- 无标题文档
查看论文信息

论文中文题名:

 黄河流域生态干旱时空特征及植被韧性评估    

姓名:

 何祖鑫    

学号:

 22210061018    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081602    

学科名称:

 工学 - 测绘科学与技术 - 摄影测量与遥感    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 地理空间信息技术与应用    

第一导师姓名:

 耿广坡    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-18    

论文答辩日期:

 2025-06-07    

论文外文题名:

 Spatial and temporal characteristics of ecological drought in the Yellow River Basin and assessment of vegetation resilience    

论文中文关键词:

 黄河流域 ; 植被生态系统 ; 生态干旱 ; 稳定性 ; 抵抗力 ; 恢复力    

论文外文关键词:

 Yellow River Basin ; Vegetation Ecosystem ; Ecological Drought ; Stability ; Resistance ; Resilience    

论文中文摘要:

黄河流域是我国重要的生态屏障和经济带,但其自然资源禀赋有限,生态环境脆弱,是我国受干旱影响最为显著的区域之一。近年来,受气候变化与人类活动双重驱动,极端干旱事件频发,导致流域内水土流失、土壤盐渍化、水资源利用效率低下等问题日益严峻。因此,本文以黄河流域陆地植被生态系统为研究对象,首先,利用核归一化差异植被指数(Kernel Normalized Difference Vegetation Index, kNDVI)分析黄河流域2001-2020年植被生长时空分布特征,结合气象、遥感等数据计算流域内不同植被覆盖类型下的耗/需水资源,分析其时空分布特征,从植被生态水分平衡角度刻画植被水分亏缺情况。其次,参考标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index, SPEI)的构建旱度评价模式,构建适用于黄河流域植被生态系统的生态干旱指数(Standardized Ecological Drought Index, SEDI),实现黄河流域生态干旱的动态监测,结合游程理论思想对流域内近20年的SEDI变化进行分析,提取干旱频率、强度与持续时间等特征指标,揭示生态干旱的空间格局与演变趋势。最后,采用变异系数法和ARx模型,评估近20年来黄河流域生态干旱胁迫下植被的稳定性、抵抗力与恢复力,从多维视角系统分析植被生态韧性的时空异质性。本研究的主要结论如下:

(1)黄河流域近20年植被覆盖显著改善,kNDVI年均值以0.043/10a的速率上升,整体呈东南高、西北低分布格局。覆盖结构由“低覆盖主导”转向“中高覆盖均衡”,低覆盖区面积减少24.33%,高及极高覆盖区合计增加23.38%。植被改善区占比达75.89%,退化区占比仅2.06%,夏秋季植被改善尤为明显;植被物候展现出显著的空间差异与人为干预特征,87.72%的区域为单生长季,广泛分布于中上游自然植被区;约有12.28%的区域为双生长季区,主要集中在下游灌溉农业区,与冬小麦-夏玉米轮作制度空间一致。物候期的时空格局受气候梯度与地形影响显著,生长季初期由东南向西北递延,休眠期在农业区显著晚于非农业区。

(2)参考作物蒸散量、植被生态需水量、耗水量呈现显著空间异质性与人类-自然系统协同驱动特征。参考作物蒸散发量(ET₀)多年均值为1247.81mm,整体表现为“东高西低、北高南低”格局,58.61%区域呈上升趋势。生态需水量均值为502.15mm,主要集中于生长季4-9月;生态耗水量均值为462mm,在下游灌溉区显著偏高,时空分异明显,34.04%区域耗水量显著上升,尤以祁连山、晋西及河口等生态修复区增长最为突出,最高年增长速率可达38.45mm/a,而河套灌区与城市群则出现耗水减少,面积占比约为11.69%。

(3)SPEI、SSI(Standardized Soil Moisture Index)以及SEDI与kNDVI表现出不同程度相关性,SEDI与kNDVI平均相关系数为0.23,显著高于SPEI与SSI,在半干旱区优势更为明显;在一致性分析中,SEDI与植被异常的一致性达到0.53,优于SPEI和SSI,在半湿润区表现尤佳,验证了SEDI在反映植被水分胁迫过程中的敏感性和稳定性,且具备更强的生态适应性与监测潜力。此外,SEDI 在监测干旱事件方面与历史干旱事件表现出良好的一致性,进一步证实了其在干旱监测中的有效性和可靠性。

