叠加煤柱通过层间坚硬顶板对综放工作面矿压显现的影响,揭示了平行煤柱、垂直煤柱和端部叠加煤柱导致下部煤层工作面支架阻力升高、压架、片帮和冒顶等强矿压显现的规律,得出上覆煤柱和坚硬顶板的共同作用是造成4-2煤层强矿压显现的主要因素。
(3)通过理论分析、相似模拟和数值计算,研究了综放工作面进、出上覆平行煤柱过程中坚硬顶板O-X破断特征,建立了工作面过平行煤柱期间的顶板“跷板”结构力学模型,揭示了上覆平行煤柱影响下综放工作面强矿压机理。掌握了综放工作面进煤柱、煤柱下和出煤柱三种状态下,4-2煤层上覆坚硬顶板的跷板空间几何结构运动与应力演化的关系,揭示了在出煤柱5-10m范围工作面前方煤体应力升高、破坏明显和易导致工作面动力灾害的机理。
(4)研究了垂直煤柱影响下综放工作面覆岩破断失稳特征,得出4-2煤层工作面顶板边界条件随长边b的变化,由四端固支条件转换为三边固支一边简支,导致采空区破碎岩体提供主要的支承力。
(5)研究了叠加煤柱影响下综放工作面围岩破断失稳特征,揭示了上覆2-2煤层顺槽煤柱和4-2煤层回风顺槽煤柱应力叠加影响下综放工作面二次采动巷道强矿压机理。根据综放工作面覆岩O-X破断特征,构建了垂直煤柱下综放工作面顶板破断的“倒梯形”形结构力学模型;采用数值模拟方法,建立垂直煤柱在综放工作面端头煤柱外侧、正上方和内侧的空间结构模型。研究得出上覆垂直煤柱与综放工作面端头煤柱水平距离对矿压显现影响显著,煤柱位于端头正上方时围岩应力和塑性区最大,随着水平距离增大影响逐渐降低。
(6)基于综放工作面上覆平行煤柱、垂直煤柱和叠加煤柱及坚硬顶板下的强矿压机理,提出了优化采掘布局,合理避让上覆煤柱、避开地应力方向、选用大阻力液压支架、定向长钻孔分段水力压裂采场坚硬顶板、常规短钻孔水力压裂顺槽顶板等强矿压综合治理技术。采用综放工作面强矿压综合测监测预警系统,实现了工作面顶板来压的智能监测与超前预警。通过现场工程实践,有效降低了上覆煤柱对工作面矿压影响,取得了显著的治理效果。
﹀
|
论文外文摘要: |
︿
In multi coal seams mining, the problem of strong ground pressure in the lower working face or roadway caused by the coal pillar and interlayer hard roof is becoming more and more serious. It threatens to the mine safety. It is of great theoretical significance and engineering practical value to carry out research on the mechanism and control technology of strong mining ground pressure under the action of overlying coal pillars and hard roof. This paper takes the fully mechanized caving face of 4-2 coal seam in Buertai Coal Mine as the research object, the methods of field test, theoretical research, physical similar simulation and numerical calculation are adopted. By studying the strong ground pressure influence on fully mechanized caving face of 4-2 coal seam, which is caused by coal pillars of overlying 2-2 coal seam parallel coal pillar, vertical coal pillar and superimposed coal pillar and executed through interlayer thick hard roof. This paper proposed the mechanical models of "fan-shaped seesaw" and "inverted trapezoid" structures of the fully mechanized caving face over the overlying parallel coal pillars and the stress concentration area of the superimposed coal pillars, the disaster mechanism of strong ground pressure under the coupling action of the overlying coal pillar and the hard roof was revealed. Developed the technology of directional long borehole segmented hydraulic fracturing to weaken the hard roof and stress concentration area, established a strong rock pressure monitoring and early warning platform, verified it in practice and achieved remarkable results. The main research results as follows:
(1) Through on-site borehole coring, uniaxial compression, Brazilian splitting and CT scanning experiments, the mechanical indexes and microstructural properties of cores at different depths were measured, and the original rock stress of 4-2 coal seam was actually measured, the main roof of 4-2 coal seam classification was carried out, and it was proposed that the dense siltstone with a thickness of 37.1m above the coal seam belongs to the I-level extremely hard roof, which support an important foundation for the research and control of the strong mine pressure mechanism..
(2) The influence law of overlying parallel coal pillar, vertical coal pillar and end superimposed coal pillar on rock pressure behavior of fully mechanized top coal caving face through interlayer hard roof is measured. It is revealed that under the influence of parallel coal pillar, vertical coal pillar and end superimposed coal pillar, the mining of lower coal seam has the characteristics of strong rock pressure behavior such as support resistance rise, frame pressing, rib spalling and roof fall. The overlying coal pillar and hard roof are the main factors causing the strong ground pressure behavior of 4-2 coal seam.
(3) Through theoretical analysis, similarity simulation and numerical calculation, the breaking movement “O-X” characteristics of hard roof in the process of entering and exiting the overlying parallel coal pillar in fully mechanized top coal caving face are studied. The structural mechanics model of roof "seesaw" during the period when the working face passes through coal pillars is established, the mechanism of strong ground pressure in fully mechanized top coal caving face under the influence of overlying coal pillars is revealed, and the engineering verification is carried out. The relationship between the seesaw spatial geometric structure movement and stress evolution of 4-2 coal overlying hard roof under the three states of fully mechanized top coal caving face, when entering coal pillar, under coal pillar and exiting coal pillar. It reveals the mechanism that the coal stress increases in front of the working face, the damage is obvious and it is easy to lead to the dynamic disaster of the working face when the coal pillar is 5-10m out.
(4) The characteristics of overlying rock breaking, migration and instability of fully mechanized top coal caving face under the influence of vertical coal pillar are studied. The roof boundary condition and long side B of 4-2 coal seam are changed. The roof is transformed from four end fixed support condition to three side fixed support and one side simple condition, the broken rock mass in the goaf provides the main support.
(5) The fracture and instability characteristics of overlying rock in fully mechanized top coal caving face under the influence of superimposed coal pillars are studied. The mechanism of strong ground pressure behavior in secondary mining roadway under the influence of the superposition of stress of overlying 2-2 coal along the trough pillar and 4-2 coal return air along the trough pillar is revealed. According to the O-X fracture characteristics of broken overburden in fully mechanized top coal caving face, the "inverted trapezoidal" structural mechanics model of roof fracture in fully mechanized top coal caving face under vertical coal pillar is constructed. Through the numerical simulation method, the spatial structure model of vertical coal pillar outside, directly above and inside the coal pillar at the end of fully mechanized top coal caving face is established. The research shows that the horizontal distance between the overlying vertical coal pillar and the coal pillar at the end of the fully mechanized top coal caving face has a significant impact on the rock pressure behavior. When it is located directly above the end, the surrounding rock stress and plastic zone are the largest, and the impact decreases gradually with the increase of the horizontal distance.