(4)生态干旱高频区集中于黄河中游陕西-甘肃交界、河套平原及黄河源区,频率超过32%;中上游半干旱区干旱强度显著偏高,极端干旱主要分布于鄂尔多斯高原与黄河源区;累积干旱时长高值区集中于黄土高原,部分地区干旱持续时间超过90个月。干旱事件在不同区域呈现频率、强度与持续性耦合特征,整体呈“中西高、东南低”的空间异质格局,生态脆弱区干旱风险最为突出。应在黄河中游及源区结合人工增雨、节水灌溉与耐旱植被重建等策略,分区推进水资源调控与生态修复。

(5)黄河流域植被约有83.84%区域处于较为稳定状态,流域平均变异系数为0.23,处于中低波动水平,稳定性核心区主要分布于青藏高原东北缘、秦巴山地与黄河下游;不同植被类型的稳定性表现出明显差异,稳定性由高到低依次为林地>耕地>草地;不同气候分区中的植被稳定性也呈现显著差异,稳定性由高到低依次为半湿润区>半干旱区>干旱区。植被抵抗力呈现“东南高、西北低”格局,半湿润区最强,干旱区最弱;林地抗旱能力最强,草地最弱,耕地居中,但干旱区耕地因灌溉条件支撑,抗旱能力优于草地。植被恢复力呈现“西南强、东北弱”趋势,半干旱区最强,干旱区最弱;草地恢复力较强,尤其在半干旱区适应性高,而林地因生长周期长、结构复杂恢复力较弱。需因地制宜优化植被结构,重点在干旱与半干旱区推广耐旱草地与节水灌溉耕地,稳固林地稳定核心区,提升整体生态系统的抗扰与恢复能力。

论文外文摘要:

The Yellow River basin serves as a vital ecological barrier and economic zone in China; however, its limited natural resources and fragile ecological environment make it one of the regions most significantly impacted by drought. Recently, due to climate change and human activities, extreme drought events have become more frequent, resulting in serious issues such as soil erosion, soil salinization, and inefficient water resource usage in the basin. Consequently, this paper focuses on the terrestrial vegetation ecosystem of the Yellow River Basin. First, the spatial and temporal distribution characteristics of vegetation growth in the Yellow River Basin from 2001 to 2020 were analyzed using the Kernel Normalized Difference Vegetation Index (kNDVI). The analysis incorporated meteorological, remote sensing, and other data to calculate these distribution characteristics. Additionally, we assessed the water consumption and demand of different vegetation cover types in the basin, analyzed their spatial and temporal distribution, and depicted the water deficit of vegetation from the ecological water balance perspective. Secondly, by referencing the Standardized Precipitation Evapotranspiration Index (SPEI), we developed the Standardized Ecological Drought Index (SEDI) for the vegetation ecosystems of the Yellow River Basin. This index facilitates dynamic monitoring of ecological drought conditions. We analyzed the changes in SEDI over the past 20 years, applying travel theory to extract characteristic indices regarding drought frequency, intensity, and duration, thereby revealing the spatial patterns and trends of ecological drought evolution. Finally, we employed the coefficient of variation method and ARx model to evaluate the stability, resistance, and resilience of vegetation under ecological drought stress in the Yellow River Basin over the past 20 years, systematically examining the spatial and temporal heterogeneity of ecological resilience from multiple perspectives. The main conclusions of this study are as follows:

(1) The vegetation cover in the Yellow River Basin has improved significantly in the past 20 years, with the annual mean value of kNDVI increasing at a rate of 0.043/10a, and the overall distribution pattern is high in the southeast and low in the northwest. The coverage structure shifted from “dominated by low coverage” to “balanced between medium and high coverage,” with the area of low-covered areas decreasing by 24.33% and high- and very high-covered areas increasing by 23.38%. The vegetation improvement area accounted for 75.89% of the total area, while the degraded area accounted for only 2.06% of the total area, and the improvement of vegetation in summer and fall was particularly obvious; vegetation phenology showed significant spatial differences and human intervention characteristics; 87.72% of the area was in a single-growing-season zone, which was widely distributed in the middle and upper reaches of the natural vegetation area; about 12.28% of the area was in a double-growing-season zone, which was mainly concentrated in the lower reaches of the irrigated agriculture area, which was spatially consistent with the winter wheat-summer corn rotation system. The crop rotation system is spatially consistent. The spatial and temporal pattern of the climatic period was significantly influenced by the climatic gradient and topography, with the beginning of the growing season extending from the southeast to the northwest and the dormant period being significantly later in the agricultural than in the non-agricultural areas.