(6) Based on the mechanism of strong ground pressure under the overlying parallel coal pillar, vertical coal pillar and superimposed coal pillar and hard roof in fully mechanized top coal caving face, the comprehensive treatment technologies of strong rock pressure, such as optimizing the mining layout, avoiding the direction of in-situ stress, using heavy high resistance hydraulic support, directional long borehole segmented hydraulic fracturing stope hard roof, conventional short borehole hydraulic fracturing trough roof and so on, are proposed. Comprehensive monitoring and early warning system for strong rock pressure in fully mechanized top coal caving face have been adopted, which realizes the intelligent monitoring and advance warning of the pressure from the roof of the working face. Through practical application, the influence of overlying coal pillar to the ground pressure in fully mechanized mining face is effectively reduced, and remarkable results are achieved.
﹀
|
参考文献: |
︿
[1] 黄庆享. 西部浅埋大煤田安全绿色开采岩层控制进展与展望[J]. 西安科技大学学报, 2021, 41(03):382. [2] 黄庆享, 黄克军, 赵萌烨. 浅埋煤层群大采高采场初次来压顶板结构及支架载荷研究[J]. 采矿与安全工程学报, 2018, 35(05):940-944. [3] 黄庆享, 赵萌烨, 黄克军. 浅埋煤层群开采顶板双关键层结构及支护阻力研究[J]. 中国矿业大学学报, 2019, 48(01):71-77+86. [4] 戴文祥, 孔令海, 邓志刚, 等. 近距离采空区下特厚煤层综放工作面矿压规律[J]. 煤矿安全, 2018, 49(12):212-215+220. [5] 申超. 近距离厚煤层开采的矿压显现规律研究[J]. 中国新技术新产品, 2020(06): 118-119. [6] 王志强, 石磊, 武超, 等. 极近距煤层(群)共采类型划分及夹层稳定性分析[J]. 采矿与安全工程学报, 2021, 38(03):458-468+478. [7] 康红普, 徐刚, 王彪谋, 等. 我国煤炭开采与岩层控制技术发展40a及展望[J]. 采矿与岩层控制工程学报, 2019, 1(02):7-39. [8] 宋选民, 朱德福, 王仲伦, 等. 我国煤矿综放开采40年:理论与技术装备研究进展[J]. 煤炭科学技术, 2021, 49(03):1-29. [9] 周海丰, 黄庆享, 贺雁鹏. 8.8 m大采高综采工作面矿压规律[J]. 西安科技大学学报, 2020. 40(06): 981-987. [10] 于斌. 大同矿区综采40a开采技术研究[J]. 煤炭学报, 2010, 35(11):1772-1777. [11] 甄智鑫. 布尔台矿重复采动煤层关键层结构特征及研究[D]. 河南理工大学, 2016. [12] 鲍永生. 特厚煤层综放工作面智能控制关键技术研究[J]. 煤炭科学技术, 2020, 48(07):55-61. [13] 周爱桃, 张蒙, 王凯, 等. 布尔台矿综放工作面采空区瓦斯运移规律及瓦斯抽采优化研究[J]. 矿业科学学报, 2020, 5(03):291-301. [14] 陈昆. 雅店煤矿综放开采覆岩运动及其对采场冲击危险性的影响研究[D]. 中国矿业大学, 2020. [15] 窦桂东, 林建成, 杜鑫, 等. 特厚煤层综采工作面矿压显现规律研究[J]. 煤炭工程, 2019, 51(08): 84-88. [16] 何团, 魏亚星, 张学亮, 等. 特厚煤层综放开采载荷传递及内、外应力场形成机制[J]. 煤矿开采, 2019, 24(01): 98-103. [17] 孔令海. 特厚煤层大空间综放采场覆岩运动及其来压规律研究[J]. 采矿与安全工程学报, 2020, 37(05): 943-950. [18] 江成浩, 刘浩, 周晓华, 等. 基于PFC~(3D)的综放工作面裂隙场演化规律数值模拟[J]. 煤矿安全, 2019, 50(01): 205-209. [19] 李志华, 杨科, 华心祝, 等. 采场覆岩“宏观-大-小”结构及其失稳致灾机理[J]. 煤炭学报, 2020, 45(S2): 541-550. [20] 孟祥军, 李明忠, 岳宁, 等. 兖矿集团综放开采技术的创新性发展与应用[J]. 煤矿安全, 2020, 51(10): 159-163. [21] 孟祥军, 林海飞, 王超, 等. 巨厚煤层综放工作面覆岩“三带”演化特征[J]. 煤矿安全, 2021, 52(06): 85-90. [22] Cao, W.,J.-Q. Shi,G. Si, et al. Numerical modelling of microseismicity associated with longwall coal mining[J]. International Journal of Coal Geology, 2018, 193: 30-45. [23] Zhang, R.,T. Ai,H.W. Zhou, et al. Fractal and volume characteristics of 3D mining-induced fractures under typical mining layouts[J]. Environmental Earth Sciences, 2015, 73(10): 6069-6080. [24] 金宝圣, 王爱午, 黄志栋, 等. 朔南矿区特厚煤层超长综放工作面矿压显现规律研究[J]. 煤矿安全, 2019, 50(12): 203-206+211. [25] 彭建勋, 金智新, 白希军. 大同矿区坚硬顶板与坚硬煤层条件下综放开采[J]. 煤炭科学技术, 2004(02): 1-4. [26] 孙健, 杨玉龙. 磁窑沟煤矿综放工作面合理开采参数研究[J]. 煤炭工程, 2018, 50(S1): 5-9. [27] 王家臣, 潘卫东, 李诚. 葛泉矿坚硬顶板综放开采三维数值模拟[J]. 采矿与安全工程学报, 2008(03): 272-276. [28] 张金虎. 大采高综采异常矿压影响因素及支架适应性研究[J]. 煤炭科学技术, 2019, 47(12): 234-241. [29] Huang, J., F. Meng, G. Wang, et al. Simulation Research for the Influence of Mining Sequence on Coal Pillar Stability under Highwall Mining Method[J]. Geofluids, 2021, 2021(2): 1-9. [30] Li, Z., J. Xu, S. Yu, et al. Mechanism and Prevention of a Chock Support Failure in the Longwall Top-Coal Caving Faces: A Case Study in Datong Coalfield, China[J]. Energies, 2018, 11(2): 1-17. [31] Li, Z., X. He, L.Dou. Comparison of rockburst occurrence during the extraction of thick coal seams using top-coal caving versus slicing mining methods[J]. Canadian Geotechnical Journal, 2017,1-52. [32] Xie, H., H.W. Zhou. Application of fractal theory to top-coal caving[J]. Chaos, Solitons & Fractals, 2008, 36(4): 797-807. [33] Zhang, C., S. Tu. Control technology of direct passing karstic collapse pillar in longwall top-coal caving mining[J]. Natural Hazards, 2016, 84(1): 17-34. [34] 宁静, 徐刚, 张春会, 等. 综放工作面多区支撑顶板的力学模型及破断特征[J]. 煤炭学报, 2020, 45(10): 3418-3426. [35] 乔中栋, 屈英, 杨国宏, 等. 华亭煤矿综放工作面合理采高及放煤工艺分析[J]. 煤矿安全, 2020, 51(11): 161-164. [36] 秦海初, 邵斌, 程海星, 等. 综放开采顶煤采动应力场演化路径[J]. 煤矿安全, 2021, 52(05): 175-181+187. [37] 秦喜文. 小窑破坏区残煤综放开采覆岩破坏规律模拟研究[J]. 煤炭工程, 2021, 53 (05): 121-124. [38] 任启寒,徐遵玉, 陈成. 特厚煤层综放采场覆岩结构及矿压规律研究[J]. 煤炭工程, 2021, 53(01): 79-83. [39] 任晓东. 浅埋深厚基岩综放工作面覆岩结构及矿压显现规律研究[J]. 煤炭工程, 2020, 52(07): 102-105. [40] 杨皓博,涂智凌, 高永刚. 厚煤层综放工作面覆岩运移规律研究[J]. 煤矿安全, 2019, 50(05): 39-41+46. [41] 杨柳, 李飞, 王金安, 等. 综放开采顶煤与覆岩力链结构及演化特征[J]. 煤炭学报, 2018, 43(08): 2144-2154. [42] 杨旭, 杨贵儒. 宽沟煤矿冲击倾向性顶板综放面超前支承压力规律研究[J]. 煤炭技术, 2020, 39(08): 48-51. [43] 杨扬. 布尔台煤矿42107工作面强矿压显现规律及防治研究[D]. 中国矿业大学, 2019. [44] 尹希文. 我国大采高综采技术及围岩控制研究现状[J]. 煤炭科学技术, 2019, 47(08): 37-45. [45] 杜锋, S.S. PENG. 神东矿区岩石物理力学性质变化规律研究[J]. 采矿与安全工程学报, 2019, 36(05): 1009-1015. [46] 王金东. 综放开采覆岩高位结构稳定性及强矿压形成机理研究[D]. 西安科技大学, 2015. [47] 魏锦平, 靳钟铭, 杨彦风, 等. 坚硬顶板控制的数值模拟[J]. 岩石力学与工程学报, 2002(S2): 2488-2491. [48] 吴祥业. 神东矿区重复采动巷道塑性区演化规律及稳定控制[D]. 中国矿业大学(北京), 2018. [49] 伍永平, 李开放, 张艳丽. 坚硬顶板综放工作面超前弱化模拟研究[J]. 采矿与安全工程学报, 2009, 26(03): 273-277. [50] 李国栋, 李亮. 赵固二矿厚煤层工作面合理采高确定研究[J]. 煤炭技术, 2019, 38 (03): 4-7. [51] 袁瑞甫, 杜锋, 宋常胜, 等. 综放采场重复采动覆岩运移原位监测与分析[J]. 采矿与安全工程学报, 2018, 35(04): 717-724+733. [52] 张宏伟, 刘长江, 李云鹏, 等. 特厚煤层综放工作面回采巷道支护技术研究[J]. 煤炭科学技术, 2020, 48(04): 185-193. [53] 刘全明, 于雷. 浅埋深综放采场覆岩结构对矿压显现规律的影响[J]. 煤炭科学技术, 2017, 45(03): 20-25. [54] 吕文斌, 杜明泽, 管彦太, 等. 弱胶结地层大采高工作面覆岩“两带”发育高度研究[J]. 煤炭工程, 2021, 53(08): 92-97. [55] 马资敏, 吴士良, 穆玉兵, 等. 特厚煤层综放采场矿压异常显现机理与控制[J]. 煤炭学报, 2018, 43(S2): 359-368. [56] 李军委. 厚煤层综放采场矿压显现规律与支架适应性研究[J]. 煤炭技术, 2020, 39(10): 50-52. [57] 张忠温, 吴吉南. 浅埋深两硬条件下特厚煤层综放开采技术[J]. 中国工程科学, 2011, 13(11): 107-112. [58] 赵毅鑫, 杨志良, 马斌杰, 等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报, 2020, 45(01): 54-65. [59] 李金刚, 李伟. 三维地震技术在布尔台煤矿四盘区中的勘探应用[J]. 煤炭科学技术, 2021, 49(S2): 266-271. [60] 申斌学, 朱磊, 朱德福, 等. 