 (2) The reference crop evapotranspiration (ET₀), vegetation ecological water demand, and water consumption showed significant spatial heterogeneity and human-natural system synergy. The average value of ET₀ was 1247.81 mm, with an overall pattern of “high in the east, low in the west, high in the north, and low in the south,” with 58.61% of the area showing an upward trend. The ecological water demand average value is 502.15 mm, mainly concentrated in the growing season from April to September; the ecological water consumption average value is 462 mm, and in the downstream of the irrigated area, it is significantly high. Spatial and temporal variations are obvious: 34.04% of the regional water consumption rose significantly, especially in the Qilian Mountains, Jinci, estuaries, and other ecological restoration areas, with the most prominent growth and the highest annual growth rate of up to 38.45 mm/a, while the river-loop irrigation area and the city cluster then showed a decrease in water consumption, with an area share of about 11.69%.

(3) SPEI, SSI (Standardized Soil Moisture Index), and SEDI exhibited varying degrees of correlation with kNDVI, with the average correlation coefficient between SEDI and kNDVI being 0.23, significantly higher than that of SPEI and SSI, particularly evident in semi-arid zones. In the consistency analysis, the correlation between SEDI and vegetation anomalies reached 0.53, outperforming SPEI and SSI, with especially strong results in semi-moist areas. This finding verified the sensitivity and stability of SEDI in reflecting vegetation water stress, demonstrating stronger ecological adaptability and monitoring potential. Furthermore, SEDI aligned well with historical drought events, further reinforcing its effectiveness and reliability in drought monitoring.

(4) The high frequency of ecological drought is concentrated in the middle reaches of the Yellow River at the border of Shaanxi and Gansu, the Hetao Plain, and the source area of the Yellow River, with a frequency of more than 32%; the intensity of drought in the middle and upper reaches of the semi-arid zone is significantly high, and extreme drought is mainly found in the Ordos Plateau and the source area of the Yellow River; and the high cumulative drought duration is concentrated in the Loess Plateau, with the drought lasting for more than 90 months in some areas. Drought events in different regions are characterized by the coupling of frequency, intensity, and persistence and the overall spatial heterogeneity pattern of “high in the middle and west, low in the southeast,” and the drought risk in ecologically fragile areas is the most prominent. In the middle reaches and source region of the Yellow River, strategies such as artificial precipitation enhancement, water-saving irrigation, and drought-tolerant vegetation restoration should be integrated to implement region-specific water resource regulation and ecological restoration.

(5) About 83.84% of the vegetation in the Yellow River Basin is relatively stable, with an average coefficient of variation of 0.23, indicating low to medium fluctuation. The core stable areas are mainly distributed in the northeastern edge of the Qinghai-Tibet Plateau, the Qinba Mountains, and the lower reaches of the Yellow River. Vegetation stability varies significantly across types (forest > cropland > grassland) and climate zones (semi-humid > semi-arid > arid). Vegetation resistance shows a pattern of “high in the southeast and low in the northwest,” with forest land having the strongest drought resistance, grassland the weakest, and cropland in between—though cropland in arid zones performs better than grassland due to irrigation support. Vegetation resilience follows a “southwest strong, northeast weak” trend, with grassland showing high adaptability in semi-arid zones, while forestland recovers more slowly due to long growth cycles and complex structure. Localized optimization of vegetation structure should focus on promoting drought-tolerant grasslands and water-saving irrigation in arid and semi-arid zones, while stabilizing forest-dominated core areas to enhance overall ecosystem resistance and resilience.

参考文献:

[1] 崔桂鹏, 肖春蕾, 雷加强, 等. 大国治理: 中国荒漠化防治的战略选择与未来愿景[J]. 中国科学院院刊, 2023, 38(7): 943-955.

[2] Su B, Huang J, Fischer T, et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming[J]. Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, 2018, 115(42): 10600-10605.

[3] Vicente-Serrano S M, Peña-Angulo D, Beguería S, et al. Global drought trends and future projections[J]. Philosophical Transactions of the Royal Society A, 2022, 380(2238): 20210285.

[4] 张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78(3): 500-521.

[5] 傅伯杰, 刘彦随, 曹智, 等. 黄土高原生态保护和高质量发展现状, 问题与建议[J]. 中国科学院院刊, 2023, 38(8): 1110-1117.

[6] 韦红波, 李锐, 杨勤科. 我国植被水土保持功能研究进展[J]. 植物生态学报, 2002(4): 489-496.

[7] 刘媛媛, 李霞, 王小博, 等. 2001-2018年中国-老挝交通走廊核心区植被稳定性对极端干旱的响应[J]. 生态学报, 2021, 41(7): 2537-2547.

[8] Flach M, Brenning A, Gans F, et al. Vegetation modulates the impact of climate extremes on gross primary production[J]. Biogeosciences, Copernicus GmbH, 2021, 18(1): 39-53.

[9] Crausbay S D, Ramirez A R, Carter S L, et al. Defining Ecological Drought for the Twenty-First Century[J]. Bulletin of the American Meteorological Society, 2017, 98(12): 2543-2550.

[10] Li X, Li Y, Chen A, et al. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China[J]. Agricultural and Forest Meteorology, 2019, 269-270: 239-248.

[11] Wang F, Wang Z, Yang H, et al. Study of the temporal and spatial patterns of drought in the Yellow River basin based on SPEI[J]. Science China Earth Sciences, 2018, 61(8): 1098-1111.

[12] Ault T R. On the essentials of drought in a changing climate[J]. Science, American Association for the Advancement of Science, 2020, 368(6488): 256-260.

[13] Rasmusson E M. The prediction of drought: a meteorological perspective[J]. Endeavour, 1987, 11(4): 175-182.

[14] Alahacoon N, Edirisinghe M. A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale[J]. Geomatics, Natural Hazards and Risk, 2022, 13(1): 762-799.

[15] Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index[J]. Journal of climate, 2010, 23(7): 1696-1718.

[16] Palmer W C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index[J]. 1968.

[17] Narasimhan B, Srinivasan R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring[J]. Agricultural and Forest Meteorology, 2005, 133(1): 69-88.

[18] 宋艳玲. 全球干旱指数研究进展[J]. 应用气象学报, 2022, 33(5): 513-526.

[19] Shafer B A, Dezman L E. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas[J]. 1982.

[20] Nalbantis I, Tsakiris G. Assessment of Hydrological Drought Revisited[J]. Water Resources Management, 2009, 23(5): 881-897.

[21] Gusyev M A, Hasegawa A, Magome J, et al. Drought assessment in the Pampanga River basin, the Philippines - Part 1: Characterizing a role of dams in historical droughts with standardized indices[A]. Weber, T., McPhee, M.J. and Anderssen, R.S. (eds) MODSIM2015, 21st International Congress on Modelling and Simulation[C]. Modelling and Simulation Society of Australia and New Zealand, 2015.

[22] Banerjee O, Bark R, Connor J, et al. An ecosystem services approach to estimating economic losses associated with drought[J]. Ecological Economics, 2013, 91: 19-27.

[23] 粟晓玲, 姜田亮, 牛纪苹. 生态干旱的概念及研究进展[J]. 水资源保护, 2021, 37(4): 15-21+28.

[24] Munson S M, Bradford J B, Hultine K R. An Integrative Ecological Drought Framework to Span Plant Stress to Ecosystem Transformation[J]. Ecosystems, 2021, 24(4): 739-754.

[25] Jiang T, Su X, Singh V P, et al. Spatio-temporal pattern of ecological droughts and their impacts on health of vegetation in Northwestern China[J]. Journal of Environmental Management, 2022, 305: 114356.

[26] Shah R, Manekar V L, Christian R A, et al. Estimation of reconnaissance drought index (RDI) for Bhavnagar District, Gujarat, India[J]. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 2013, 7(7): 507-510.