沟壑地貌下综放开采覆岩破断特征研究[J]. 煤炭工程, 2021, 53(07): 1-6. [61] 申晨辉, 康永华, 刘秀娥, 等. 浅埋近松散含水层下综放开采覆岩破坏特征[J]. 煤矿开采, 2019, 24(01): 77-80. [62] 史文豹, 常聚才, 李彦, 等. 综放开采坚硬顶板弱化物理模拟研究[J]. 安徽理工大学学报(自然科学版), 2020, 40(06): 14-19. [63] 宋桂军, 李化敏. 布尔台矿综放工作面端面冒顶影响因素研究[J]. 采矿与安全工程学报, 2018, 35(06): 1170-1176. [64] 宋平, 庞新坤, 刘宝珠. 唐山矿大倾角厚煤层错层位综放工作面矿压显现规律[J]. 煤矿安全, 2018, 49(12): 221-224. [65] 于斌, 段宏飞. 特厚煤层高强度综放开采水力压裂顶板控制技术研究[J]. 岩石力学与工程学报, 2014, 33(04): 778-785. [66] 于斌, 高瑞, 孟祥斌, 等. 大空间远近场结构失稳矿压作用与控制技术[J]. 岩石力学与工程学报, 2018, 37(05): 1134-1145. [67] 于斌, 徐刚, 黄志增, 等. 特厚煤层智能化综放开采理论与关键技术架构[J]. 煤炭学报, 2019, 44(01): 42-53. [68] 于斌, 朱卫兵, 高瑞, 等. 特厚煤层综放开采大空间采场覆岩结构及作用机制[J]. 煤炭学报, 2016, 41(03): 571-580. [69] 于斌, 朱卫兵, 李竹, 等. 特厚煤层开采远场覆岩结构失稳机理[J]. 煤炭学报, 2018, 43(09): 2398-2407. [70] Li, M.,J. Zhang,Y.. Huang, et al. Measurement and numerical analysis of influence of key stratum breakage on mine pressure in top-coal caving face with super great mining height[J]. Journal of Central South University, 2017, 24(8): 1881-1888. [71] 孟祥军. 基于基本顶断裂位置的综放沿空掘巷煤帮支护技术[J]. 煤炭科学技术, 2020, 48(01): 61-68. [72] 张玉军, 张志巍. 煤层采动覆岩破坏规律与控制技术研究进展[J]. 煤炭科学技术, 2020, 48(11): 85-97. [73] 于雷. 综放采场“倒台阶组合悬臂梁”结构形成机理与稳定性[J]. 煤矿安全, 2018, 49(10): 221-224. [74] 于雷, 闫少宏. 特厚煤层综放开采顶板岩层控制基本原理[J]. 煤炭学报, 2020, 45(S1): 31-37. [75] 许永祥,王国法,李明忠, 等. 特厚坚硬煤层超大采高综放开采支架-围岩结构耦合关系[J]. 煤炭学报, 2019, 44(06): 1666-1678. [76] 丁航. 补连塔煤矿大采高工作面覆岩运移规律[J]. 煤矿安全, 2019, 50(12): 179-183. [77] 黄庆享, 曹健, 杜君武, 等. 浅埋近距煤层开采三场演化规律与合理煤柱错距研究[J]. 煤炭学报, 2019, 44(03): 681-689. [78] 黄庆享, 曹健, 高彬, 等. 基于三场演化规律的浅埋近距煤层减损开采研究[J]. 采矿与安全工程学报, 2020, 37(06): 1171-1179. [79] 黄庆享, 韩金博. 浅埋近距离煤层开采裂隙演化机理研究[J]. 采矿与安全工程学报, 2019, 36(04): 706-711. [80] 黄庆享, 贺雁鹏, 李锋, 等. 浅埋薄基岩大采高工作面顶板破断特征和来压规律[J]. 西安科技大学学报, 2019, 39(05): 737-744. [81] 黄庆享, 李锋, 贺雁鹏, 等. 浅埋大采高工作面超前支承压力峰值演化规律[J]. 西安科技大学学报, 2021, 41(01): 1-7. [82] 贺雁鹏, 黄庆享, 王碧清, 等. 浅埋煤层大采高工作面顶板破断角实测研究[J]. 采矿与安全工程学报, 2019, 36(04): 746-752. [83] 冯国瑞, 朱卫兵, 李竹, 等. 浅埋深蹬空底板煤柱群动态失稳机理及防治[J]. 煤炭学报, 2022, 47(01): 200-209. [84] 刘洪林, 李国栋, 王宏志. 近距离煤柱下巷道围岩裂隙演化规律研究[J]. 煤矿安全, 2021, 52(02): 219-224. [85] 刘永红, 李康, 曹民远, 等. 煤柱下开切巷应力分布分析及治理研究[J]. 煤炭工程, 2020, 52(09): 47-51. [86] 吕坤. 上下煤层同采影响下保留巷道围岩破坏机理与控制[D]. 中国矿业大学(北京), 2018. [87] 岳喜占, 涂敏, 李迎富, 等. 近距离煤层开采遗留边界煤柱下底板巷道采动附加应力计算[J]. 采矿与安全工程学报, 2021, 38(02): 246-252+259. [88] Li, Z.,G. Feng, J. Cui. Research on the Influence of Slurry Filling on the Stability of Floor Coal Pillars during Mining above the Room-and-Pillar Goaf: A Case Study[J]. Geofluids, 2020, 2020(1): 1-21. [89] 朱卫兵, 许家林, 陈璐, 等. 浅埋近距离煤层开采房式煤柱群动态失稳致灾机制[J]. 煤炭学报, 2019, 44(02): 358-366. [90] 朱卫兵, 于斌. 大空间采场远场关键层破断形式及其对矿压显现的影响[J]. 煤炭科学技术, 2018, 46(01): 99-104. [91] 薛吉胜, 赵铁林, 潘黎明. “高位-低位”厚硬岩层综放面特厚煤层矿压显现特征研究[J]. 煤炭技术, 2021, 40(07): 55-59. [92] 宋志强. 大采高综放工作面区段煤柱合理宽度研究[J]. 煤炭技术, 2021. 40(06): 6-9. [93] 贾尚伟, 樊志刚, 宋祖光, 等. 近距离煤层残留煤柱下底板应力分析及回采巷道合理布置[J]. 煤炭工程, 2020, 52(10): 11-15. [94] 杜江涛. 近距离采空区下综放工作面窄煤柱尺寸优化设计[J]. 煤炭工程, 2019, 51 (07): 11-14. [95] Du, B., C. Liu, J. Yang, et al. Abutment pressure distribution pattern and size optimization of coal pillar under repeated mining: a case study[J]. Arabian Journal of Geosciences, 2020, 13(23): 1-14. [96] Feng, G., P. Wang, Y. P. Chu. A New Gob-Side Entry Layout for Longwall Top Coal Caving[J]. Energies, 2018, 11(5): 1292-1292. [97] Gao, H., B. An, Z. Han, et al. The Sustainable Development of Aged Coal Mine Achieved by Recovering Pillar-Blocked Coal Resources[J]. Energies, 2020. 13. [98] Han, C., N. Zhang, B. Li, et al. Pressure relief and structure stability mechanism of hard roof for gob-side entry retaining[J]. Journal of Central South University, 2015, 22(11): 4445-4455. [99] Lai, X.,H. Xu,J. Fan, et al. Study on the Mechanism and Control of Rock Burst of Coal Pillar under Complex Conditions[J]. Geofluids, 2020,(2): 1-19. [100] Li, A.,B.N. Ji,Q. Ma, et al. Design of Longwall Coal Pillar for the Prevention of Water Inrush from the Seam Floor with Through Fault[J]. Geofluids, 2021,(4): 1-14. [101] Li, J. The coal pillar design method for a deep mining roadway based on the shape of the plastic zone in surrounding rocks[J]. Arabian Journal of Geosciences, 2020, 13(12): 1-12. [102] Li, P.,X. Lai,P. Gong, et al. Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs[J]. Energies, 2020, 13(21), 5732. [103] Liu, H.,Q. Sun,N. Zhou, et al. Risk Assessment and Control Strategy of Residual Coal Pillar in Room Mining: Case Study in Ecologically Fragile Mining Areas, China[J]. Sustainability, 2021, 13(5), 2712. [104] Liu, S.,Z. Wan,Y. Zhang, et al. Research on Evaluation and Control Technology of Coal Pillar Stability Based on the Fracture Digitization Method[J]. Measurement, 2020, 158: 107713. [105] Wang, K.,Y. Huang,H. Gao, et al. Recovery Technology of Bottom Coal in the Gob-Side Entry of Thick Coal Seam Based on Floor Heave Induced by Narrow Coal Pillar[J]. Energies, 2020, 13(13): 3368. [106] Wang, P., H. Luan. Correction to: Size effect analysis of remaining coal pillar on rock burst caused by fault[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(4), 157. [107] Xia, Z.,Q. Yao,Q. Xu, et al. Numerical-modeling-based assessment of the impact of two-end-type cable support on failure characteristics of yield pillars[J]. Engineering Failure Analysis, 2021, 128(11): 105619. [108] Xue, Y.,Z. Cao, Z. Li. Destabilization mechanism and energy evolution of coal pillar in rockburst disaster[J]. Arabian Journal of Geosciences, 2020, 13(13). [109] Yang, R.,Y. Zhu,Y. Li, et al. Coal pillar size design and surrounding rock control techniques in deep longwall entry[J]. Arabian Journal of Geosciences, 2020, 13(12): 453. [110] Cheng, S.,Z. Ma,P. Gong, et al. Controlling the Deformation of a Small Coal Pillar Retaining Roadway by Non-Penetrating Directional Pre-Splitting Blasting with a Deep Hole: A Case Study in Wangzhuang Coal Mine[J]. Energies, 2020, 13(12), 3084. [111] Dai, J.,P. Shan,Q. Zhou, et al. Study on Intelligent Identification Method of Coal Pillar Stability in Fully Mechanized Caving Face of Thick Coal Seam[J]. Energies, 2020, 13(2), 305. [112] 蒋威, 鞠文君, 汪占领, 等. 