[27] Zhang B, AghaKouchak A, Yang Y, et al. A water-energy balance approach for multi-category drought assessment across globally diverse hydrological basins[J]. Agricultural and Forest Meteorology, 2019, 264: 247-265.

[28] Jiang T, Su X, Singh V P, et al. A novel index for ecological drought monitoring based on ecological water deficit[J]. Ecological Indicators, 2021, 129: 107804.

[29] Shi M, Yuan Z, Shi X, et al. Drought assessment of terrestrial ecosystems in the Yangtze River Basin, China[J]. Journal of Cleaner Production, 2022, 362: 132234.

[30] Zhang L, Chang J, Guo A, et al. Ecological drought evolution characteristics under different climatic regions in the Yangtze River basin[J]. Journal of Hydrology, 2024, 629: 130573.

[31] 付永硕, 张晶, 吴兆飞, 等. 中国植被物候研究进展及展望[J]. 北京师范大学学报 (自然科学版), 2022, 58(3): 424-433.

[32] 张晶, 郝芳华 ,吴兆飞, 等. 植被物候对极端气候响应及机制[J]. 地理学报, 2023, 78(09):2241-2255.

[33] Fu Y H, Piao S, Delpierre N, et al. Larger temperature response of autumn leaf senescence than spring leaf‐out phenology[J]. Global Change Biology, 2018, 24(5): 2159-2168.

[34] Bajocco S, Raparelli E, Teofili T, et al. Text mining in remotely sensed phenology studies: A review on research development, main topics, and emerging issues[J]. Remote Sensing, 2019, 11(23): 2751.

[35] Javed T, Li Y, Feng K, et al. Monitoring responses of vegetation phenology and productivity to extreme climatic conditions using remote sensing across different sub-regions of China[J]. Environmental Science and Pollution Research, 2021, 28: 3644-3659.

[36] 谢志英, 朱文泉, 付永硕. 植被物候遥感监测关键问题[J]. 遥感学报, 2024, 28(9): 2131-2143.

[37] 彭慧文, 赵俊芳, 谢鸿飞, 等. 作物模型应用与遥感信息集成技术研究进展[J]. 中国农业气象, 2022, 43(08): 644.

[38] Beck P S A, Atzberger C, Høgda K A, et al. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI[J]. Remote sensing of Environment, 2006, 100(3): 321-334.

[39] 夏传福 , 李静, 柳钦火. 植被物候遥感监测研究进展[J]. 遥感学报, 2021, 17(1): 1-16.

[40] Garonna I, de Jong R, Schaepman M E. Variability and evolution of global land surface phenology over the past three decades (1982-2012) [J]. Global change biology, 2016, 22(4): 1456-1468.

[41] Jönsson P, Cai Z, Melaas E, et al. A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data[J]. Remote Sensing, 2018, 10(4): 635.

[42] 徐佳, 樊海东, 倪健. 1950-2015 年中国植物物候变化的集成分析[J]. 亚热带资源与环境学报, 2019, 14(2): 1-11.

[43] Zhou Y. Relative contribution of growing season length and amplitude to long-term trend and interannual variability of vegetation productivity over Northeast China[J]. Forests, 2020, 11(1): 112.

[44] Holling C S. Resilience and Stability of Ecological Systems[J]. Annual Review of Ecology and Systematics, 1973: 1-23.

[45] Lloret F, Keeling E G, Sala A. Components of tree resilience: effects of successive low‐growth episodes in old ponderosa pine forests[J]. Oikos, 2011, 120(12): 1909-1920.

[46] Hodgson D, McDonald J L, Hosken D J. What do you mean, ‘resilient’?[J]. Trends in Ecology & Evolution, 2015, 30(9): 503-506.

[47] Harrison G W. Stability under environmental stress: resistance, resilience, persistence, and variability[J]. The American Naturalist, 1979, 113(5): 659-669.

[48] Orians G H. Diversity, stability and maturity in natural ecosystems[C]//Unifying Concepts in Ecology: Report of the plenary sessions of the First international congress of ecology, The Hague, the Netherlands, September 8-14, 1974. Dordrecht: Springer Netherlands, 1975: 139-150.