厚硬基本顶综放沿空巷道受载变形机制研究[J]. 采矿与安全工程学报, 2020, 37(02): 319-326. [113] 蒋威, 鞠文君, 汪占领, 等. 厚硬基本顶综放沿空巷道覆岩应力分布特征及合理煤柱宽度确定[J]. 采矿与安全工程学报, 2020, 37(06): 1142-1151. [114] 白锦文, 崔博强, 戚庭野, 等. 关键柱柱旁充填岩层控制基础理论[J]. 煤炭学报, 2021. 46(02): 424-438. [115] 徐青云, 黄庆国, 张广超. 综放剧烈采动影响煤巷窄煤柱破裂失稳机理与控制技术[J]. 采矿与安全工程学报, 2019, 36(05): 941-948. [116] 徐青云, 宁掌玄, 朱润生, 等. 综放工作面充填过空巷顶板失稳机理及控顶研究[J]. 采矿与安全工程学报, 2019, 36(03): 505-512. [117] 杨敬轩, 刘长友, 于斌, 等. 工作面端头三角区沿空巷道强矿压显现与应力转移分析[J]. 采矿与安全工程学报, 2016, 33(01): 88-95. [118] 张广超, 吴涛, 吴继鲁, 等. 综放工作面沿空掘巷顶煤挤压破裂机理与控制技术[J]. 煤炭科学技术, 2019, 47(05): 95-100. [119] 张洪伟, 万志军, 张源, 等. 工作面顺序接续下综放沿空掘巷窄煤柱稳定性控制[J]. 煤炭学报, 2021, 46(04): 1211-1219. [120] 郭金刚, 李耀晖, 何富连, 等. 特厚煤层综放沿空煤巷煤柱宽度及控制研究[J]. 煤矿安全, 2021, 52(10): 190-195+202. [121] 郭金刚, 王伟光, 何富连, 等. 大断面综放沿空巷道基本顶破断结构与围岩稳定性分析[J]. 采矿与安全工程学报, 2019, 36(03): 446-454+464. [122] 戈素亮, 张江波. 综放工作面沿空巷道围岩破断机理及支护技术研究[J]. 煤炭工程, 2019, 51(07): 44-48. [123] 丁自伟, 田普, 廉开元, 等. 厚煤层综放工作面煤柱稳定性评价及控制技术[J]. 煤炭工程, 2021, 53(03): 62-67. [124] 董合祥. 特厚煤层综放开采沿空掘巷窄煤柱围岩控制[J]. 采矿与岩层控制工程学报, 2021, 3(03): 32-42. [125] 董合祥, 段宏飞, 王亚军. 特厚煤层坚硬顶板临空煤巷强矿压显现机理及控制技术[J]. 煤矿安全, 2018, 49(09): 271-275. [126] 何富连, 卢恒, 秦宾宾, 等. 特厚煤层综放沿空巷道煤柱合理宽度与巷道支护研究[J]. 煤炭工程, 2021, 53(09): 30-35. [127] 何文瑞, 何富连, 陈冬冬, 等. 坚硬厚基本顶特厚煤层综放沿空掘巷煤柱宽度与围岩控制[J]. 采矿与安全工程学报, 2020, 37(02): 349-358+365. [128] 李林, 顾伟, 刘世超. 中厚煤层综放开采窄小煤柱沿空掘巷技术[J]. 煤矿安全, 2020, 51(11): 94-100. [129] Liu, X.,M. He,J. Wang, et al. Research on Non-Pillar Coal Mining for Thick and Hard Conglomerate Roof[J]. Energies, 2021, 14(2), 299. [130] Zhang, X.,M. He,J. Yang, et al. An Innovative Non-Pillar Coal-Mining Technology with Automatically Formed Entry: A Case Study[J]. Engineering, 2020, 6(11): 1315-1329. [131] 王康, 来兴平, 郭俊兵, 等. 坚硬顶板特厚煤层综放面区段煤柱合理宽度研究[J]. 煤炭工程, 2019, 51(05): 43-47. [132] 王世潭, 仲涛, 曾斌, 等. 综放开采工作面基本顶侧向破断位置机理分析[J]. 煤矿安全, 2017, 48(12): 195-198. [133] 尉瑞, 杨文帅, 郭彦军, 等. 浅埋综放沿空小煤柱巷道矿压显现规律研究[J]. 煤炭科学技术, 2018, 46(S2): 57-62. [134] 高士岗. 大柳塔煤矿综放工作面端头压架机理及防治技术[J]. 煤炭工程, 2018, 50 (09): 52-55. [135] 李斌,李刚, 汪北方. 南阳坡煤矿8800综放工作面临空小煤柱尺寸研究[J]. 煤炭工程, 2020, 52(07): 63-67. [136] 刘捷, 王峰. 高河煤矿综放工作面沿空留巷煤柱合理宽度确定[J]. 煤炭技术, 2018. 37(10): 70-72. [137] 吕坤, 邓志刚, 冯吉成, 等. 叠加采动影响下保留巷道围岩破坏机理及其控制技术[J]. 采矿与安全工程学报, 2019, 36(04): 685-695. [138] 沙旋, 褚晓威. 厚煤层沿空留巷围岩综合控制技术[J]. 煤炭科学技术, 2019, 47(11): 76-83. [139] 申梁昌,双海清, 王红胜. 基本顶影响综放沿空掘巷稳定性关键因素分析[J]. 煤炭技术, 2018, 37(10): 8-10. [140] 宋宵, 石磊. 综放开采沿空留巷合理支护体宽度确定[J]. 煤炭技术, 2021, 40(10): 64-67. [141] 孙福玉. 综放开采窄煤柱沿空掘巷围岩失稳机理与控制技术[J]. 煤炭科学技术, 2018. 46(10): 149-154. [142] 孙浩,王文,朱俊凯, 等. 特厚煤层沿空掘巷围岩控制技术研究[J]. 煤炭工程, 2017, 49(03): 79-82. [143] 王德超,王永军,王琦, 等. 深井综放沿空掘巷围岩应力特征模型试验研究[J]. 