[49] Hoover D L, Knapp A K, Smith M D. Resistance and resilience of a grassland ecosystem to climate extremes[J]. Ecology, 2014, 95(9): 2646-2656.

[50] Van Meerbeek K, Jucker T, Svenning J. Unifying the concepts of stability and resilience in ecology[J]. Journal of Ecology, 2021, 109(9): 3114-3132.

[51] Gazol A, Camarero J J, Vicente‐Serrano S M, et al. Forest resilience to drought varies across biomes[J]. Global Change Biology, 2018, 24(5): 2143-2158.

[52] Li X, Piao S, Wang K, et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought[J]. Nature Ecology & Evolution, 2020, 4(8): 1075-1083.

[53] Patrick C J, Kominoski J S, McDowell W H, et al. A general pattern of trade-offs between ecosystem resistance and resilience to tropical cyclones[J]. Science Advances, 2022, 8(9): eabl9155.

[54] Isbell F, Craven D, Connolly J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes[J]. Nature, 2015, 526(7574): 574-577.

[55] Sun B, Jiang M, Han G, et al. Experimental warming reduces ecosystem resistance and resilience to severe flooding in a wetland[J]. Science Advances, 2022, 8(4): eabl9526.

[56] De Keersmaecker W, Lhermitte S, Tits L, et al. A model quantifying global vegetation resistance and resilience to short‐term climate anomalies and their relationship with vegetation cover[J]. Global Ecology and Biogeography, 2015, 24(5): 539-548.

[57] 孙雪. 岷江流域植被演变特征及韧性评价[D]. 河北工程大学, 2021.

[58] Schwalm C R, Anderegg W R L, Michalak A M, et al. Global patterns of drought recovery[J]. Nature, 2017, 548(7666): 202-205.

[59] Stuart-Haëntjens E, De Boeck H J, Lemoine N P, et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought[J]. Science of The Total Environment, 2018, 636: 360-366.

[60] Wilcox K R, Koerner S E, Hoover D L, et al. Rapid recovery of ecosystem function following extreme drought in a South African savanna grassland[J]. Ecology, 2020, 101(4): e02983.

[61] Wang W, Wang W, Li J, et al. The Impact of Sustained Drought on Vegetation Ecosystem in Southwest China Based on Remote Sensing[J]. Procedia Environmental Sciences, 2010, 2: 1679-1691.

[62] You N, Meng J, Zhu L. Sensitivity and resilience of ecosystems to climate variability in the semi‐arid to hyper‐arid areas of Northern China: a case study in the Heihe River Basin[J]. Ecological Research, 2018, 33(1): 161-174.

[63] Ma J, Zhang C, Li S, et al. Changes in Vegetation Resistance and Resilience under Different Drought Disturbances Based on NDVI and SPEI Time Series Data in Jilin Province, China[J]. Remote Sensing, 2023, 15(13): 3280.

[64] Zhang Y, Liu X, Jiao W, et al. Spatial Heterogeneity of Vegetation Resilience Changes to Different Drought Types[J]. Earth’s Future, 2023, 11(4): e2022EF003108.

[65] 张静, 杜加强, 盛芝露, 等. 1982-2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 2021, 30(05):929-937.

[66] 杨泽康 ,田佳 ,李万源, 等. 黄河流域生态环境质量时空格局与演变趋势[J]. 生态学报, 2021, 41(19):7627-7636.

[67] 张楚汉, 王光谦. 关于黄河流域生态保护和高质量发展的思考[J]. 人民黄河, 2024, 46(09):1-7.

[68] 赵金彩, 潘涛. 基于多时间尺度的黄河流域植被NPP时空特征及其对气候变化的响应[J]. 水土保持研究, 2024, 31(04):214-222+232.

[69] Jin L, Chen S, Liu M. Multiscale Spatiotemporal Dynamics of Drought within the Yellow River Basin (YRB): An Examination of Regional Variability and Trends[J]. Water, 2024, 16(5): 791.

[70] Yao L, Wu R, Wang Z, et al. Climate Change and Vegetation Greening Jointly Promote the Increase in Evapotranspiration in the Jing River Basin[J]. Agronomy, 2024, 14(9): 1910.

[71] 朱刚, 高会军, 曾光. 近45a来黄河源区沙质荒漠化土地景观格局变化[J]. 干旱区资源与环境, 2021, 35(12):79-85.