采矿与安全工程学报, 2019, 36(05): 932-940. [144] Kong, D.,W. Jiang,Y. Chen, et al. Study of roof stability of the end of working face in upward longwall top coal[J]. Arabian Journal of Geosciences, 2017, 10(8): 1-10. [145] Ning, J., J. Wang, L. Jiang, et al. Fracture analysis of double-layer hard and thick roof and the controlling effect on strata behavior: A case study[J]. Engineering Failure Analysis, 2017, 81: 117-134. [146] Zhao, T. ,C. Liu, K. Yetilmezsoy, et al. Fractural structure of thick hard roof stratum using long beam theory and numerical modeling[J]. Environmental Earth Sciences, 2017, 76(21): 1-13. [147] Zheng, Z.,Y. Xu,D. Li, et al. Numerical Analysis and Experimental Study of Hard Roofs in Fully Mechanized Mining Faces under Sleeve Fracturing[J]. Minerals, 2015, 5(4): 758-777. [148] Bai, Q.,S. Tu,F. Wang, et al. Field and numerical investigations of gateroad system failure induced by hard roofs in a longwall top coal caving face[J]. International Journal of Coal Geology, 2017, 173: 176-199. [149] He, J.,L.-m. Dou,Z.-l. Mu, et al. Numerical simulation study on hard-thick roof inducing rock burst in coal mine[J]. Journal of Central South University, 2016, 23(9): 2314-2320. [150] 朱志洁, 王洪凯, 张宏伟, 等. 多层坚硬顶板综放开采矿压规律及控制技术研究[J]. 煤炭科学技术, 2017, 45(07): 1-6. [151] 郑上上, 孔德中. 工作面坚硬顶板破断特征与覆岩运移规律[J]. 煤矿安全, 2019, 50(05): 257-262. [152] 崔峰, 刘星合. 综采工作面水力压裂顶板控制技术研究[J]. 煤炭科学技术, 2019, 47(09): 172-176. [153] 付兴玉, 于化江, 张彬, 等. 厚煤层综放回采率对坚硬顶板破断步距影响机制[J]. 煤矿安全, 2019, 50(08): 199-202+208. [154] 梁沙平, 陆银龙, 郭鹏, 等. 特厚煤层坚硬顶板初次破断特征的力学分析[J]. 煤矿安全, 2020, 51(08): 245-250. [155] 高瑞. 远场坚硬岩层破断失稳的矿压作用机理及地面压裂控制研究[J], 2018, 中国矿业大学. [156] 高瑞, 于斌, 孟祥斌. 工作面过煤柱强矿压显现机理及地面压裂控制研究[J]. 采矿与安全工程学报, 2018, 35(02): 324-331. [157] 黄炳香, 赵兴龙, 陈树亮, 等. 坚硬顶板水压致裂控制理论与成套技术[J]. 岩石力学与工程学报, 2017, 36(12): 2954-2970. [158] 孟秀峰, 赵洪亮. 综放工作面水力压裂顶板控制技术研究[J]. 煤炭工程, 2017, 49 (07): 75-77. [159] 吴建星. 水力压裂控制综放工作面初次垮顶试验研究[J]. 煤炭科学技术, 2016, 44 (08): 91-95. [160] 杨俊彩. 水力压裂技术在神东矿区顶板灾害防治中的应用[J]. 煤炭工程, 2020, 52 (12): 61-66. [161] Xia, B., C. Ou, X. Zhang, et al. Expansion law and influence factors of hydraulic fracture under the influence of coal pillar[J]. Arabian Journal of Geosciences, 2021, 14 (11), 961. [162] 庞贵艮. 坚硬顶板水力压裂技术及效果检验[J]. 煤炭工程, 2021, 53(03): 27-30. [163] 杨俊哲, 郑凯歌. 厚煤层综放开采覆岩动力灾害原理及防治技术[J]. 采矿与安全工程学报, 2020, 37(04): 750-758. [164] 杨俊哲,郑凯歌,王振荣, 等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报, 2020, 45(10): 3371-3379. [165] 尹晋攀. 高压水力压裂技术在综放工作面初采放顶中的应用[J]. 煤矿现代化, 2021, 30(02): 118-121. [166] 苏斌华. 坚硬顶板综放工作面水力压裂控顶技术研究[J]. 中国矿山工程, 2020, 49 (03): 49-55. [167] 任永强, 牛同会. 布尔台矿水力压裂对矿压显现影响分析[J]. 煤矿安全, 2020, 51 (03): 184-187. [168] 陈永锋, 郭瑞瑞, 刘玉磊. 布尔台煤矿综放工作面矿压显现规律[J]. 煤矿安全, 2018, 49(S1): 99-101. [169] 康红普, 冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术, 2017, 45(01): 1-9. [170] 侯志鹰, 张英华. 坚硬顶板控制技术在综放开采中的应用研究[J]. 有色金属(矿山部分), 2003(02): 8-10. [171] 李臣,霍天宏,吴峥, 等. 动压巷道顶板非均匀剧烈变形机理及其稳定性控制[J]. 中南大学学报(自然科学版), 2020, 51(05): 1317-1327. [172] 李洪, 杨立辉. 坚硬顶板、软煤、软底大倾角较薄厚煤层综放工作面的开采实践[J]. 煤炭技术, 2006(11): 43-45. [173] 罗文,杨俊彩, 高振宇. 强矿压矿井定向长孔分段压裂技术研究及应用[J]. 煤炭科学技术, 2018, 46(11): 43-49.
﹀
|
中图分类号: |
TD324
|
开放日期: |
2024-06-27
|