[72] 解晗. 黄河流域自然植被物候变化及其对生产力和水分利用的影响[D]. 北京林业大学, 2022.

[73] 夏冰, 马鹏宇, 徐聪, 等. 近20年黄河流域植被净初级生产力时空分布及其对极端天气变化的时空响应[J]. 水土保持研究, 2023,30(02):256-266+284.

[74] 杨鹏辉, 田佳, 张楠, 等. 1990-2022年黄河流域植被时空变化特征及未来趋势预测[J]. 生态学报, 2024,44(19):8542-8553.

[75] Zhang L, Deng C, Kang R, et al. Assessing the responses of ecosystem patterns, structures and functions to drought under climate change in the Yellow River Basin, China[J]. Science of the Total Environment, 2024, 929: 172603.

[76] 王颖轩. 黄河流域生态功能区植被NPP时空变化及驱动因素分析(2001-2020年)[D]. 宁夏大学, 2024.

[77] 吴立周. 气候变化对中亚干旱区植被物候的影响[D]. 南京信息工程大学, 2023.

[78] Li Q, Shi G, Shangguan W, et al. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning. Earth Systtem Science Data, 2022, 14, 5267-5286.

[79] Liang T, Li C, He Y, et al. PML_30: A high resolution (30 m) estimates of evapotranspiration based on remote sensing model with application in an arid region[J]. Journal of Hydrology, 2024, 642: 131862.

[80] Xu H, Wang X, Zhao C, et al. Assessing the response of vegetation photosynthesis to meteorological drought across northern China[J]. Land Degradation & Development, 2021, 32(1): 20-34.

[81] Geng G, Yang R, Chen Q, et al. Tracking the influence of drought events on winter wheat using long-term gross primary production and yield in the Wei River Basin, China[J]. Agricultural Water Management, 2023, 275: 108019.

[82] Hamed K H, Ramachandra Rao A. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998, 204(1-4): 182-196.

[83] Sen P K. Estimates of the Regression Coefficient Based on Kendall’s Tau[J]. Journal of the American Statistical Association, Taylor & Francis, 1968, 63(324): 1379-1389.

[84] Kong D, McVicar T R, Xiao M, et al. phenofit: An R package for extracting vegetation phenology from time series remote sensing[J]. Methods in Ecology and Evolution, 2022, 13(7): 1508-1527.

[85] Shen M, Sun Z, Wang S, et al. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade[J]. Proceedings of the National Academy of Sciences, 2013, 110(26): E2329-E2329.

[86] Kong D, Zhang Y, Wang D, et al. Photoperiod explains the asynchronization between vegetation carbon phenology and vegetation greenness phenology[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(8): e2020JG005636.

[87] Kong D, Zhang Y, Gu X, et al. A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 155: 13-24.

[88] Atkinson P M, Jeganathan C, Dash J, et al. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology[J]. Remote sensing of environment, 2012, 123: 400-417.

[89] Atzberger C, Eilers P H C. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America[J]. International Journal of Digital Earth, 2011, 4(5): 365-386.

[90] Eilers P H C, Pesendorfer V, Bonifacio R. Automatic smoothing of remote sensing data[C]//2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). IEEE, 2017: 1-3.

[91] Eilers P H C. A perfect smoother[J]. Analytical chemistry, 2003, 75(14): 3631-3636.

[92] Zhang X, Friedl M A, Schaaf C B, et al. Monitoring vegetation phenology using MODIS[J]. Remote sensing of environment, 2003, 84(3): 471-475.

[93] Deb P, Kiem A S, Willgoose G. A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions[J]. Journal of Hydrology, 2019, 575: 273-291.

[94] Vicente-Serrano S M, Miralles D G, Domínguez-Castro F, et al. Global Assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for Drought Analysis and Monitoring[J]. Journal of Climate, American Meteorological Society, 2018, 31(14): 5371-5393.

[95] Shi M, Yuan Z, Shi X, et al. Drought assessment of terrestrial ecosystems in the Yangtze River Basin, China[J]. Journal of Cleaner Production, 2022, 362: 132234.

[96] Zhang Y, Yang S, Ouyang W, et al. Applying multi-source remote sensing data on estimating ecological water requirement of grassland in ungauged region[J]. Procedia Environmental Sciences, 2010, 2: 953-963.

[97] Chi D, Wang H, Li X, et al. Estimation of the ecological water requirement for natural vegetation in the Ergune River basin in Northeastern China from 2001 to 2014[J]. Ecological Indicators, 2018, 92: 141-150.

[98] Jiang T, Su X, Singh V P, et al. A novel index for ecological drought monitoring based on ecological water deficit[J]. Ecological Indicators, 2021, 129: 107804.

[99] Beguería S, Vicente‐Serrano S M, Reig F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring[J]. International journal of climatology, 2014, 34(10): 3001-3023.

[100] Hao Z, AghaKouchak A. Multivariate standardized drought index: a parametric multi-index model[J]. Advances in Water Resources, 2013, 57: 12-18.

[101] Farahmand A, AghaKouchak A. A generalized framework for deriving nonparametric standardized drought indicators[J]. Advances in Water Resources, 2015, 76: 140-145.

[102] Zhao J, Liu Q, Lu H, et al. Future droughts in China using the standardized precipitation evapotranspiration index (SPEI) under multi-spatial scales[J]. Natural Hazards, 2021, 109: 615-636.

[103] 姜田亮. 西北地区生态干旱时空演变特征及其对气象干旱和地下水干旱的响应[D]. 西北农林科技大学, 2022.

[104] Peña-Gallardo M, Vicente-Serrano S M, Hannaford J, et al. Complex influences of meteorological drought time-scales on hydrological droughts in natural basins of the contiguous Unites States[J]. Journal of Hydrology, 2019, 568: 611-625.

[105] Liu X, Pan Y, Zhu X, et al. Drought evolution and its impact on the crop yield in the North China Plain[J]. Journal of hydrology, 2018, 564: 984-996.

[106] Yevjevich V M. An objective approach to definitions and investigations of continental hydrologic droughts[M]. Fort Collins, CO, USA: Colorado State University, 1967.

[107] 姚宁, 蒋昆昊, 谢文馨, 等. 气候变化背景下山西省气象干旱时空演变特征[J]. 农业机械学报, 2024, 55(01):270-281.

[108] Goetz S J, Fiske G J, Bunn A G. Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada[J]. Remote Sensing of Environment, 2006, 101(3): 352-365.

[109] Ivits E, Horion S, Erhard M, et al. Assessing European ecosystem stability to drought in the vegetation growing season[J]. Global Ecology and Biogeography, 2016, 25(9): 1131-1143.

[110] De Keersmaecker W, Van Rooijen N, Lhermitte S, et al. Species‐rich semi‐natural grasslands have a higher resistance but a lower resilience than intensively managed agricultural grasslands in response to climate anomalies[J]. Journal of Applied Ecology, 2016, 53(2): 430-439.

[111] 刘柯言, 韩璐, 宋午椰, 等. 基于日光诱导叶绿素荧光探测干旱对黄土高原植被光合稳定性的影响[J/OL]. 植物生态学报, 1-17[2025-03-21].http://kns.cnki.net/kcms/detail/11.3397.Q.20250212.1258.008.html.

[112] Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere[J]. Science Advances, 2021, 7(9): eabc7447.

[113] Hoover D L, Smith W K. The growing threat of multiyear droughts[J]. Science, 2025, 387(6731): 246-247.

[114] Xu X, Chen F, Wang B, et al. Unleashing the power of machine learning and remote sensing for robust seasonal drought monitoring: A stacking ensemble approach[J]. Journal of Hydrology, 2024, 634: 131102.

[115] 闫俊华, 周国逸, 黄忠良. 鼎湖山亚热带季风常绿阔叶林蒸散研究[J]. 林业科学, 2001, 37(1): 37-45.

[116] Zhao A , Zhang A , Cao S ,et al.Responses of vegetation productivity to multi-scale drought in Loess Plateau, China[J].Catena, 2017, 163:165-171.

[117] Xu H, Wang X, Zhao C, et al. Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014[J]. Agricultural and Forest Meteorology, 2018, 262: 1-13.

中图分类号:

 P237/X87    

开放日期:

 2025-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式